精氨酸酶1在冠状动脉性心脏病中的高表达及其潜在致病机理
High Expression of Arginase 1 in Coronary Heart Disease and Its Potential Pathogenic Mechanisms
DOI: 10.12677/acm.2024.14123135, PDF, HTML, XML,   
作者: 李明杰, 潘红波, 陈 罡:广西医科大学第一附属医院病理科,广西 南宁;广西医科大学第一临床医学院法医学系,广西 南宁;覃 凯, 李成昊, 熊丹丹*:广西医科大学第一附属医院病理科,广西 南宁;蒋文洁, 卢奕文:广西医科大学第一临床医学院法医学系,广西 南宁
关键词: 精氨酸酶1冠状动脉性心脏病标准化平均差汇总受试者工作特征曲线孟德尔随机化法Arginase 1 Coronary Heart Disease Standardized Mean Difference Summary Receiver Operating Characteristic Curve Mendelian Randomization
摘要: 目的:探讨精氨酸酶1 (arginase 1, ARG1)在冠状动脉性心脏病(coronary heart disease, CHD)中的转录表达水平及潜在致病机理。方法:整合CHD相关多中心高通量数据,计算ARG1 mRNA表达水平标准化平均差(standardized mean difference, SMD),通过汇总受试者工作特征曲线,灵敏度,特异度,似然比等指标来评价ARG1在CHD中的临床病理意义。利用孟德尔随机化法确定ARG1和CHD之间的因果联系,最后通过京都基因与基因组百科全书以及蛋白质–蛋白质相互作用分析明确ARG1在CHD中的潜在调控机制。结果:本研究共纳入6个平台14个CHD数据集,含427例CHD样本,296例正常对照样本。ARG1表达在CHD中显著上调,其标准化平均差为0.44 (95% CI: 0.06~0.83),汇总受试者工作特征曲线下面积为0.72 (95% CI: 0.68~0.76),灵敏度为0.55 (95% CI: 0.36~0.73),特异度为0.79 (95% CI: 0.55~0.92),阳性似然比为2.61 (95% CI: 1.16~5.86)、阴性似然比为0.57 (95% CI: 0.38~0.85);孟德尔随机化法未见ARG1与CHD之间的显著关联(OR = 0.9833, 95% CI = 0.9408~1.0278, p = 0.4563);ARG1可通过部分信号通路影响CHD的进展,如利什曼病、中性粒细胞胞外陷阱的形成、癌症中PD-L1表达和PD-1检查点等通路。结论:ARG1可能作为促进CHD发生的关键基因参与疾病的发生发展。
Abstract: Objective: To investigate the transcriptional expression levels of arginase 1 (ARG1) in coronary heart disease (CHD) and its potential pathogenic mechanisms. Methods: Integrating multi-center high-throughput data related to CHD, we computed the standardized mean difference (SMD) of ARG1 mRNA expression levels. The clinical pathological significance of ARG1 in CHD was evaluated through aggregated receiver operating characteristic curves, sensitivity, specificity, and likelihood ratios. Mendelian randomization was employed to determine the causal relationship between ARG1 and CHD. The potential regulatory mechanisms of ARG1 in CHD were clarified through the Kyoto Encyclopedia of Genes and Genomes and protein-protein interaction analyses. Results: This study included 14 CHD datasets from 6 platforms, comprising 427 CHD samples and 296 normal control samples. ARG1 expression was significantly upregulated in CHD, with a standardized mean difference of 0.44 (95% CI: 0.06 to 0.83). The area under the summary receiver operating characteristic curve was 0.72 (95% CI: 0.68 to 0.76), sensitivity was 0.55 (95% CI: 0.36 to 0.73), specificity was 0.79 (95% CI: 0.55 to 0.92), the positive likelihood ratio was 2.61 (95% CI: 1.16 to 5.86), and the negative likelihood ratio was 0.57 (95% CI: 0.38 to 0.85). Mendelian randomization did not show a significant association between ARG1 and CHD (OR = 0.9833, 95% CI = 0.9408 to 1.0278, p = 0.4563). ARG1 could influence the progression of CHD through several signaling pathways, including those involved in leishmaniasis, neutrophil extracellular traps formation, and PD-L1 expression in cancer and PD-1 checkpoint pathways. Conclusion: ARG1 may act as a key gene promoting the onset and progression of CHD.
文章引用:李明杰, 覃凯, 李成昊, 蒋文洁, 卢奕文, 潘红波, 陈罡, 熊丹丹. 精氨酸酶1在冠状动脉性心脏病中的高表达及其潜在致病机理[J]. 临床医学进展, 2024, 14(12): 680-693. https://doi.org/10.12677/acm.2024.14123135

1. 引言

心血管疾患目前已上升为对人类健康构成重大威胁的主要病症之一,其中冠状动脉性心脏病(coronary heart disease, CHD)是导致医疗负担和心血管疾病死亡的主要原因[1]。CHD因其发病急、病程进展迅速以及高致死率,已成为导致猝死的主要原因之一[2]。尽管在过去数十年中CHD的死亡率已有所降低,但根据预测,2030年CHD患者数量预计将达2300万[3] [4]。因此,快速准确地早期诊断CHD可显著改善治疗效果,并将提高75% CHD患者的生存率[5]。研究CHD潜在的病理生理分子特征及其相关的分子机制,将有助于在临床实践中识别出更有效的CHD早期诊断标志物。尽管肌钙蛋白检测已提升了CHD早期诊断的准确性,但需注意在肾衰竭、横纹肌溶解、呼吸衰竭、过度劳累、超过30%体表面积的烧伤、以及一氧化碳中毒等情况下,肌钙蛋白的水平亦可能升高[6] [7]。因此,深入探究CHD的分子机制,寻找新型、敏感且具有特异性的CHD早期诊断生物标志物,以更有效地服务于临床。

精氨酸酶1 (arginase 1, ARG1)基因位于染色体6q23.2,共有8个外显子。主要存在于肝脏的细胞质中,其作用是将L-精氨酸分解生成L-鸟氨酸及尿素[8] [9],并且L-鸟氨酸进一步转化为细胞增殖和DNA合成必需的多胺,从而在细胞生长过程中扮演关键角色[10]。已有研究显示,位于ARG1基因5'启动子序列的rs2781666 G/T多态性与CHD的发生相关[11]。目前ARG1在CHD的临床应用价值及其作用机制尚未报道,因此本研究旨在探讨ARG1 mRNA在CHD中的表达情况及其潜在分子机制。

2. 材料与方法

2.1. ARG1 mRNA在CHD中的表达水平

为比较ARG1 mRNA在CHD和正常对照之间的表达差异,本研究首先通过检索GEO (https://www.ncbi.nlm.nih.gov/geo/),SRA (https://trace.ncbi.nlm.nih.gov/Traces/sra/),ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)等生物医学数据库,获取CHD和正常对照mRNA的表达数据,检索式为:(“Coronary Heart Disease” OR “Coronary Disease” OR “Coronary Aneurysm” OR “Coronary Artery Disease” OR “Coronary Occlusion” OR “Coronary Stenosis” OR “Coronary Restenosis” OR “Coronary-Subclavian Steal Syndrome” OR “Coronary Thrombosis” OR “Coronary Vasospasm” OR “Atherosclerosis of Coronary Artery” OR “Coronary Artery Disease” OR “Coronary Artery Diseases” OR “Coronary Arteriosclerosis” OR “Coronary Arterioscleroses” OR “CAD” OR “myocardial infarction” OR “heart attack” OR “MI”) AND (mRNA OR gene)。纳入标准:① 来源于人类且包含mRNA表达数据,而非来源于其他物种;② 同时具有CHD实验组样本和正常对照组样本,且CHD样本数目均 > 30;③ 样本未经药物、放疗、基因干扰或过表达等人为处理。对纳入的CHD表达矩阵进行log2(x+1)转换,对GPL平台相同的表达矩阵进行合并,并使用R包sva消除批次效应的影响。

2.2. 使用孟德尔随机化法研究ARG1与CHD之间的关联

为探究ARG1与CHD之间的因果关系,本研究采用孟德尔随机化(Mendelian Randomization, MR)方法分析两者间的因果联系。本研究将ARG1作为暴露因素,以CHD为结局变量,暴露因素和结局变量的数据摘要见表1。选择与ARG1显著相关的单核苷酸多态性(Single Nucleotide Polymorphism, SNP)作为工具变量,这些工具变量需满足以下条件:① 与ARG1显著关联;② 与混杂因素无关;③ 仅通过ARG1影响CHD。具体标准为p < 1 × 105,r2 < 0.001,F > 10,以及kb = 10,000。

Table 1. Summary of ARG1 and CHD data

1. ARG1和CHD的数据摘要

编号

年份

特征

样本量

SNP数量

GCST90162459

2022

Arginase-1 levels

2935

9,154,282

ieu-a-7

2015

coronary heart disease

184,305

9,455,779

2.3. 通过共表达分析和相互作用网络探索ARG1在CHD中的潜在调控机制

为深入解析ARG1在CHD中的调节机制,本研究采用Pearson相关性分析,探讨了ARG1与数据集中所有基因之间的相关性。共表达基因的筛选标准为:r > 0.3、p < 0.05、在所有数据集中的出现频次不少于10次。此外,本研究通过DAVID数据库进行了京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)富集分析以识别ARG1共表达基因在生物学通路中的聚集趋势。此外,基于富集通路分析结果选取富集最显著的基因集,构建蛋白质–蛋白质相互作用(Protein-protein interactions, PPI)网络,并应用Cytoscape软件进行结果可视化,从而揭示ARG1在细胞信号传递过程及CHD发病机理中的潜在作用。

2.4. 统计学分析

首先运用t检验或Wilcoxon检验分析ARG1在CHD和正常对照中的表达差异,利用R包ggplot2绘制小提琴图及受试者工作特征(receiver operating characteristic, ROC)曲线,进而通过Stata15.0软件合并标准化平均差(standardized mean difference, SMD),若p < 0.05且I2 > 50%则选择随机效应模型计算,否则应考虑使用固定效应模型。绘制汇总ROC (summary ROC, sROC)曲线及发表偏倚检验漏斗图,计算灵敏度、特异度、似然比。此外,本研究利用R包TwoSampleMR进行ARG1和CHD的双样本MR分析,以逆方差加权(inverse-variance weighted, IVW)法、加权中位数法(Weighted median, WM)、MR egger、Simple mode、Weighted mode来计算风险比以评估ARG1与CHD潜在发病风险的因果联系,以p < 0.05认为差异有显著性意义。Cochran’s Q检验评估ARG1 SNP对CHD结果影响的异质性,以p > 0.05认为不存在异质性。MR-Egger回归分析进行水平多效性检测,以p > 0.05认为不存在多效性。

3. 结果

3.1. ARG1 mRNA在CHD中显著高表达

本研究从GEO,SRA,ArrayExpress数据库获取14个CHD mRNA表达数据集及其相关信息(图1表2),在转录水平上我们发现了ARG1 mRNA在CHD和正常对照的表达差异。小提琴图结果显示,ARG1在CHD中呈现高表达趋势(图2);单个ROC曲线下面积范围为0.505~0.890 (图3);随机效应模型森林图

Figure 1. Flowchart of CHD mRNA dataset screening process

1. CHD mRNA数据集筛选流程图

Table 2. Relevant information of included CHD mRNA datasets

2. 纳入CHD mRNA数据集的相关信息

序列号

实验材料

正常对照例数

CHD例数

GPL17586

外周血

25

44

GPL570

外周血

85

110

GPL6884

外周血

14

52

GPL96

外周血

118

123

GSE29532

外周血

6

49

GSE34198

外周血

48

49

Figure 2. High expression levels of ARG1 mRNA in CHD ((a): GPL96; (b): GPL570; (c): GPL6884; (d): GPL17586; (e): GSE29532-GPL5175; (f): GSE34198-GPL6102))

2. ARG1 mRNA在CHD中的高表达水平((a):GPL96;(b):GPL570;(c):GPL6884;(d):GPL17586;(e):GSE29532-GPL5175;(f):GSE34198-GPL6102))

Figure 3. Discrimination efficacy of ARG1 mRNA expression between CHD and normal controls ((a): GPL96; (b): GPL570; (c): GPL6884; (d): GPL17586; (e): GSE29532-GPL5175; (f): GSE34198-GPL6102))

3. ARG1 mRNA表达对区分CHD及正常对照的效能((a):GPL96;(b):GPL570;(c):GPL6884;(d):GPL17586;(e):GSE29532-GPL5175;(f):GSE34198-GPL6102))

显示在427例CHD样本中ARG1 mRNA表达水平显著上调(SMD = 0.44, 95% CI: 0.06~0.83, p < 0.01, I2 = 79%) (图4(a));Begg’s漏斗图(p = 0.452,图4(b))和Egger’s漏斗图(p = 0.332,图4(c))提示无显著的发表偏倚;sROC曲线下面积为0.72 (95% CI:0.68~0.76,图5(a)),灵敏度为0.55 (95% CI: 0.36~0.73),特异度为0.79 (95% CI: 0.55~0.92) (图5(b)),阳性似然比为2.61 (95% CI: 1.16~5.86)、阴性似然比为0.57 (95% CI: 0.38~0.85) (图5(c))进一步证实了ARG1 mRNA在CHD中的显著上调及其区分能力。

Figure 4. Upregulation of ARG1 mRNA expression in CHD ((a): Compared to normal controls, high expression of ARG1 in CHD; (b), (c): No significant publication bias detected)

4. ARG1 mRNA在CHD中的表达上调((a):与正常对照相比,CHD中ARG1呈高表达;(b),(c):未发现明显发表偏倚)

Figure 5. Integrated analysis of the potential discriminatory significance of ARG1 for CHD patients ((a): Discriminatory ability of ARG1 for CHD; (b): Forest plot of sensitivity and specificity; (c): Forest plot of positive and negative likelihood ratios)

5. 整合分析ARG1对CHD患者的潜在鉴别意义((a):ARG1对CHD的鉴别能力;(b):灵敏度和特异度森林图;(c):阳性似然比和阴性似然比森林图)

3.2. 使用孟德尔随机化法发现ARG1与CHD风险之间未见显著关联

为深入探讨ARG1与CHD之间的因果关系,本研究通过GCST90162459数据集最终纳入了15个满足条件的SNP。IVW法结果表明,ARG1与CHD之间未见显著关联(OR = 0.9833, 95% CI = 0.9408~1.0278, p = 0.4563),其余补充分析方法也未表现显著差异。此外,Cochran’s Q异质性检验未发现异质性(pIVW = 0.2218),MR-Egger回归分析未发现水平多效性(p = 0.8493),进一步提示ARG1与CHD之间无因果关联(表3图6)。

Table 3. MR analysis results of ARG1 and CHD

3. ARG1与CHD的MR分析结果

CHD (ieu-a-7)

Method

nsnp

β

e

val

or

r_lci95

r_uci95

Results

MR Egger

5

−0.0266

0.0559

0.6413

0.9737

0.8727

0.0863

WM

5

−0.0280

0.0280

0.3162

0.9724

0.9205

0.0271

IVW

5

−0.0168

0.0226

0.4563

0.9833

0.9408

0.0278

Simple mode

5

−0.0608

0.0453

0.2008

0.9410

0.8610

0.0284

Weighted mode

5

−0.0550

0.0368

0.1568

0.9465

0.8807

0.0172

Method

Q

Q_df

_pval

Heterogeneity test

MR Egger

7.6286

13

0.1721

IVW

17.6795

14

0.2218

egger_intercept

se

pval

Test for directional horizontal pleiotropy

0.0021

0.0109

0.8493

Figure 6. MR analysis results of ARG1 and CHD ((a): Scatter plot displaying the causal effect of ARG1 on CHD; (b): Funnel plot visualizing the overall heterogeneity of MR estimates for ARG1 on CHD; (c): Forest plot of the causal effects of each SNP on CHD risk; (d): Leave-one-out sensitivity analysis visualizing the causal effect of ARG1 on CHD risk after excluding one SNP)

6. ARG1与CHD的MR分析结果((a):散点图显示ARG1对CHD的因果效应;(b):漏斗图可视化ARG1对CHD的孟德尔随机化估计总体异质性;(c):每个SNP对CHD风险的因果效应森林图;(d):留一法敏感性分析可视化ARG1在剔除一个SNP时对CHD风险的因果效应)

3.3. ARG1通过多种途径通路影响CHD的进展

为寻找与CHD发病紧密联系的信号通路,本研究利用DAVID数据库进行了KEGG分析。根据p值由小到大排名前五的信号通路为Leishmaniasis (利什曼病)、Neutrophil extracellular trap formation (中性粒细胞胞外陷阱的形成)、PD-L1 expression and PD-1 checkpoint pathway in cancer (癌症中PD-L1表达和PD-1检查点通路)、Tuberculosis (结核病)、C-type lectin receptor signaling pathway (C型凝集素受体信号通路) (图7(a)),并选取富集在利什曼病通路中的基因集纳入PPI分析,结果显示TLR2位于调控网络的中心(图7(b))。

Figure 7. ARG1 influences the progression of CHD through multiple pathways ((a): KEGG enrichment analysis; (b): PPI analysis)

7. ARG1通过多种途径影响CHD的进展((a):KEGG富集分析;(b):PPI分析)

4. 讨论

虽然ARG1基因与CHD的发生密切相关,但目前ARG1在CHD发生发展过程中的作用机制尚不明确。Shi等[12]通过分析238例CHD患者与189例对照组的差异表达基因,识别出ARG1为关键差异表达基因之一。通过PPI分析,发现ARG1在网络中扮演枢纽角色,暗示该基因在人体中具有重要功能。同样,Cheng等[13]人在对186例CHD患者与151例对照组进行分析后,提出CDKN2B-AS可能通过miR-92a间接调控ARG1,进而参与CHD的发生机制。然而,上述研究尚未能全面覆盖全球范围内的病例,且对ARG1在CHD中的具体作用缺乏深入探讨。本研究首次进行了一项多中心研究,纳入14个数据集探讨了ARG1在CHD样本和正常对照样本中的表达差异,通过MR法分析了ARG1和CHD的因果联系,并阐明了涉及ARG1在CHD发病过程中的致病机理。在本研究中,通过整合427例CHD患者与296例健康对照的转录水平数据,观察到ARG1在CHD样本中高表达水平。此外,通过使用MR法在群体水平上分析,发现ARG1与CHD无显著影响。结合MR法和计算生物学分析,可更深入地揭示ARG1和CHD之间的关联性及其潜在机制。

共表达基因在疾病中具有显著的相关性,并发挥着协同作用[14]。本研究通过KEGG富集分析发现ARG1及其共表达基因通过利什曼病、中性粒细胞胞外陷阱的形成、癌症中PD-L1表达和PD-1检查点通路等途径影响CHD的进展。在Qin等[15]的研究通过对金黄地鼠的血清进行代谢组学分析,发现随着感染利什曼原虫的时间延长,甘油磷脂代谢变化最为显著,甘油磷脂代谢紊乱是CHD患者免疫炎症状态升高的主要代谢特征[16]。此外,Li等[17]发现利什曼病参与了动脉粥样硬化的发病过程。中性粒细胞胞外陷阱是由染色质和中性粒细胞来源的核、胞质和颗粒蛋白组成的网状结构,具有诱捕和杀灭病原体的能力[18],现已被证明可诱导内皮细胞、抗原呈递细胞和血小板活化,从而导致促炎免疫应答[19]。其主要机制可能涉及细胞自身DNA与源自中性粒细胞的颗粒蛋白复合物在血管壁内与浆细胞样树突状细胞的相互作用。这种相互作用引发剧烈的I型干扰素反应,进而促进动脉粥样硬化的形成。具体而言,自身DNA和中性粒细胞衍生的颗粒蛋白通过激活浆细胞样树突状细胞,促使其产生大量I型干扰素。这些干扰素能够激活多条炎症信号通路,并调节免疫反应,导致免疫细胞的招募和激活,最终形成动脉粥样硬化斑块,并引发血管重塑。这一机制的研究可能为动脉粥样硬化的预防与治疗提供新的靶点[20]。Kim等[21]研究同样也发现了尿毒症相关的中性粒细胞胞外陷阱形成增加可能是动脉粥样硬化风险上升的标志。PD-1及其配体PD-L1在T和B细胞、树突状细胞、巨噬细胞、心肌细胞以及内皮细胞表达,参与调节T细胞活化、耐受和免疫介导的器官损伤。在生理条件下,PD-1/PD-L1信号通路在预防自身免疫性疾病中发挥着重要作用[22]。Kushnareva等[22]发现在12例缺血性心脏病的患者样本中,PD-L1在心肌细胞膜显著高表达。PD-L1的表达上调可能减弱缺血性心脏病中T细胞对受损心肌细胞的反应,从而减轻心肌的局部炎症[22]。此外,本研究通过对富集在利什曼通路的基因进行PPI分析发现TLR2位于调控网络的中心,Wang等[23]利用CRISPR-Cas9技术敲除人冠状动脉内皮细胞中的TLR2基因验证了TLR2增强冠状动脉内皮细胞炎症反应的假说。以上研究可能为CHD的治疗提供了新的靶点,并为未来针对这些代谢通路开发新的CHD治疗策略提供了理论依据。

综上所述,ARG1在CHD样本中的高表达揭示了其可能作为促进CHD发生的关键基因参与疾病的发生发展。然而,本研究缺乏更广泛人群的数据验证,因此未来研究需要扩大样本量,并通过体内外实验进一步探索ARG1的具体作用机制和路径,这将有助于深入挖掘ARG1在CHD中的生物学功能及其潜在的治疗靶点价值。

NOTES

*通讯作者。

参考文献

[1] Li, M., Song, S., Rong, Y., Wu, D. and Yin, Y. (2024) Zhishi Xiebai Guizhi Decoction for Coronary Heart Disease: A Systematic Review and Meta-Analysis. Medicine, 103, e36588.
https://doi.org/10.1097/md.0000000000036588
[2] Holmström, L., Juntunen, S., Vähätalo, J., Pakanen, L., Kaikkonen, K., Haukilahti, A., et al. (2022) Plaque Histology and Myocardial Disease in Sudden Coronary Death: The Fingesture Study. European Heart Journal, 43, 4923-4930.
https://doi.org/10.1093/eurheartj/ehac533
[3] Duggan, J.P., Peters, A.S., Trachiotis, G.D. and Antevil, J.L. (2022) Epidemiology of Coronary Artery Disease. Surgical Clinics of North America, 102, 499-516.
https://doi.org/10.1016/j.suc.2022.01.007
[4] Samsky, M.D., Morrow, D.A., Proudfoot, A.G., Hochman, J.S., Thiele, H. and Rao, S.V. (2021) Cardiogenic Shock after Acute Myocardial Infarction. Journal of the American Medical Association, 326, Article 1840.
https://doi.org/10.1001/jama.2021.18323
[5] Dellborg, M., Giang, K.W., Eriksson, P., Liden, H., Fedchenko, M., Ahnfelt, A., et al. (2023) Adults with Congenital Heart Disease: Trends in Event-Free Survival Past Middle Age. Circulation, 147, 930-938.
https://doi.org/10.1161/circulationaha.122.060834
[6] Mueller, C. (2013) Biomarkers and Acute Coronary Syndromes: An Update. European Heart Journal, 35, 552-556.
https://doi.org/10.1093/eurheartj/eht530
[7] Sternberg, M., Pasini, E., Chen-Scarabelli, C., Corsetti, G., Patel, H., Linardi, D., et al. (2019) Elevated Cardiac Troponin in Clinical Scenarios Beyond Obstructive Coronary Artery Disease. Medical Science Monitor, 25, 7115-7125.
https://doi.org/10.12659/msm.915830
[8] Wu, G. and Morris, S.M. (1998) Arginine Metabolism: Nitric Oxide and beyond. Biochemical Journal, 336, 1-17.
https://doi.org/10.1042/bj3360001
[9] Ming, Z., Zou, Z., Cai, K., Xu, Y.i., Chen, X., Yi, W., et al. (2020) ARG1 Functions as a Tumor Suppressor in Breast Cancer. Acta Biochimica et Biophysica Sinica, 52, 1257-1264.
https://doi.org/10.1093/abbs/gmaa116
[10] Bronte, V. and Zanovello, P. (2005) Regulation of Immune Responses by L-Arginine Metabolism. Nature Reviews Immunology, 5, 641-654.
https://doi.org/10.1038/nri1668
[11] Shah, S.F.A., Khan, M.J., Iqbal, T., Akram, S., Waheed, F., Satti, H.S., et al. (2019) Arginase-1 Variants and the Risk of Familial Coronary Artery Disease in Subjects Originating from Pakistan. Genetic Testing and Molecular Biomarkers, 23, 32-38.
https://doi.org/10.1089/gtmb.2018.0227
[12] Shi, Y., Yang, S., Luo, M., Zhang, W. and Ke, Z. (2017) Systematic Analysis of Coronary Artery Disease Datasets Revealed the Potential Biomarker and Treatment Target. Oncotarget, 8, 54583-54591.
https://doi.org/10.18632/oncotarget.17426
[13] Cheng, M., An, S. and Li, J. (2017) CDKN2B-AS May Indirectly Regulate Coronary Artery Disease-Associated Genes via Targeting MiR-92a. Gene, 629, 101-107.
https://doi.org/10.1016/j.gene.2017.07.070
[14] van Dam, S., Võsa, U., van der Graaf, A., Franke, L. and de Magalhães, J.P. (2017) Gene Co-Expression Analysis for Functional Classification and Gene—Disease Predictions. Briefings in Bioinformatics, 19, bbw139.
https://doi.org/10.1093/bib/bbw139
[15] Qin, H., Zhang, J., Dong, K., Chen, D., Yuan, D. and Chen, J. (2022) Metabolic Characterization and Biomarkers Screening for Visceral Leishmaniasis in Golden Hamsters. Acta Tropica, 225, Article 106222.
https://doi.org/10.1016/j.actatropica.2021.106222
[16] Zhu, Q., Wu, Y., Mai, J., Guo, G., Meng, J., Fang, X., et al. (2022) Comprehensive Metabolic Profiling of Inflammation Indicated Key Roles of Glycerophospholipid and Arginine Metabolism in Coronary Artery Disease. Frontiers in Immunology, 13, Article 829425.
https://doi.org/10.3389/fimmu.2022.829425
[17] Li, S., Li, S., Li, Q., Zhou, Q., Liao, W., Yu, L., et al. (2023) Identification of Key Genes and Pathways in Atherosclerosis Using Integrated Bioinformatics Analysis. BMC Medical Genomics, 16, Article No. 102.
https://doi.org/10.1186/s12920-023-01533-8
[18] Branzk, N., Lubojemska, A., Hardison, S.E., Wang, Q., Gutierrez, M.G., Brown, G.D., et al. (2014) Neutrophils Sense Microbe Size and Selectively Release Neutrophil Extracellular Traps in Response to Large Pathogens. Nature Immunology, 15, 1017-1025.
https://doi.org/10.1038/ni.2987
[19] Döring, Y., Soehnlein, O. and Weber, C. (2017) Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circulation Research, 120, 736-743.
https://doi.org/10.1161/circresaha.116.309692
[20] Döring, Y., Manthey, H.D., Drechsler, M., Lievens, D., Megens, R.T.A., Soehnlein, O., et al. (2012) Auto-antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 125, 1673-1683.
https://doi.org/10.1161/circulationaha.111.046755
[21] Kim, J., Hong, C., Park, M.J., Song, Y.R., Kim, H.J. and Kim, S.G. (2017) Increased Neutrophil Extracellular Trap Formation in Uremia Is Associated with Chronic Inflammation and Prevalent Coronary Artery Disease. Journal of Immunology Research, 2017, 1-10.
https://doi.org/10.1155/2017/8415179
[22] Kushnareva, E., Kushnarev, V., Artemyeva, A., Mitrofanova, L. and Moiseeva, O. (2022) Myocardial PD-L1 Expression in Patients with Ischemic and Non-Ischemic Heart Failure. Frontiers in Cardiovascular Medicine, 8, Article 759972.
https://doi.org/10.3389/fcvm.2021.759972
[23] Wang, Y., Chen, L., Tian, Z., Shen, X., Wang, X., Wu, H., et al. (2017) CRISPR-Cas9 Mediated Gene Knockout in Human Coronary Artery Endothelial Cells Reveals a Pro-Inflammatory Role of TLR2. Cell Biology International, 42, 187-193.
https://doi.org/10.1002/cbin.10885