流感病毒相关性脑病发病机制及治疗的研究进展
Research Progress of the Pathogenesis and Treatment of Influenza-Associated Encephalopathy
DOI: 10.12677/acm.2024.14123133, PDF, HTML, XML,   
作者: 张 清, 蒋 莉*:重庆医科大学附属儿童医院神经内科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童神经发育与认知障碍重庆市重点实验室,重庆
关键词: 流感病毒相关性脑病发病机制细胞因子风暴抗病毒治疗免疫治疗Influenza-Associated Encephalopathy Pathogenesis Cytokine Storm Antiviral Therapy Immunotherapy
摘要: 流感病毒相关性脑病(influenza-associated encephalopathy, IAE)是指在流感病毒的急性感染期出现的中枢神经系统功能障碍的一种临床综合征,主要发生在儿童,部分类型病死率及长期神经系统后遗症发生率较高。IAE的发病机制尚不完全清楚,也因此缺乏统一的治疗方案,IAE的临床诊疗面临严峻挑战。本文综述IAE可能的发病机制及治疗进展,为临床诊治IAE提供参考。
Abstract: Influenza-associated encephalopathy (IAE) is a clinical syndrome of central nervous system dysfunction that occurs during the acute infection period of influenza virus. It mainly occurs in children and some types have high mortality rate and long-term neurological sequelae. The pathogenesis of IAE is still not fully understood, and there is a lack of standard treatment strategy, which makes the management of IAE a challenge. This article reviews the possible pathogenesis and progress in treatment of IAE, aiming to provide reference for clinical diagnosis and treatment of IAE.
文章引用:张清, 蒋莉. 流感病毒相关性脑病发病机制及治疗的研究进展[J]. 临床医学进展, 2024, 14(12): 665-672. https://doi.org/10.12677/acm.2024.14123133

1. 引言

流行性感冒病毒简称流感病毒,是正粘病毒科的代表病毒,尽管流感病毒一般引起呼吸系统疾病,但其所致的神经系统并发症得到越来越多的重视。流感病毒感染后可引起热性惊厥、流感病毒相关性脑病(IAE)、吉兰–巴雷综合征、流感后帕金森病综合征、发作性睡病、昏睡性脑炎、瑞氏综合征等神经并发症[1] [2]。其中,IAE是流感病毒感染急性感染期出现的一系列中枢神经系统功能障碍的综合征。根据临床表现及影像学特点,IAE可分为不同的急性脑病综合征,常见的有临床轻症脑病伴可逆性胼胝体压部损伤(clinically mild encephalitis/encephalopathy with a reversible splenial lesion, MERS)、急性脑病伴双相惊厥发作与后期弥散降低(acute encephalopathy with biphasic seizures and late reduced diffusion, AESD)、急性坏死性脑病(acute necrotizing encephalopathy, ANE)、出血性休克与脑病综合征(hemorrhagic shock and encephalopathy syndrome, HSES)、可逆性后部脑病综合征(posterior reversible encephalopathy syndrome, PRES)和急性出血性白质脑病(acute hemorrhagic leukoencephalopathy, AHLE)等[1] [3],其中的部分类型可快速进展为昏迷或死亡,病死率高,治愈者也常遗留癫痫、发育迟缓、偏瘫、共济失调、语言障碍等长期神经系统后遗症[4]-[6]

目前,IAE的发病机制尚不完全明确,涉及病毒直接入侵神经系统、细胞因子风暴学说、兴奋性毒性学说、代谢障碍和胶质细胞激活等假说。鉴于IAE的预后欠佳、发病机制尚不明确,已成为研究的热点问题,为此,本文综述IAE的发病机制和治疗进展,为临床医师治疗IAE患者提供参考和借鉴。

2. IAE的发病机制

2.1. 病毒直接入侵神经系统

流感病毒表面的血凝素通过与宿主细胞的唾液酸受体特异性结合而感染宿主,而神经元及神经胶质细胞含有大量唾液酸受体,因此,流感病毒直接侵袭CNS被认为是一种潜在机制。一些高致病性流感病毒在多个动物实验中,被证实可通过多种途径到达CNS,包括经嗅球、三叉神经、迷走神经、交感神经及血液途径进入CNS [7]-[9]。尸检研究显示,IAE患者脑水肿显著,有时还伴有脑疝,但炎症反应不活跃,在少数几例IAE患者的脑实质或脑脊液也检测到了病毒抗原[10]-[12]。流感病毒是否能进入CNS尚存在争议,最近在静脉接种流感病毒的小鼠模型中,发现大脑血管内皮细胞中出现病毒蛋白沉积和细胞死亡,而流感病毒并没有扩增,猜测流感病毒进入大脑血管内皮细胞并进行转录和翻译过程才是诱发IAE的关键发病机制[10]。而且大部分IAE患者的CSF很少能检测到流感病毒核酸,CSF也不符合炎症表现,且在一些已报道的CSF中检测到病毒核酸的病例中,通过尸检并没有发现病毒抗原及脑炎的线索[13] [14]。因此,病毒直接入侵学说尚需要进一步研究。

2.2. 细胞因子风暴

流感病毒感染呼吸道上皮细胞后,引起细胞凋亡或坏死,进一步激活免疫细胞并释放大量细胞因子,从而引发细胞因子风暴,导致急性炎症和组织损伤。当细胞因子风暴溢出到循环系统,透过血脑屏障累及CNS即可产生神经系统症状[15]。大量临床研究也证实,IAE患者的血清和脑脊液中白细胞介素(IL⁃6、IL⁃1β、IL-8、IL-10)、趋化因子(CXCL10、CCL2)、肿瘤坏死因子(TNF-α)、干扰素(INF-γ)等细胞因子均有明显升高[16] [17]。其中,促炎因子IL-6、TNF-α在高浓度状态下具有神经毒性,可以破坏血管内皮细胞,引起血脑屏障通透性改变,从而导致脑水肿及一系列CNS表现,且与预后不良有关[18]。升高的IL-6和TNF-α则会促进抗炎因子IL-10的产生,有利于改善炎症及过度组织损伤,所以,IL-10升高水平与临床表现轻、预后良好有密切关系[10] [17]。此外,TNF-α还可以刺激血管内皮细胞产生促炎趋化因子,进一步激活炎症反应[19]

2.3. 兴奋性神经毒性

谷氨酸是CNS内含量最高的一种兴奋性神经递质,当其释放到突触间隙而不被及时清除,会过度兴奋谷氨酸受体,引起兴奋性神经毒性,对神经系统产生损伤。典型的AESD患者具有双相惊厥发作表现,其早期惊厥发作时,突触前神经元释放大量的谷氨酸,过量的谷氨酸摄取会使星形胶质细胞发生肿胀,导致皮层下白质弥散受限,呈现“亮树征”。当其超过星形胶质细胞的处理能力时,过多的谷氨酸与NMDA受体结合,引起大量Ca2+内流,造成突触后神经元损伤[20]。谷氨酸在星形胶质细胞内转化成谷氨酰胺,对AESD患者进行磁共振波谱分析显示病程早期谷氨酸峰增高,而病程晚期谷氨酸峰降低,谷氨酰胺峰增高,这一证据也很好地证实了这一机制[21]

2.4. 代谢障碍

流感病毒可以影响多种细胞代谢途径,以确保其复制和病毒颗粒产生的最佳微环境。一项代谢组学研究显示,被流感病毒感染的细胞线粒体β氧化显著降低[22]。而神经元高度依赖于线粒体氧化磷酸化所产生的ATP,当线粒体的能量代谢出现异常,则会影响神经元的正常功能,从而导致一系列神经系统疾病。目前的研究已经发现不少IAE患者体内存在代谢基因的突变,例如,与线粒体β氧化相关的肉碱棕榈转移酶Ⅱ基因的表达程度与IAE患者的严重程度相关[23] [24]。同时,IAE患者常合并有肝肾功能异常,以及经典的瑞氏综合征患者还会出现高氨血症、低血糖和游离脂肪酸血症,也有研究发现,既往有代谢性疾病的IAE患者,其临床表现更严重[25] [26]

2.5. 遗传易感性

目前IAE各种亚型在不同国家和种族之间的发病率差异很大,东亚国家的报道最多,提示其发病可能与遗传易感性相关[27] [28]。有研究者对复发性ANE家系进行基因检测,发现编码核孔蛋白Ran结合蛋白2的基因(RANBP2)发生了错义突变,进一步验证了IAE患者的遗传易感性[29]。随着对家族性ANE患者基因研究的深入,研究者发现,RANBP2并不是家族性ANE唯一易感基因,据统计,还有25%的家族性ANE病例与其他基因相关[18]。目前发现的IAE易感基因多与免疫反应、代谢、神经兴奋性、体温调节、髓鞘形成相关,例如人类白细胞抗原(human leukocyte antigen, HLA-DRB/DQB)基因可以为IAE患者提供免疫遗传学背景参考,而AESD患者则多见神经兴奋性相关的腺苷受体A2A (ADORA2A)纯合基因的报道[25]

2.6. 其他机制

IAE的发生还与其他因素有关,例如病毒变异、病毒的神经毒力、药物、合并其他病原感染等[24]。缺氧或者缺氧作为流感病毒引起呼吸衰竭的结果发生,也可以引起或加重中枢神经系统损伤[30]

需要注意的是,上述机制并不是孤立存在,在非常严重的急性脑病综合征中,可能同时存在其中几种机制[24]。例如,高水平细胞因子可以增加兴奋性多巴胺能神经传递,同时减少抑制性GABA能神经传递,增加兴奋性神经毒性的风险[31];出血性休克和脑病综合征患者既可以表现出发热、休克、多器官衰竭等细胞因子风暴表现,也可表现为神经元过度兴奋在MRI上有与AESD类似的“亮树征”[32]

3. IAE的治疗

IAE尚无特效疗法,主要根据具体的病情及严重程度进行对症支持治疗。常用的治疗包括抗流感病毒治疗、免疫治疗、抗癫痫以及脑保护治疗等。

3.1. 抗流感病毒治疗

尽早使用抗病毒药物,有助于防止进一步的炎症刺激,减少流感病毒相关并发症[33]-[35]。大多数建议使用奥司他韦,其通过结合病毒表面的神经氨酸酶阻止病毒的扩散,从而减少病毒在体内的复制,研究表明用药后能够使高并发症风险的流感患者住院率降低、缩短住院时间、降低死亡率[34] [36]。但在流感相关ANE患者中,标准剂量奥司他韦治疗对预后似乎没有显著影响,少数的病例报告及动物实验显示大剂量奥司他韦可以明显改善患者神经症状[37]-[41]。另外,最近发现流感病毒在血管内皮细胞的转录和翻译可能是IAE的重要发病机制,因此,抑制流感病毒转录和翻译的药物有待进一步进行临床研究[10]

3.2. 免疫治疗

自日本流感脑病指南推荐以来[42],大剂量激素的冲击疗法已经在临床上广泛用于病毒相关的急性脑病,尤其是细胞因子风暴亚型,早期使用激素可以改善预后。也有报道,病后24小时内激素冲击疗法并没有改善AST > 90 IU/L的IAE儿童的短期预后,但可以降低远期神经后遗症的发生率,因此,还需要进一步研究早期激素冲击在特定临床亚型中的有效性[43]。IVIG是继激素治疗炎症相关急性脑病患者后最常用的免疫治疗方式,可通过抑制免疫活性细胞活化和细胞因子产生而具有抗炎作用,在2009年流感大流行期间改善了许多重症患者的结局,但近年来的临床研究结果并没有发现IVIG与良好预后的相关性[44] [45]。而针对细胞因子风暴的其他免疫抑制剂(例如环孢素、阿那白滞素、托珠单抗)在部分病例报告中取得了良好的疗效,有待进一步扩大临床应用[45]

3.3. 亚低温治疗

从Yokota等人发现在亚低温治疗可以有效阻止ANE患儿的脑水肿进一步发展开始,亚低温治疗在急性脑病患者中的应用就备受关注[46]。根据各种病例报告和回顾性研究的结果,有针对性的体温管理可以显著改善急性脑病患者的结局,例如低温治疗可以通过预防脑病后癫痫来提高AESD患者的生活质量,而在HESE儿童中先亚低温治疗然后进行目标温度管理可能是改善神经功能结局的有效方法,但低温治疗带来的心动过缓、血压下降和异常凝血等副作用仍需要进一步解决[47] [48]

3.4. 血浆置换

血浆置换能快速清除血液中的炎症物质,从而有效对抗细胞因子风暴,是危重症IAE患者的可选治疗方法,有病例报告表明血浆置换能迅速改善患者临床症状[49]。一项回顾性队列研究也显示血浆置换组院内死亡率明显低于非血浆置换组,但两组患者远期死亡率并没有差异[50]

3.5. 其他治疗

治疗难治性癫痫持续状态需静脉使用全身麻醉药,如咪达唑仑、丙泊酚和巴比妥类药物[51]。生酮饮食也可以考虑用于治疗急性脑炎伴难治性反复部分性癫痫发作患者或难治性癫痫持续状态的患者,可有效控制惊厥发作[45]。对于有代谢障碍的IAE患者,维生素鸡尾酒疗法能明显改善患者的神经系统结局[52] [53]。另外,有动物研究发现抗弹性蛋白酶药物及抗组蛋白修饰酶可以减轻IAE小鼠模型的脑水肿和炎症反应,可能是治疗IAE的有效方案[54] [55]

4. 小结

IAE包括多种急性脑病综合征,部分亚型进展快、病死率及后遗症发生率高,但目前IAE的发病机制仍不明确,病毒入侵、细胞因子风暴、兴奋性神经毒性、遗传易感性是研究热点,且这几种机制可同时存在并相互影响。由于发病机制复杂,IAE的治疗也面临严峻挑战,常用的激素治疗和IVIG在不同亚型中的临床疗效需进一步研究,新兴的免疫抑制剂有待进一步在临床应用。总之,未来需要更多人研究IAE的发病机制和治疗策略,为IAE患者带来更有效的治疗。

NOTES

*通讯作者。

参考文献

[1] Sellers, S.A., Hagan, R.S., Hayden, F.G. and Fischer, W.A. (2017) The Hidden Burden of Influenza: A Review of the Extra‐pulmonary Complications of Influenza Infection. Influenza and Other Respiratory Viruses, 11, 372-393.
https://doi.org/10.1111/irv.12470
[2] 雷雨璇, 舒跃龙, 房师松. 流感相关中枢神经系统并发症研究进展[J]. 病毒学报, 2022, 38(1): 196-204.
[3] Mizuguchi, M., Ichiyama, T., Imataka, G., Okumura, A., Goto, T., Sakuma, H., et al. (2021) Guidelines for the Diagnosis and Treatment of Acute Encephalopathy in Childhood. Brain and Development, 43, 2-31.
https://doi.org/10.1016/j.braindev.2020.08.001
[4] Britton, P.N., Dale, R.C., Blyth, C.C., Macartney, K., Crawford, N.W., Marshall, H., et al. (2017) Influenza-associated Encephalitis/Encephalopathy Identified by the Australian Childhood Encephalitis Study 2013-2015. Pediatric Infectious Disease Journal, 36, 1021-1026.
https://doi.org/10.1097/inf.0000000000001650
[5] 赵宏伟, 谢正德, 许黎黎. 流感病毒相关性脑病/脑炎研究进展[J]. 中华实用儿科临床杂志, 2021, 36(15): 1194-1198.
[6] Wu, L., Peng, H., Jiang, Y., He, L., Jiang, L. and Hu, Y. (2022) Clinical Features and Imaging Manifestations of Acute Necrotizing Encephalopathy in Children. International Journal of Developmental Neuroscience, 82, 447-457.
https://doi.org/10.1002/jdn.10201
[7] Yamada, M., Bingham, J., Payne, J., Rookes, J., Lowther, S., Haining, J., et al. (2012) Multiple Routes of Invasion of Wild-Type Clade 1 Highly Pathogenic Avian Influenza H5N1 Virus into the Central Nervous System (CNS) after Intranasal Exposure in Ferrets. Acta Neuropathologica, 124, 505-516.
https://doi.org/10.1007/s00401-012-1010-8
[8] Durrant, D.M., Ghosh, S. and Klein, R.S. (2016) The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chemical Neuroscience, 7, 464-469.
https://doi.org/10.1021/acschemneuro.6b00043
[9] Lei, Y., Sun, Y., Wu, W., Liu, H., Wang, X., Shu, Y., et al. (2023) Influenza H7N9 Virus Disrupts the Monolayer Human Brain Microvascular Endothelial Cells Barrier in Vitro. Virology Journal, 20, Article No. 219.
https://doi.org/10.1186/s12985-023-02163-3
[10] Kimura-Ohba, S., Kitamura, M., Tsukamoto, Y., Kogaki, S., Sakai, S., Fushimi, H., et al. (2024) Viral Entry and Translation in Brain Endothelia Provoke Influenza-Associated Encephalopathy. Acta Neuropathologica, 147, Article No. 77.
https://doi.org/10.1007/s00401-024-02723-z
[11] Simon, M., Hernu, R., Cour, M., Casalegno, J., Lina, B. and Argaud, L. (2013) Fatal Influenza A(H1N1)pdm09 Encephalopathy in Immunocompetent Man. Emerging Infectious Diseases, 19, 1005-1007.
https://doi.org/10.3201/eid1906.130062
[12] Takahashi, M., Yamada, T., Nakashita, Y., Saikusa, H., Deguchi, M., Kida, H., et al. (2000) Influenza Virus‐Induced Encephalopathy: Clinicopathologic Study of an Autopsied Case. Pediatrics International, 42, 204-214.
https://doi.org/10.1046/j.1442-200x.2000.01203.x
[13] Nagaoka, Y., Nosaka, N., Yamada, M., Yashiro, M., Washio, Y., Baba, K., et al. (2017) Local and Systemic Immune Responses to Influenza a Virus Infection in Pneumonia and Encephalitis Mouse Models. Disease Markers, 2017, Article ID: 2594231.
https://doi.org/10.1155/2017/2594231
[14] Meijer, W.J., Linn, F.H.H., Wensing, A.M.J., Leavis, H.L., van Riel, D., GeurtsvanKessel, C.H., et al. (2016) Acute Influenza Virus-Associated Encephalitis and Encephalopathy in Adults: A Challenging Diagnosis. JMM Case Reports, 3, e005076.
https://doi.org/10.1099/jmmcr.0.005076
[15] Gu, Y., Zuo, X., Zhang, S., Ouyang, Z., Jiang, S., Wang, F., et al. (2021) The Mechanism behind Influenza Virus Cytokine Storm. Viruses, 13, Article 1362.
https://doi.org/10.3390/v13071362
[16] Morichi, S., Kawashima, H., Ioi, H., Yamanaka, G., Kashiwagi, Y. and Hoshika, A. (2012) High Production of Interleukin‐10 and Interferon‐γ in Influenza‐Associated MERS in the Early Phase. Pediatrics International, 54, 536-538.
https://doi.org/10.1111/j.1442-200x.2011.03483.x
[17] Hasegawa, S., Matsushige, T., Inoue, H., Shirabe, K., Fukano, R. and Ichiyama, T. (2011) Serum and Cerebrospinal Fluid Cytokine Profile of Patients with 2009 Pandemic H1N1 Influenza Virus-Associated Encephalopathy. Cytokine, 54, 167-172.
https://doi.org/10.1016/j.cyto.2011.01.006
[18] Wu, X., Wu, W., Pan, W., Wu, L., Liu, K. and Zhang, H. (2015) Acute Necrotizing Encephalopathy: An Underrecognized Clinicoradiologic Disorder. Mediators of Inflammation, 2015, Article ID: 792578.
https://doi.org/10.1155/2015/792578
[19] Mantle, J.L. and Lee, K.H. (2018) A Differentiating Neural Stem Cell-Derived Astrocytic Population Mitigates the Inflammatory Effects of TNF-α and IL-6 in an iPSC-Based Blood-Brain Barrier Model. Neurobiology of Disease, 119, 113-120.
https://doi.org/10.1016/j.nbd.2018.07.030
[20] Takanashi, J., Tada, H., Terada, H. and Barkovich, A.J. (2008) Excitotoxicity in Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion. American Journal of Neuroradiology, 30, 132-135.
https://doi.org/10.3174/ajnr.a1247
[21] Takanashi, J., Mizuguchi, M., Terai, M. and Barkovich, A.J. (2015) Disrupted Glutamate-Glutamine Cycle in Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion. Neuroradiology, 57, 1163-1168.
https://doi.org/10.1007/s00234-015-1573-x
[22] Keshavarz, M., Solaymani-Mohammadi, F., Namdari, H., Arjeini, Y., Mousavi, M.J. and Rezaei, F. (2020) Metabolic Host Response and Therapeutic Approaches to Influenza Infection. Cellular & Molecular Biology Letters, 25, Article No. 15.
https://doi.org/10.1186/s11658-020-00211-2
[23] Shinohara, M., Saitoh, M., Takanashi, J., Yamanouchi, H., Kubota, M., Goto, T., et al. (2011) Carnitine Palmitoyl Transferase II Polymorphism Is Associated with Multiple Syndromes of Acute Encephalopathy with Various Infectious Diseases. Brain and Development, 33, 512-517.
https://doi.org/10.1016/j.braindev.2010.09.002
[24] Mizuguchi, M., Shibata, A., Kasai, M. and Hoshino, A. (2023) Genetic and Environmental Risk Factors of Acute Infection-Triggered Encephalopathy. Frontiers in Neuroscience, 17, Article 1119708.
https://doi.org/10.3389/fnins.2023.1119708
[25] Wu, L., Peng, H., Jiang, Y., He, L., Jiang, L. and Hu, Y. (2022) Clinical Features and Imaging Manifestations of Acute Necrotizing Encephalopathy in Children. International Journal of Developmental Neuroscience, 82, 447-457.
https://doi.org/10.1002/jdn.10201
[26] Goetz, V., Yang, D., Abid, H., Roux, C., Levy, R., Kossorotoff, M., et al. (2023) Neurological Features Related to Influenza Virus in the Pediatric Population: A 3-Year Monocentric Retrospective Study. European Journal of Pediatrics, 182, 2615-2624.
https://doi.org/10.1007/s00431-023-04901-9
[27] Antoon, J.W., Hall, M., Herndon, A., Johnson, D.P., Brown, C.M., Browning, W.L., et al. (2021) Prevalence, Risk Factors, and Outcomes of Influenza-Associated Neurologic Complications in Children. The Journal of Pediatrics, 239, 32-38.e5.
https://doi.org/10.1016/j.jpeds.2021.06.075
[28] 卓秀伟, 丁昌红, 刘明, 等. 儿童流感相关脑病40例临床影像学特征及预后分析[J]. 中华实用儿科临床杂志, 2021, 36(24): 1876-1881.
[29] Neilson, D.E., Adams, M.D., Orr, C.M.D., Schelling, D.K., Eiben, R.M., Kerr, D.S., et al. (2009) Infection-Triggered Familial or Recurrent Cases of Acute Necrotizing Encephalopathy Caused by Mutations in a Component of the Nuclear Pore, RANBP2. The American Journal of Human Genetics, 84, 44-51.
https://doi.org/10.1016/j.ajhg.2008.12.009
[30] Reddy, M.K., CA, J., Kandi, V., Murthy, P.M., Harikrishna, G.V., Reddy, S., et al. (2023) Exploring the Correlation between Influenza a Virus (H3N2) Infections and Neurological Manifestations: A Scoping Review. Cureus, 15, e36936.
https://doi.org/10.7759/cureus.36936
[31] Galic, M.A., Riazi, K. and Pittman, Q.J. (2012) Cytokines and Brain Excitability. Frontiers in Neuroendocrinology, 33, 116-125.
https://doi.org/10.1016/j.yfrne.2011.12.002
[32] Kuki, I., Inoue, T., Nukui, M., Okazaki, S., Kawawaki, H., Ishikawa, J., et al. (2021) MRI Findings at Neurological Onset Predict Neurological Prognosis in Hemorrhagic Shock and Encephalopathy Syndrome. Journal of the Neurological Sciences, 430, Article ID: 120010.
https://doi.org/10.1016/j.jns.2021.120010
[33] 国家呼吸系统疾病临床医学研究中心, 中华医学会儿科学分会呼吸学组. 儿童流感诊断与治疗专家共识(2020年版) [J]. 中华实用儿科临床杂志, 2020, 35(17): 1281-1288.
[34] Uyeki, T.M., Hui, D.S., Zambon, M., Wentworth, D.E. and Monto, A.S. (2022) Influenza. The Lancet, 400, 693-706.
https://doi.org/10.1016/s0140-6736(22)00982-5
[35] O’Leary, S.T., Campbell, J.D., Ardura, M.I., et al. (2023) Recommendations for Prevention and Control of Influenza in Children, 2023-2024. Pediatrics, 152, e2023063773.
[36] Lee, J.J., Smith, M., Bankhead, C., Perera Salazar, R., Kousoulis, A.A., Butler, C.C., et al. (2020) Oseltamivir and Influenza-Related Complications in Children: A Retrospective Cohort in Primary Care. European Respiratory Journal, 56, Article ID: 1902246.
https://doi.org/10.1183/13993003.02246-2019
[37] Alsolami, A. and Shiley, K. (2017) Successful Treatment of Influenza-Associated Acute Necrotizing Encephalitis in an Adult Using High-Dose Oseltamivir and Methylprednisolone: Case Report and Literature Review. Open Forum Infectious Diseases, 4, ofx145.
https://doi.org/10.1093/ofid/ofx145
[38] Erdil, E., Vural, E., Koytak, P.K. and Tuncer, E.N. (2020) Successful Treatment of Influenza B Associated Acute Necrotizing Encephalopathy in an Adult Using Combination of High Dose Oseltamivir-IVIG-Pulse Metylprednisolone. Acta Neurologica Belgica, 121, 1863-1865.
https://doi.org/10.1007/s13760-020-01462-8
[39] Govorkova, E.A., Ilyushina, N.A., Boltz, D.A., Douglas, A., Yilmaz, N. and Webster, R.G. (2007) Efficacy of Oseltamivir Therapy in Ferrets Inoculated with Different Clades of H5N1 Influenza Virus. Antimicrobial Agents and Chemotherapy, 51, 1414-1424.
https://doi.org/10.1128/aac.01312-06
[40] Savagner, J., Trémeaux, P., Baudou, E., Mansuy, J.M. and Cheuret, E. (2024) Neurological Involvement Related to the Influenza Virus in Children: A 5-Year Single-Centre Retrospective Study. European Journal of Paediatric Neurology, 51, 100-109.
https://doi.org/10.1016/j.ejpn.2024.05.012
[41] Yang, M., Yi, L., Jia, F., Zeng, X. and Liu, Z. (2024) Characteristics and Outcome of Influenza-Associated Encephalopathy/encephalitis among Children in China. Clinics, 79, Article ID: 100475.
https://doi.org/10.1016/j.clinsp.2024.100475
[42] Morishima, T. (2006) [Guideline for the Management of Influenza Associated Encephalopathy]. Nihon Rinsho, 64, 1897-1905.
[43] Ishida, Y., Nishiyama, M., Yamaguchi, H., Tomioka, K., Takeda, H., Tokumoto, S., et al. (2021) Early Steroid Pulse Therapy for Children with Suspected Acute Encephalopathy: An Observational Study. Medicine, 100, e26660.
https://doi.org/10.1097/md.0000000000026660
[44] Hung, I.F.N., To, K.K.W., Lee, C., Lee, K., Yan, W., Chan, K., et al. (2013) Hyperimmune IV Immunoglobulin Treatment. Chest, 144, 464-473.
https://doi.org/10.1378/chest.12-2907
[45] Nagase, H., Yamaguchi, H., Tokumoto, S., Ishida, Y., Tomioka, K., Nishiyama, M., et al. (2023) Timing of Therapeutic Interventions against Infection-Triggered Encephalopathy Syndrome: A Scoping Review of the Pediatric Literature. Frontiers in Neuroscience, 17, Article 1150868.
https://doi.org/10.3389/fnins.2023.1150868
[46] Yokota,, S., Imagawa,, T., Miyamae,, T., Ito,, S., Nakajima,, S., Nezu, A., et al. (2000) Hypothetical Pathophysiology of Acute Encephalopathy and Encephalitis Related to Influenza Virus Infection and Hypothermia Therapy. Pediatrics International, 42, 197-203.
https://doi.org/10.1046/j.1442-200x.2000.01204.x
[47] Hoshide, M., Yasudo, H., Inoue, H., Matsushige, T., Sakakibara, A., Nawata, Y., et al. (2020) Efficacy of Hypothermia Therapy in Patients with Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion. Brain and Development, 42, 515-522.
https://doi.org/10.1016/j.braindev.2020.03.007
[48] Fujita, Y., Imataka, G., Kikuchi, J., et al. (2021) Successful Mild Brain Hypothermia Therapy Followed by Targeted Temperature Management for Pediatric Hemorrhagic Shock and Encephalopathy Syndrome. European Review for Medical and Pharmacological Sciences, 25, 3002-3006.
[49] Jha, P. and Gebhard, D. (2020) Plasmapheresis for Rescue in Severe Encephalopathy and Multiorgan Failure from Fulminant Influenza (H3N2) Infection. Pediatric Infectious Disease Journal, 39, e464-e466.
https://doi.org/10.1097/inf.0000000000002892
[50] Li, K., Zhang, T., Liu, G., Jin, P., Wang, Y., Wang, L., et al. (2021) Plasma Exchange Therapy for Acute Necrotizing Encephalopathy of Childhood. Pediatric Investigation, 5, 99-105.
https://doi.org/10.1002/ped4.12280
[51] Outin, H., Lefort, H. and Peigne, V. (2021) Guidelines for the Management of Status Epilepticus. European Journal of Emergency Medicine, 28, 420-422.
https://doi.org/10.1097/mej.0000000000000857
[52] Omata, T., Fujii, K., Takanashi, J., Murayama, K., Takayanagi, M., Muta, K., et al. (2016) Drugs Indicated for Mitochondrial Dysfunction as Treatments for Acute Encephalopathy with Onset of Febrile Convulsive Status Epileptics. Journal of the Neurological Sciences, 360, 57-60.
https://doi.org/10.1016/j.jns.2015.11.043
[53] Fukui, K.O., Kubota, M., Terashima, H., Ishiguro, A. and Kashii, H. (2019) Early Administration of Vitamins B1 and B6 and L-Carnitine Prevents a Second Attack of Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion: A Case Control Study. Brain and Development, 41, 618-624.
https://doi.org/10.1016/j.braindev.2019.02.015
[54] Nosaka, N., Hatayama, K., Yamada, M., Fujii, Y., Yashiro, M., Wake, H., et al. (2018) Anti‐High Mobility Group Box‐1 Monoclonal Antibody Treatment of Brain Edema Induced by Influenza Infection and Lipopolysaccharide. Journal of Medical Virology, 90, 1192-1198.
https://doi.org/10.1002/jmv.25076
[55] Imakita, N., Kitabatake, M., Ouji-Sageshima, N., Hara, A., Morita-Takemura, S., Kasahara, K., et al. (2019) Abrogated Caveolin-1 Expression via Histone Modification Enzyme Setdb2 Regulates Brain Edema in a Mouse Model of Influenza-Associated Encephalopathy. Scientific Reports, 9, Article No. 284.
https://doi.org/10.1038/s41598-018-36489-8