Sirtuins家族对结直肠癌的生物学功能及预后的研究进展
Research Progress of Biological Function and Prognosis of Colorectal Cancer in Sirtuins Family
DOI: 10.12677/jcpm.2024.34257, PDF, HTML, XML,   
作者: 李瑞阳:成都中医药大学医学与生命科学学院,四川 成都;芦灵军*:宜宾市第一人民医院胃肠外科,四川 宜宾
关键词: 结直肠癌(CRC)Sirtuins蛋白家族生物学功能预后Colorectal Cancer (CRC) Sirtuins Protein Family Biological Function Prognosis
摘要: Sirtuins蛋白家族具有ADP-核糖基转移酶活性和NAD+依赖性的组蛋白去乙酰基转移酶等多种酶活性,其家族包括Sirtuin1-7,是有名的长寿蛋白大家族,具有控制能量代谢、DNA修复、细胞活性、组织再生、炎症、神经元信号传递等多种生物学功能,同时在结直肠癌发生发展过程中作为不可替代的调控因素之一。Sirtuin1-7属于同一家族,但Sirtuin1-7表达对结肠癌的发生发展却有不同的影响,与患者预后也存在一定的相关性。本文综述了Sirtuins家族成员概述、在结直肠癌发生发展过程中所表达的生物学功能、作用机制及预后。
Abstract: Sirtuins protein family has various enzyme activities such as ADP-ribosyl transferase activity and NAD+ dependent histone deacetyl transferase activity. Its family includes Sirtuin1-7, which is a well-known family of long-lived proteins. It has various biological functions such as controlling energy metabolism, DNA repair, cell activity, tissue regeneration, inflammation, neuronal signal transmission, etc., and serves as one of the irreplaceable regulatory factors in the occurrence and development of colorectal cancer. Sirtuin1-7 belongs to the same family, but the expression of Sirtuin1-7 has different effects on the occurrence and development of colon cancer, and has a certain correlation with the prognosis of patients. In this review, Sirtuins family members, biological functions, mechanisms of action and prognosis of colorectal cancer were summarized.
文章引用:李瑞阳, 芦灵军. Sirtuins家族对结直肠癌的生物学功能及预后的研究进展[J]. 临床个性化医学, 2024, 3(4): 1805-1817. https://doi.org/10.12677/jcpm.2024.34257

1. 引言

结直肠癌是目前全世界主要的肿瘤之一,也是消化道肿瘤死亡的常见原因。结直肠癌症是全球女性第二常见癌症,是男性第三常见癌症[1]。近年来,结直肠癌的发病率和死亡率逐步得到改善。现阶段治疗方式主要是以通过外科干预为主,并结合放、化疗等治疗手段,从而延长患者的存活率。随着检测技术不断提高,越来越多的研究者们逐渐将研究对象转移到分子水平,通过不断的实验了解到疾病发生发展的机制,通过抑制剂或者激活剂来调节疾病发生发展过程中基因的表达,这对于疾病的预防和治疗都起到了很大作用。Sirtuins家族是一类具有ADP-核糖基转移酶活性和乙酰化酶活性的NAD+依赖性组蛋白去乙酰化酶,拥有高度保守的结构[2],其家族包括七种乙酰化酶,即Sirtuin1 (SIRT1)、Sirtuin2 (SIRT2)、Sirtuin3 (SIRT3)、Sirtuin4 (SIRT4)、Sirtuin5 (SIRT5)、Sirtuin6 (SIRT6)和Sirtuin7 (SIRT7) [2]。越来越多的研究关注Sirtuins家族在结肠癌的发生、发展及预后中的作用,本文旨在阐述Sirtuins家族不同成员对结肠癌的生物学功能及临床预后的相关研究。

2. Sirtuins蛋白家族概述

Sirtuins蛋白家族占据不同的亚细胞区室:SIRT1、SIRT6和SIRT7主要位于细胞核,SIRT2位于细胞质和细胞核[3],SIRT3、SIRT4、SIRT5位于线粒体[2] (图1)。从相关研究来看,Sirtuins蛋白家族涉及许多细胞过程,如衰老、转录、凋亡、能量代谢、炎症[4]和应激,以及低热量情况下的能量效率和警觉性[5]。SIRT1主要是哺乳动物NAD+依赖性脱乙酰酶,它包含至少两个核定位信号和两个核输出信号,在一定条件下可以在细胞核和细胞质之间穿梭[6]。SIRT1可控制各种细胞的表达和蛋白质活动:细胞增殖、分化、凋亡、代谢、DNA损伤、氧化应激反应、基因组等过程中的稳定性和复杂环境中细胞存活[7] [8]。SIRT2参与多种生物学过程包括细胞周期进程、细胞死亡和应激反应[9] [10]等。在多种疾病中体现不同的生物学作用,例如SIRT2在肾小管和肝细胞中的抗纤维化作用,也可能作为血管再生的潜在治疗靶点[11],在小鼠模型中发现阿尔兹海默症(AD)的基因表达过程也受到SIRT2的调节[12],同时使用特异性SIRT2抑制剂的体外感染实验表明,特异性靶向SIRT2可能为HIV感染及其相关神经功能障碍提供新的治疗选择[13],SIRT2去乙酰化可以预防并靶向逆转衰老相关的炎症和胰岛素抵抗[14]。SIRT3是线粒体基质中的一种主要的蛋白质去乙酰化酶[15],它与SIRT4、SIRT5都定位于线粒体,又被称为线粒体Sirtuins,并且是一个NAD+依赖性蛋白二磷酸腺苷(ADP)-核糖基转移酶,它催化ADP-核糖基转移到目标蛋白上[6]。SIRT3在多个脏器中发挥细胞保护、细胞增殖及代谢功能,例如在循环系统中,SIRT3通过激活AMPK相关的线粒体生物发生来减少败血症诱导的心肌损伤[16]。有实验证明,小鼠模型中,SIRT3缺失小鼠出现明显的骨质减少并伴有成骨细胞功能障碍,提示在成骨细胞分化和骨形成中发挥了重要作用[17]。Yogesh等学者在实验中证明了SIRT3表达或活性降低导致数百种线粒体蛋白超乙酰化,这与神经异常、神经兴奋性毒性和神经元细胞死亡有关[18]。SIRT4~7相关的研究较Sirtuin1~3较少,SIRT4可以确保代谢稳定和生命长寿,例如在果蝇SIRT4敲除实验中,SIRT4过度表达的果蝇寿命长,SIRT4敲除果蝇分解代谢的途径受损[19]。此外SIRT4在消化道肿瘤中,如食管鳞癌、胰腺癌SIRT4在体外癌细胞生长过程起抑制作用[20],在胃癌、结直肠癌、肝癌中低表达,体外实验中也有抑制作用[21] [22]。同时SIRT5~7也调控了细胞增殖、分化、代谢等细胞活动,影响肿瘤的发生发展。

Figure 1. Common locations of the SIRT family in cells

1. SIRT家族在细胞中常见存在位置

3. Sirtuins蛋白家族成员在结肠癌中的生物学功能

3.1. SIRT1对结直肠癌进展中的影响及作用机制

Sirtuins蛋白家族的成员都在不同肿瘤发生发展过程中发挥了一定的生物学功能[23]。SIRT1其活性通常与健康衰老和长寿有关,但也发现在多种癌症中高表达,包括前列腺癌、急性髓性白血病、结肠癌和一些非黑色素瘤皮肤癌。在小鼠实验中,发现阿司匹林可以直接乙酰化蛋白质中氨基酸侧链,使SIRT1乙酰化维持肠道免疫稳定[24],此外可通过SIRT-AMPK通路的相互调节诱导人类结直肠癌细胞衰老,从而发挥抗癌作用[25]。2009年Kabra等学者通过免疫组织化学染色显示正常结肠黏膜和良性腺瘤中存在高水平的SIRT1。SIRT1过度表达在大约25%的I/II/III期结直肠腺癌中观察到,但在晚期IV期肿瘤中很少发现。此外,大约30%的癌症表现出低于正常的SIRT1表达。所以SIRT1对结肠癌的发展可能存在具有双重作用(抗增殖/抗凋亡) [26]。但近几年来,Wang [27]、Wang [28]、Lee [29]等学者通过多种方式证明了SIRT1上调可以通过p53/miR-101/KPNA3轴、circ-SIRT1/EIF4A3/N-cadherin/vimentin通路促进结直肠癌细胞的增殖、迁移、侵袭和转化。在结直肠癌的特定背景下,SIRT1也可被维生素D的活性代谢物1α,25-二羟基维生素D3在结直肠癌细胞的自身去乙酰化促进其活化,而SIRT1活性的翻译后控制介导1α,25-二羟基维生素D3上调抗增殖作用表达,同时诱导结直肠癌细胞中的促凋亡蛋白表达[30]。炎症因子白细胞介素-1β诱导的SIRT1过表达与恶性肿瘤生长有关[31]。SIRT1也是细胞应激调节和脂质代谢的主要参与者,在癌症进展中存在错综复杂的关系[32]。总体而言,SIRT1可通过多种机制影响结直肠癌的进展,对结直肠癌发生进展可能存在双重作用(抗增殖/抗抑制) (图2),但抗结直肠癌细胞增殖的证据不充分,有待于进一步研究。

3.2. SIRT2对结直肠癌进展中的影响及作用机制

SIRT2是一种NAD+ (烟酰胺腺嘌呤二核苷酸)依赖性脱乙酰酶,SIRT2具有多种调节细胞功能的作用,包括细胞周期调控[32]、代谢作用和肿瘤发生[33]等。SIRT2在多种器官中都表达,尤其是在大脑组织中[34]。相比于SIRT1,SIRT2与结直肠癌的相关性研究要少一些,但SIRT2对结直肠癌中的作用仍旧存在争议,在目前的研究中,Wang等人报道了SIRT2过表达可致异柠檬酸脱氢酶1 (IDH-1)去乙酰化调节细胞代谢,同时抑制结直肠癌细胞增殖、转移[35]。癸基泛醌(Decylubiquinone)和紫草醌(Shikonin)都可通过使SIRT2上调从而抑制直肠癌细胞增殖[36] [37]。SIRT2去乙酰化细胞核中E-钙粘蛋白加强其与β-catenin的相互作用,导致其下游基因表达减少,抑制肿瘤的生长和迁移[38],除此之外,有研究表明SIRT2可促进结直肠癌分化、增殖和转移。Hu等人报道了SIRT2在结直肠癌组织中上调,且与预后不良相关,同时可通过STAT3/VEGFA信号通路促进肿瘤血管生成[39]。在免疫细胞中,SIRT2表达可耗竭NK细胞,从而抑制对结直肠癌细胞的肿瘤杀伤活力[40]。有相关文献证明了SIRT2可调节K-RAS的乙酰化,从而对结肠癌的发生发展产生巨大影响[41]。由上可知,SIRT2在结直肠癌中也可能存在双重作用(抗增殖/抗抑制) (图2),但是作用机制还需要进一步的研究,继续为影响结直肠癌进展提供了相关证据,是可以探究的方向。

3.3. SIRT3对结直肠癌进展中的影响及作用机制

SIRT3是线粒体基质中的一种主要的NAD+依赖性脱乙酰酶[15],其功能除了在线粒体中去乙酰化外,还是长寿蛋白[42]、具有心肌细胞保护作用[43]、以及参与线粒体稳态和代谢过程。在结直肠癌中,Li等学者报道了通过实验对照发现了SIRT3稳定表达可能导致Wnt/β-catenin级联信号通路失活,可抑制结直肠癌细胞的增殖[44]。此外,体外实验中MY-13的新型SIRT3小分子激活剂通过SIRT3/Hsp90/AKT信号通路促进凋亡和自噬可抑制体内肿瘤的生长[45],Zuo证明GA (甘草酸)通过抑制SIRT3导致结直肠癌凋亡[46]。Yong发现结肠肿瘤形成过程中SIRT3与肠道微生物相互作用,但SIRT3表达高时肿瘤细胞生长受到抑制[47]。相反,有报道称SIRT3调节Akt/PTEN通路在结直肠癌应激反应中对抗线粒体裂变同时促进结直肠癌生长/迁移等[48],同时Wei发现SIRT3表达增加去乙酰化活性促进丝氨酸羟甲基转移酶2 (SHMT2)酶活性,推动结直肠癌变发生[49]。在结直肠癌代谢中,PROX1显著上调募集EZH2抑制SIRT3启动子活性有助于结直肠癌增殖和葡萄糖代谢[50][51]免疫实验发现,SIRT3可通过去乙酰化所致T细胞记忆发育,使其免疫系统功能发挥,SIRT3也可通过乳酸干扰结肠癌细胞代谢稳态[52]。SIRT3在线粒体中,SIRT3沉默会导致线粒体生物合成减少和线粒体功能障碍,最终影响细胞活力[53],并且可能是一种使细胞对治疗更加敏感的治疗策略。由上可知,SIRT3在结直肠癌中的表达除了广泛认可的致癌基因外,也存在着抑制癌细胞增殖、转移等抑癌作用(图2)。目前还需要进一步研究,完善SIRT3对结肠癌发生发展的作用机制,便于提供早期干预的证据。

3.4. SIRT4对结直肠癌进展中的影响及作用机制

SIRT4是线粒体Sirtuins之一[6],在多种恶性肿瘤中起到抑制作用,同时也调节了脂肪酸氧化、氨基酸分解代谢等多种代谢途径来影响肿瘤的增殖分化,主要通过NAD+依赖的ADP-核糖基转移酶,而不是脱乙酰基酶活性[54]。SIRT4在结肠癌中的研究较少,在相关文献报道了SIRT4在结直肠癌中发挥抗肿瘤活性可能依赖于抑制谷氨酰胺代谢和上调E-钙粘蛋白,抑制肿瘤的增殖、转移,同时发现表达越低,预后越差,侵袭性越强[55] [56]。在Cui等人的研究中再次确定了SIRT4抑制结直肠癌的增殖、分化,可能是谷氨酰胺酶通过AKT/糖原合酶激酶3β (GSK3β)/CyclinD1途径发挥作用[57]。一些miRNA也可通过影响靶基因发挥生物学作用,miR-15a-5p在结直肠癌细胞中调节STAT3/TWIST1和PETN/AKT信号传导来抑制SIRT4的表达,从而加剧恶性表型[58],也说明了SIRT4与结直肠癌的恶性程度呈负相关。5-氟尿嘧啶在结直肠癌化疗上被广泛应用,5-FU (5-氟尿嘧啶)的敏感性受到SIRT4表达的影响,SIRT4不表达结直肠癌对5-FU的敏感性降低[59]。目前研究来看SIRT4表达对结直肠癌呈抑制(图2),但其作用机制还值得进一步讨论和研究,继续研究对结直肠癌的诊断和治疗是有必要的。

3.5. SIRT5对结直肠癌进展中的影响及作用机制

Sirtuins蛋白家族主要位于线粒体中表达除了SIRT3、SIRT4之外,还有SIRT5,与其他家族成员不同的是它拥有多种酶活性,包括脱乙酰酶、脱琥珀酰酶和脱丙二酰酶,可通过多种代谢途径影响肿瘤的表达、增殖和侵袭等[54]。首先,SIRT5脱乙酰酶活性可使乳酸脱氢酶B (LDHB)的赖氨酸-329处去乙酰化,提高其酶活性促进自噬和结直肠癌的增殖[60]。在结直肠癌缺少谷氨酰胺时,SIRT5发挥脱琥珀酰酶活性使线粒体苹果酸酶2 (ME2)脱琥珀酰化维持线粒体呼吸功能从而促进结直肠癌细胞的增殖,这与SIRT4是相反的[61]。同时在三羧酸循环(TCA)中,柠檬酸合酶(CS)由SIRT5使K393和K395处脱琥珀酰化,显著提高了柠檬酸合酶(CS)活性,为结直肠癌细胞增殖和侵袭间接提供了能量[62]。在线粒体结构中,SIRT3通过去乙酰化酶活性,使丝氨酸羟甲基转移酶2 (SHMT2)活性提高,SIRT5直接介导SHMT2上赖氨酸280的去琥珀酰化,促进SHMT2酶活性,都可促进结直肠癌细胞的增殖[63]。SIRT5除了通过代谢作用影响肿瘤的增殖和侵袭,在免疫微环境中也有调节作用,SIRT5敲除增强Th1 (CD4+ T细胞)和CTL (细胞毒性T淋巴细胞)分化,降低CD4+ Treg (CD4+调节性T细胞)分化,抑制结直肠癌细胞的增殖和侵袭[64]。综上,在结直肠癌中,SIRT5的表达起到了抗抑制作用(图2),因为酶活性作用的多样,其作用机制仍可以进一步完善,同时,SIRT5在免疫微环境中的作用和表达也有进一步研究的意义。

3.6. SIRT6对结直肠癌进展的影响及作用机制

SIRT6与SIRT3类似,是一种同时具有去乙酰化酶和ADP-核糖基转移酶活性的蛋白,所以除了具有长寿作用外,在免疫和哺乳动物DNA修复也能发挥重要作用[65]。SIRT6可使苹果酸酶1 (ME1) K337去乙酰化的方式拮抗磷酸甘油酸变位酶5 (PGAM5)增强酯酰辅酶A:胆固醇酰基转移酶1 (ACAT1)酰基化功能,抑制结直肠癌脂质合成、NADPH生成、糖酵解,抑制结直肠癌生长[66]。FoxO3a已被确定为SIRT6的直接上游,可上调其表达[67],SIRT6可通过靶向抑制致癌磷酸酶细胞分裂周期25A (CDC25A) [68],从而抑制干细胞增殖,激活SIRT6可介导下游靶向基因细胞色素P450家族24亚家族A成员1 (CYP24A1)基因位点的组蛋白H3去乙酰化,改变其功能,同时CYP24A1是维生素D3的关键失活酶,可协同抑制结直肠癌细胞增殖和侵袭[69]。此外,Wang等学者报道了SIRT6上游microR-25可靶向抑制其表达,促进SIRT6介导的Lin28b/NRP-1轴表达,促进了结直肠癌的发展和转移[70]。有研究证实SIRT6通过调节PTEN/AKT信号在结肠癌中发挥抑癌基因的作用[71]。SIRT6泛素化被肿瘤抑制因子泛素特异性肽酶(USP10)抑制,拮抗c-Myc致癌基因转录,从而抑制肿瘤形成和生长[72]。在小鼠免疫实验中,SIRT6与小鼠NK细胞呈负相关,下调SIRT6可增强NK细胞功能,抑制小鼠结直肠癌进展[73],值得一提的是,这也与前文中SIRT6表达具有抑癌增殖作用相反。在一项META分析中SIRT6的低表达可能预示着实体瘤患者的良好生存[74]。由上可知,目前大多数证据都证明SIRT6上调表达对结直肠癌为抑制作用(图2),在免疫系统相反,具体机制仍旧未知,进一步探究有利于为治疗手段提供更好的证据。

3.7. SIRT7对结直肠癌进展的影响及作用机制

Figure 2. Biological role of the SIRT family in colorectal cancer

2. SIRT家族在结直肠癌中的生物学作用

SIRT7定位于核仁,对于DNA复制有促进作用[75],同时也有长寿功能,Lagunas-Rangel指出SIRT7缺陷会导致过早衰老[76],并在肝癌、胃癌、乳腺癌、膀胱癌、结直肠癌等肿瘤中具有重要作用[77]。目前研究中,Qi等学者指出SIRT7介导的WDR77在Lys-3和Lys-243处的去乙酰化会削弱WDR77-PRMT5相互作用和活性,从而抑制癌细胞的生长[78]。有关研究表明SIRT7缺乏会导致组蛋白乙酰转移酶1 (AT1)活性降低,从而降低组蛋白H4K5和H4K12乙酰化,影响着丝粒处的CENP-A和核小体错位,从而进一步影响染色质组装,同时出现细胞衰老,提高了结直肠肿瘤发病率的易感率[79]。此外,SIRT7可被GRIM-19激活并触发PCAF介导的MDM2泛素化,使其稳定p53蛋白,抑制肿瘤进展[80]。5-氟尿嘧啶下调Sirt7可诱导结直肠癌细胞的放射敏感性,使其对放射治疗更加敏感[81]。SIRT7对组蛋白H3K18表现出高选择性,并具有维持癌细胞转化表型的功能[6]。Yu等学者通过PCR、蛋白质印迹证明SIRT7通过MAPK信号传导和EMT (上皮细胞–间充质转化)促进结直肠癌的增殖和转移[82]。总的来说,文献表明Sirt7在结直肠癌增殖、转移等生物学过程中起到了抗增殖/抗抑制的重要作用(图2)。进一步研究Sirt7在结直肠癌中功能的分子机制可以为开发这种疾病的新治疗策略提供有价值的见解。

4. Sirtuins家族成员与结肠癌预后的关系

前文综述了SIRT家族概述和对结直肠癌抗增殖或抗抑制的生物学作用,对于与结直肠癌患者预后相关性、能否成为生物标志物仍是近年来值得关注的焦点,这对于结直肠肿瘤的术前诊断、药物干预能提供许多帮助。在2003年Jung等学者通过免疫组织化学表达实验认为在结直肠癌患者中SIRT1的表达与预后良好相关[83]。但Wu等学者在Meta分析中认为SIRT1与结直肠癌患者预后没有相关性[84]。此外,在另一项META分析中指明SIRT1与肿瘤的浸润深度、淋巴转移和TMN分期有一定相关性,以及SIRT1过表达可以预测结直肠癌患者预后差[85] [86],可以作为预后生物标志物[85]。Lee等学者则认为高SIRT1表达作为高龄结直肠癌患者预后不良的因素仍具有统计学意义[87]。现在更多的证据表明SIRT1过表达与结直肠癌患者预后不良相关,能否通过干扰SIRT1的表达来影响结直肠癌患者的预后还需要进一步研究。对于SIRT2而言,Lee等学者认为在年轻肿瘤患者中SIRT2表达预后无差异[87],但在卵巢癌中存在预后相关[88]。Zhou等学者提到SIRT3表达与总癌症预后之间没有明显关系,SIRT3表达可能是特定癌症的关键预后因素,包括结直肠癌[89]。有研究表明抗氧化酶在非肿瘤邻近组织和早期结直肠癌肿瘤组织中,都在I期和II期之间具有显著差异,所以可将SIRT3作为新的生物标记物[90]。Liu等学者在一项临床随访研究中发现SIRT3低表达患者的总生存率为80.2%,SIRT3高表达患者的总生存率为55.9% [91],SIRT3可能与结直肠癌预后负相关。在Guo研究中发现SIRT4在人结肠癌中的表达降低与病理分化差、预后差有关[56]。SIRT4对结直肠癌的抑制作用,也为治疗靶点提供了新思路。目前没有更多的证据表明SIRT5与结直肠癌预后具有相关性,但从其生物学功能来看可以猜测SIRT5表达与结直肠癌负性预后有一定相关性,并且SIRT5可能为结肠癌治疗的新标志物[92]。Geng等学者的实验中发现SIRT6促进结直肠发生、转移,同时与不良预后、总生存率低相关,可作为生物标志物和治疗结肠癌的潜在治疗靶点[93],与结肠癌具有密切相关性[94]。Yu等人描述了SIRT7的致癌特性,并将其确定为结直肠癌的一个有价值的预后标志物[82],此外,SIRT7过表达与各种肿瘤类型的免疫浸润有关,包括结直肠癌,并且患者生产率降低,是预后生物标志物[82] [95]。由上可知,SIRT1、SIR3、SIRT6、SIRT7高表达与结直肠癌预后不良呈正相关,SIRT2、SIRT4、SIRT5表达与结直肠癌预后相关性并不明确。所以对于SIRT家族对结直肠癌患者预后的影响相关研究还不够全面,能否作为生物学标志物还需要更为全面的分析与探究,进一步全面验证预后相关的同时,也为诊断提供了线索。

5. 未来研究展望

Sirtuins家族对结直肠癌有不同的影响。就目前证据来看,SIRT1、SIRT2、SIRT3、SIRT6、SIRT7对结直肠癌细胞生长、转移、侵袭等具有抗增殖/抗抑制双重作用,SIRT4、SIRT5结直肠癌细胞生长、转移、侵袭等具有抗增殖的单向作用。SIRT1、SIR3、SIRT6、SIRT7高表达与结直肠癌预后呈负相关,SIRT2、SIRT4、SIRT5表达与结直肠癌预后相关性并不明确。对那些不太了解的Sirtuin成员,需要进一步完善相关作用机制。同时深入探讨Sirtuins家族成员在结直肠癌发生、发展和预后中的作用机制,为结直肠癌的诊断、治疗和预防提供新思路。未来的研究结果不仅将为其生物学功能提供新的见解,研究Sirtuins家族成员之间的相互作用,以及与其他信号通路的协同作用,可揭示结直肠癌发生发展的全面机制。同时结合前沿实验方式,筛选与Sirtuins家族成员相关的生物标志物,为结肠癌的早期诊断和预后评估提供依据。开发针对Sirtuins家族成员的抑制剂或激活剂,为结肠癌的治疗提供新的药物靶点。总之,Sirtuins家族在结肠癌中的功能及预后研究具有重要的临床意义。随着研究的深入,有望为结肠癌的防治提供新的策略和方法。

NOTES

*通讯作者。

参考文献

[1] Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S. and Tabernero, J. (2017) Consensus Molecular Subtypes and the Evolution of Precision Medicine in Colorectal Cancer. Nature Reviews Cancer, 17, 79-92.
https://doi.org/10.1038/nrc.2016.126
[2] Ye, X., Li, M., Hou, T., Gao, T., Zhu, W. and Yang, Y. (2016) Sirtuins in Glucose and Lipid Metabolism. Oncotarget, 8, 1845-1859.
https://doi.org/10.18632/oncotarget.12157
[3] Shore, D., Squire, M. and Nasmyth, K.A. (1984) Characterization of Two Genes Required for the Position-Effect Control of Yeast Mating-Type Genes. The EMBO Journal, 3, 2817-2823.
https://doi.org/10.1002/j.1460-2075.1984.tb02214.x
[4] Preyat, N. and Leo, O. (2013) Sirtuin Deacylases: A Molecular Link between Metabolism and Immunity. Journal of Leukocyte Biology, 93, 669-680.
https://doi.org/10.1189/jlb.1112557
[5] Satoh, A., Brace, C.S., Ben-Josef, G., West, T., Wozniak, D.F., Holtzman, D.M., et al. (2010) SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. The Journal of Neuroscience, 30, 10220-10232.
https://doi.org/10.1523/jneurosci.1385-10.2010
[6] Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. and Horikawa, I. (2005) Evolutionarily Conserved and Nonconserved Cellular Localizations and Functions of Human SIRT Proteins. Molecular Biology of the Cell, 16, 4623-4635.
https://doi.org/10.1091/mbc.e05-01-0033
[7] Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. and Horio, Y. (2007) Nucleocytoplasmic Shuttling of the NAD+-Dependent Histone Deacetylase SIRT1. Journal of Biological Chemistry, 282, 6823-6832.
https://doi.org/10.1074/jbc.m609554200
[8] Alves-Fernandes, D.K. and Jasiulionis, M.G. (2019) The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. International Journal of Molecular Sciences, 20, Article 3153.
https://doi.org/10.3390/ijms20133153
[9] Kitada, M., Ogura, Y., Monno, I. and Koya, D. (2019) Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Frontiers in Endocrinology, 10, Article 187.
https://doi.org/10.3389/fendo.2019.00187
[10] Fujita, Y. and Yamashita, T. (2018) Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Frontiers in Neuroscience, 12, Article 778.
https://doi.org/10.3389/fnins.2018.00778
[11] Yang, S., Yang, G., Wang, X., Xiang, J., Kang, L. and Liang, Z. (2023) SIRT2 Alleviated Renal Fibrosis by Deacetylating SMAD2 and SMAD3 in Renal Tubular Epithelial Cells. Cell Death & Disease, 14, Article No. 646.
https://doi.org/10.1038/s41419-023-06169-1
[12] Bai, N., Li, N., Cheng, R., Guan, Y., Zhao, X., Song, Z., et al. (2022) Inhibition of SIRT2 Promotes APP Acetylation and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice. Cell Reports, 40, Article 111062.
https://doi.org/10.1016/j.celrep.2022.111062
[13] Duran-Castells, C., Llano, A., Kawana-Tachikawa, A., Prats, A., Martinez-Zalacain, I., Kobayashi-Ishihara, M., et al. (2023) Sirtuin-2, NAD-Dependent Deacetylase, Is a New Potential Therapeutic Target for HIV-1 Infection and HIV-Related Neurological Dysfunction. Journal of Virology, 97, e01655-22.
https://doi.org/10.1128/jvi.01655-22
[14] He, M., Chiang, H., Luo, H., Zheng, Z., Qiao, Q., Wang, L., et al. (2020) An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metabolism, 31, 580-591.E5.
https://doi.org/10.1016/j.cmet.2020.01.009
[15] Nakamura, Y., Ogura, M., Tanaka, D. and Inagaki, N. (2008) Localization of Mouse Mitochondrial SIRT Proteins: Shift of SIRT3 to Nucleus by Co-Expression with SIRT5. Biochemical and Biophysical Research Communications, 366, 174-179.
https://doi.org/10.1016/j.bbrc.2007.11.122
[16] Xin, T. and Lu, C. (2020) SIRT3 Activates AMPK-Related Mitochondrial Biogenesis and Ameliorates Sepsis-Induced Myocardial Injury. Aging, 12, 16224-16237.
https://doi.org/10.18632/aging.103644
[17] Gao, J., Feng, Z., Wang, X., Zeng, M., Liu, J., Han, S., et al. (2017) SIRT3/SOD2 Maintains Osteoblast Differentiation and Bone Formation by Regulating Mitochondrial Stress. Cell Death & Differentiation, 25, 229-240.
https://doi.org/10.1038/cdd.2017.144
[18] Mishra, Y. and Kaundal, R.K. (2023) Role of SIRT3 in Mitochondrial Biology and Its Therapeutic Implications in Neurodegenerative Disorders. Drug Discovery Today, 28, Article 103583.
https://doi.org/10.1016/j.drudis.2023.103583
[19] Wood, J.G., Schwer, B., Wickremesinghe, P.C., Hartnett, D.A., Burhenn, L., Garcia, M., et al. (2018) SIRT4 Is a Mitochondrial Regulator of Metabolism and Lifespan in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 115, 1564-1569.
https://doi.org/10.1073/pnas.1720673115
[20] Hu, Q., Qin, Y., Ji, S., Xu, W., Liu, W., Sun, Q., et al. (2019) UHRF1 Promotes Aerobic Glycolysis and Proliferation via Suppression of SIRT4 in Pancreatic Cancer. Cancer Letters, 452, 226-236.
https://doi.org/10.1016/j.canlet.2019.03.024
[21] Huang, G., Cui, F., Yu, F., Lu, H., Zhang, M., Tang, H., et al. (2015) Sirtuin-4 (SIRT4) Is Downregulated and Associated with Some Clinicopathological Features in Gastric Adenocarcinoma. Biomedicine & Pharmacotherapy, 72, 135-139.
https://doi.org/10.1016/j.biopha.2015.04.013
[22] Li, J., Zhao, M., Fan, W., et al. (2024) SIRT4 Is Associated with Microvascular Infiltration, Immune Cell Infiltration, and Epithelial Mesenchymal Transition in Hepatocellular Carcinoma. Histology and Histopathology.
https://doi.org/10.14670/HH-18-794
[23] Garber, M.E., Troyanskaya, O.G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-Gengelbach, M., et al. (2001) Diversity of Gene Expression in Adenocarcinoma of the Lung. Proceedings of the National Academy of Sciences, 98, 13784-13789.
https://doi.org/10.1073/pnas.241500798
[24] Xie, L., Li, C., Wang, C., Wu, Z., Wang, C., Chen, C., et al. (2024) Aspirin‐Mediated Acetylation of SIRT1 Maintains Intestinal Immune Homeostasis. Advanced Science, 11, 2306378.
https://doi.org/10.1002/advs.202306378
[25] Jung, Y.R., Kim, E.J., Choi, H.J., Park, J., Kim, H., Lee, Y., et al. (2015) Aspirin Targets SIRT1 and AMPK to Induce Senescence of Colorectal Carcinoma Cells. Molecular Pharmacology, 88, 708-719.
https://doi.org/10.1124/mol.115.098616
[26] Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., et al. (2009) SIRT1 Is an Inhibitor of Proliferation and Tumor Formation in Colon Cancer. Journal of Biological Chemistry, 284, 18210-18217.
https://doi.org/10.1074/jbc.m109.000034
[27] Wang, X., Jiang, Y., Ye, W., Shao, C., Xie, J. and Li, X. (2023) SIRT1 Promotes the Progression and Chemoresistance of Colorectal Cancer through the p53/miR-101/KPNA3 Axis. Cancer Biology & Therapy, 24, Article 2235770.
https://doi.org/10.1080/15384047.2023.2235770
[28] Wang, X., Liu, S., Xu, B., Liu, Y., Kong, P., Li, C., et al. (2021) Circ-SIRT1 Promotes Colorectal Cancer Proliferation and EMT by Recruiting and Binding to eiF4A3. Analytical Cellular Pathology, 2021, Article 5739769.
https://doi.org/10.1155/2021/5739769
[29] Lee, Y., Kim, S., Fang, X., Song, N., Kim, D., Suh, J., et al. (2022) JNK‐Mediated Ser27 Phosphorylation and Stabilization of SIRT1 Promote Growth and Progression of Colon Cancer through Deacetylation‐Dependent Activation of Snail. Molecular Oncology, 16, 1555-1571.
https://doi.org/10.1002/1878-0261.13143
[30] García-Martínez, J.M., Chocarro-Calvo, A., Martínez-Useros, J., Fernández-Aceñero, M.J., Fiuza, M.C., Cáceres-Rentero, J., et al. (2023) Vitamin D Induces SIRT1 Activation through K610 Deacetylation in Colon Cancer. eLife, 12, RP86913.
https://doi.org/10.7554/elife.86913
[31] Jung, J., Lee, Y., Fang, X., Kim, S., Kim, S.H., Kim, D., et al. (2021) IL-1β Induces Expression of Proinflammatory Cytokines and Migration of Human Colon Cancer Cells through Upregulation of SIRT1. Archives of Biochemistry and Biophysics, 703, Article 108847.
https://doi.org/10.1016/j.abb.2021.108847
[32] Simmons, G., Pruitt, W. and Pruitt, K. (2015) Diverse Roles of SIRT1 in Cancer Biology and Lipid Metabolism. International Journal of Molecular Sciences, 16, 950-965.
https://doi.org/10.3390/ijms16010950
[33] Kim, H., Vassilopoulos, A., Wang, R., Lahusen, T., Xiao, Z., Xu, X., et al. (2011) SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity. Cancer Cell, 20, 487-499.
https://doi.org/10.1016/j.ccr.2011.09.004
[34] Maxwell, M.M., Tomkinson, E.M., Nobles, J., Wizeman, J.W., Amore, A.M., Quinti, L., et al. (2011) The Sirtuin 2 Microtubule Deacetylase Is an Abundant Neuronal Protein That Accumulates in the Aging CNS. Human Molecular Genetics, 20, 3986-3996.
https://doi.org/10.1093/hmg/ddr326
[35] Wang, B., Ye, Y., Yang, X., Liu, B., Wang, Z., Chen, S., et al. (2020) Sirt2‐Dependent IDH1 Deacetylation Inhibits Colorectal Cancer and Liver Metastases. EMBO reports, 21, e48183.
https://doi.org/10.15252/embr.201948183
[36] Li, J., Zheng, S., Cheng, T., Li, Y., Mai, X., Jiang, G., et al. (2022) Decylubiquinone Inhibits Colorectal Cancer Growth through Upregulating Sirtuin2. Frontiers in Pharmacology, 12, Article 804265.
https://doi.org/10.3389/fphar.2021.804265
[37] Zhang, L., Zhan, L., Jin, Y., Min, Z., Wei, C., Wang, Q., et al. (2017) SIRT2 Mediated Antitumor Effects of Shikonin on Metastatic Colorectal Cancer. European Journal of Pharmacology, 797, 1-8.
https://doi.org/10.1016/j.ejphar.2017.01.008
[38] Zhao, Y., Yu, T., Zhang, N., Chen, J., Zhang, P., Li, S., et al. (2019) Nuclear E-Cadherin Acetylation Promotes Colorectal Tumorigenesis via Enhancing β-Catenin Activity. Molecular Cancer Research, 17, 655-665.
https://doi.org/10.1158/1541-7786.mcr-18-0637
[39] Hu, F., Sun, X., Li, G., Wu, Q., Chen, Y., Yang, X., et al. (2018) Inhibition of SIRT2 Limits Tumour Angiogenesis via Inactivation of the STAT3/VEGFA Signalling Pathway. Cell Death & Disease, 10, Article No. 9.
https://doi.org/10.1038/s41419-018-1260-z
[40] Jiang, B., Ke, C., Zhou, H., Xia, T., Xie, X. and Xu, H. (2023) Sirtuin 2 Up‐Regulation Suppresses the Anti‐Tumour Activity of Exhausted Natural Killer Cells in Mesenteric Lymph Nodes in Murine Colorectal Carcinoma. Scandinavian Journal of Immunology, 98, e13317.
https://doi.org/10.1111/sji.13317
[41] Yang, M.H., Laurent, G., Bause, A.S., Spang, R., German, N., Haigis, M.C., et al. (2013) HDAC6 and SIRT2 Regulate the Acetylation State and Oncogenic Activity of Mutant K-RAS. Molecular Cancer Research, 11, 1072-1077.
https://doi.org/10.1158/1541-7786.mcr-13-0040-t
[42] Bellizzi, D., Rose, G., Cavalcante, P., Covello, G., Dato, S., De Rango, F., et al. (2005) A Novel VNTR Enhancer within the SIRT3 Gene, a Human Homologue of SIR2, Is Associated with Survival at Oldest Ages. Genomics, 85, 258-263.
https://doi.org/10.1016/j.ygeno.2004.11.003
[43] Sundaresan, N.R., Samant, S.A., Pillai, V.B., Rajamohan, S.B. and Gupta, M.P. (2008) SIRT3 Is a Stress-Responsive Deacetylase in Cardiomyocytes That Protects Cells from Stress-Mediated Cell Death by Deacetylation of Ku70. Molecular and Cellular Biology, 28, 6384-6401.
https://doi.org/10.1128/mcb.00426-08
[44] Li, T., Fan, L., Jia, Y., Xu, C., Guo, W., Wang, Y., et al. (2024) Colorectal Cancer Cells with Stably Expressed SIRT3 Demonstrate Proliferating Retardation by Wnt/β‐Catenin Cascade Inactivation. Clinical and Experimental Pharmacology and Physiology, 51, e13856.
https://doi.org/10.1111/1440-1681.13856
[45] Mou, Y., Chen, Y., Fan, Z., Ye, L., Hu, B., Han, B., et al. (2024) Discovery of a Novel Small-Molecule Activator of SIRT3 That Inhibits Cell Proliferation and Migration by Apoptosis and Autophagy-Dependent Cell Death Pathways in Colorectal Cancer. Bioorganic Chemistry, 146, Article 107327.
https://doi.org/10.1016/j.bioorg.2024.107327
[46] Zuo, Z., He, L., Duan, X., Peng, Z. and Han, J. (2022) Glycyrrhizic Acid Exhibits Strong Anticancer Activity in Colorectal Cancer Cells via SIRT3 Inhibition. Bioengineered, 13, 2720-2731.
https://doi.org/10.1080/21655979.2021.2001925
[47] Zhang, Y., Wang, X., Zhou, M., Kang, C., Lang, H., Chen, M., et al. (2018) Crosstalk between Gut Microbiota and Sirtuin-3 in Colonic Inflammation and Tumorigenesis. Experimental & Molecular Medicine, 50, 1-11.
https://doi.org/10.1038/s12276-017-0002-0
[48] Wang, Y., Sun, X., Ji, K., Du, L., Xu, C., He, N., et al. (2018) RETRACTED: SIRT3-Mediated Mitochondrial Fission Regulates the Colorectal Cancer Stress Response by Modulating the AKT/PTEN Signalling Pathway. Biomedicine & Pharmacotherapy, 105, 1172-1182.
https://doi.org/10.1016/j.biopha.2018.06.071
[49] Wei, Z., Song, J., Wang, G., Cui, X., Zheng, J., Tang, Y., et al. (2018) Deacetylation of Serine Hydroxymethyl-Transferase 2 by SIRT3 Promotes Colorectal Carcinogenesis. Nature Communications, 9, Article No. 4468.
https://doi.org/10.1038/s41467-018-06812-y
[50] Gan, L., Li, Q., Nie, W., Zhang, Y., Jiang, H., Tan, C., et al. (2023) Prox1-Mediated Epigenetic Silencing of SIRT3 Contributes to Proliferation and Glucose Metabolism in Colorectal Cancer. International Journal of Biological Sciences, 19, 50-65.
https://doi.org/10.7150/ijbs.73530
[51] He, J., Shangguan, X., Zhou, W., Cao, Y., Zheng, Q., Tu, J., et al. (2021) Glucose Limitation Activates AMPK Coupled SENP1-SIRT3 Signalling in Mitochondria for T Cell Memory Development. Nature Communications, 12, Article No. 4371.
https://doi.org/10.1038/s41467-021-24619-2
[52] D’Onofrio, N., Martino, E., Balestrieri, A., Mele, L., Neglia, G., Balestrieri, M.L., et al. (2021) SIRT3 and Metabolic Reprogramming Mediate the Antiproliferative Effects of Whey in Human Colon Cancer Cells. Cancers, 13, Article 5196.
https://doi.org/10.3390/cancers13205196
[53] Torrens-Mas, M., Hernández-López, R., Pons, D., Roca, P., Oliver, J. and Sastre-Serra, J. (2019) Sirtuin 3 Silencing Impairs Mitochondrial Biogenesis and Metabolism in Colon Cancer Cells. American Journal of Physiology-Cell Physiology, 317, C398-C404.
https://doi.org/10.1152/ajpcell.00112.2019
[54] Kumar, S. and Lombard, D.B. (2015) Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer. Antioxidants & Redox Signaling, 22, 1060-1077.
https://doi.org/10.1089/ars.2014.6213
[55] Miyo, M., Yamamoto, H., Konno, M., Colvin, H., Nishida, N., Koseki, J., et al. (2015) Tumour-Suppressive Function of SIRT4 in Human Colorectal Cancer. British Journal of Cancer, 113, 492-499.
https://doi.org/10.1038/bjc.2015.226
[56] Huang, G., Cheng, J., Yu, F., Liu, X., Yuan, C., Liu, C., et al. (2016) Clinical and Therapeutic Significance of Sirtuin-4 Expression in Colorectal Cancer. Oncology Reports, 35, 2801-2810.
https://doi.org/10.3892/or.2016.4685
[57] Cui, Y., Bai, Y., Yang, J., Yao, Y., Zhang, C., Liu, C., et al. (2020) SIRT4 Is the Molecular Switch Mediating Cellular Proliferation in Colorectal Cancer through GLS Mediated Activation of AKT/GSK3β/CyclinD1 Pathway. Carcinogenesis, 42, 481-492.
https://doi.org/10.1093/carcin/bgaa134
[58] Deng, J., Wang, H., Liang, Y., Zhao, L., Li, Y., Yan, Y., et al. (2023) MiR-15a-5p Enhances the Malignant Phenotypes of Colorectal Cancer Cells through the STAT3/TWIST1 and PTEN/AKT Signaling Pathways by Targeting SIRT4. Cellular Signalling, 101, Article 110517.
https://doi.org/10.1016/j.cellsig.2022.110517
[59] Zhu, Y., Wang, G., Li, X., Wang, T., Weng, M. and Zhang, Y. (2018) Knockout of SIRT4 Decreases Chemosensitivity to 5-FU in Colorectal Cancer Cells. Oncology Letters, 16, 1675-1681.
https://doi.org/10.3892/ol.2018.8850
[60] Shi, L., Yan, H., An, S., Shen, M., Jia, W., Zhang, R., et al. (2018) SIRT5‐Mediated Deacetylation of LDHB Promotes Autophagy and Tumorigenesis in Colorectal Cancer. Molecular Oncology, 13, 358-375.
https://doi.org/10.1002/1878-0261.12408
[61] Teng, P., Cui, K., Yao, S., Fei, B., Ling, F., Li, C., et al. (2023) SIRT5-Mediated ME2 Desuccinylation Promotes Cancer Growth by Enhancing Mitochondrial Respiration. Cell Death & Differentiation, 31, 65-77.
https://doi.org/10.1038/s41418-023-01240-y
[62] Ren, M., Yang, X., Bie, J., Wang, Z., Liu, M., Li, Y., et al. (2020) Citrate Synthase Desuccinylation by SIRT5 Promotes Colon Cancer Cell Proliferation and Migration. Biological Chemistry, 401, 1031-1039.
https://doi.org/10.1515/hsz-2020-0118
[63] Yang, X., Wang, Z., Li, X., Liu, B., Liu, M., Liu, L., et al. (2018) SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Research, 78, 372-386.
https://doi.org/10.1158/0008-5472.can-17-1912
[64] Wang, K., Hu, Z., Zhang, C., Yang, L., Feng, L., Yang, P., et al. (2020) SIRT5 Contributes to Colorectal Cancer Growth by Regulating T Cell Activity. Journal of Immunology Research, 2020, Article 3792409.
https://doi.org/10.1155/2020/3792409
[65] Klein, M.A. and Denu, J.M. (2020) Biological and Catalytic Functions of Sirtuin 6 as Targets for Small-Molecule Modulators. Journal of Biological Chemistry, 295, 11021-11041.
https://doi.org/10.1074/jbc.rev120.011438
[66] Zhu, Y., Gu, L., Lin, X., Liu, C., Lu, B., Cui, K., et al. (2020) Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Molecular Cell, 77, 138-149.E5.
https://doi.org/10.1016/j.molcel.2019.10.015
[67] Zhang, Y., Nie, L., Xu, K., Fu, Y., Zhong, J., Gu, K., et al. (2019) SIRT6, a Novel Direct Transcriptional Target of FoxO3a, Mediates Colon Cancer Therapy. Theranostics, 9, 2380-2394.
https://doi.org/10.7150/thno.29724
[68] Liu, W., Wu, M., Du, H., Shi, X., Zhang, T. and Li, J. (2018) SIRT6 Inhibits Colorectal Cancer Stem Cell Proliferation by Targeting CDC25A. Oncology Letters, 15, 5368-5374.
https://doi.org/10.3892/ol.2018.7989
[69] Shang, J., Zhu, Z., Chen, Y., Song, J., Huang, Y., Song, K., et al. (2020) Small-Molecule Activating SIRT6 Elicits Therapeutic Effects and Synergistically Promotes Anti-Tumor Activity of Vitamin D3 in Colorectal Cancer. Theranostics, 10, 5845-5864.
https://doi.org/10.7150/thno.44043
[70] Wang, S., Zhang, Z. and Gao, Q. (2021) Transfer of MicroRNA-25 by Colorectal Cancer Cell-Derived Extracellular Vesicles Facilitates Colorectal Cancer Development and Metastasis. Molecular Therapy—Nucleic Acids, 23, 552-564.
https://doi.org/10.1016/j.omtn.2020.11.018
[71] Tian, J. and Yuan, L. (2018) Sirtuin 6 Inhibits Colon Cancer Progression by Modulating PTEN/AKT Signaling. Biomedicine & Pharmacotherapy, 106, 109-116.
https://doi.org/10.1016/j.biopha.2018.06.070
[72] Lin, Z., Yang, H., Tan, C., Li, J., Liu, Z., Quan, Q., et al. (2013) USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation. Cell Reports, 5, 1639-1649.
https://doi.org/10.1016/j.celrep.2013.11.029
[73] Xiao, F., Hu, B., Si, Z., Yang, H. and Xie, J. (2023) Sirtuin 6 Is a Negative Regulator of the Anti-Tumor Function of Natural Killer Cells in Murine Inflammatory Colorectal Cancer. Molecular Immunology, 158, 68-78.
https://doi.org/10.1016/j.molimm.2023.04.011
[74] Wu, X., Wang, S., Zhao, X., Lai, S., Yuan, Z., Zhan, Y., et al. (2022) Clinicopathological and Prognostic Value of SIRT6 in Patients with Solid Tumors: A Meta-Analysis and TCGA Data Review. Cancer Cell International, 22, Article No. 84.
https://doi.org/10.1186/s12935-022-02511-3
[75] Vazquez, B.N., Thackray, J.K., Simonet, N.G., Kane‐Goldsmith, N., Martinez‐Redondo, P., Nguyen, T., et al. (2016) SIRT 7 Promotes Genome Integrity and Modulates Non‐Homologous End Joining DNA Repair. The EMBO Journal, 35, 1488-1503.
https://doi.org/10.15252/embj.201593499
[76] Lagunas-Rangel, F.A. (2022) SIRT7 in the Aging Process. Cellular and Molecular Life Sciences, 79, Article No. 297.
https://doi.org/10.1007/s00018-022-04342-x
[77] Li, L., Dong, Z., Yang, J., et al. (2019) Progress in Roles and Mechanisms of Deacetylase SIRT7. Chinese Journal of Biotechnology, 35, 13-26.
[78] Qi, H., Shi, X., Yu, M., Liu, B., Liu, M., Song, S., et al. (2018) Sirtuin 7-Mediated Deacetylation of WD Repeat Domain 77 (WDR77) Suppresses Cancer Cell Growth by Reducing WDR77/PRMT5 Transmethylase Complex Activity. Journal of Biological Chemistry, 293, 17769-17779.
https://doi.org/10.1074/jbc.ra118.003629
[79] Liu, X., Li, C., Li, Q., Chang, H. and Tang, Y. (2020) SIRT7 Facilitates CENP-A Nucleosome Assembly and Suppresses Intestinal Tumorigenesis. iScience, 23, Article 101461.
https://doi.org/10.1016/j.isci.2020.101461
[80] Wang, D., Wei, X., Chen, X., Wang, Q., Zhang, J., Kalvakolanu, D.V., et al. (2021) GRIM-19 Inhibits Proliferation and Induces Apoptosis in a P53-Dependent Manner in Colorectal Cancer Cells through the SIRT7/PCAF/MDM2 Axis. Experimental Cell Research, 407, Article 112799.
https://doi.org/10.1016/j.yexcr.2021.112799
[81] Tang, M., Lu, X., Zhang, C., Du, C., Cao, L., Hou, T., et al. (2017) Downregulation of SIRT7 by 5-Fluorouracil Induces Radiosensitivity in Human Colorectal Cancer. Theranostics, 7, 1346-1359.
https://doi.org/10.7150/thno.18804
[82] Yu, H., Ye, W., Wu, J., Meng, X., Liu, R., Ying, X., et al. (2014) Overexpression of SIRT7 Exhibits Oncogenic Property and Serves as a Prognostic Factor in Colorectal Cancer. Clinical Cancer Research, 20, 3434-3445.
https://doi.org/10.1158/1078-0432.ccr-13-2952
[83] Jung, W., Hong, K.D., Jung, W.Y., Lee, E., Shin, B.K., Kim, H.K., et al. (2013) SIRT1 Expression Is Associated with Good Prognosis in Colorectal Cancer. Korean Journal of Pathology, 47, 332-339.
https://doi.org/10.4132/koreanjpathol.2013.47.4.332
[84] Wu, S., Jiang, J., Liu, J., Wang, X., Gan, Y. and Tang, Y. (2017) Meta-Analysis of SIRT1 Expression as a Prognostic Marker for Overall Survival in Gastrointestinal Cancer. Oncotarget, 8, 62589-62599.
https://doi.org/10.18632/oncotarget.19880
[85] Zu, G., Ji, A., Zhou, T. and Che, N. (2016) Clinicopathological Significance of SIRT1 Expression in Colorectal Cancer: A Systematic Review and Meta Analysis. International Journal of Surgery, 26, 32-37.
https://doi.org/10.1016/j.ijsu.2016.01.002
[86] Chen, X., Sun, K., Jiao, S., Cai, N., Zhao, X., Zou, H., et al. (2014) High Levels of SIRT1 Expression Enhance Tumorigenesis and Associate with a Poor Prognosis of Colorectal Carcinoma Patients. Scientific Reports, 4, Article No. 7481.
https://doi.org/10.1038/srep07481
[87] Lee, G.J., Jung, Y.H., Kim, T., Chong, Y., Jeong, S., Lee, I.K., et al. (2021) Surtuin 1 as a Potential Prognostic Biomarker in Very Elderly Patients with Colorectal Cancer. The Korean Journal of Internal Medicine, 36, S235-S244.
https://doi.org/10.3904/kjim.2019.249
[88] He, Q., Chen, K., Ye, R., Dai, N., Guo, P. and Wang, L. (2020) Associations of Sirtuins with Clinicopathological Variables and Prognosis in Human Ovarian Cancer. Oncology Letters, 19, 3278-3288.
https://doi.org/10.3892/ol.2020.11432
[89] Zhou, Y., Cheng, S., Chen, S. and Zhao, Y. (2018) Prognostic and Clinicopathological Value of SIRT3 Expression in Various Cancers: A Systematic Review and Meta-Analysis. OncoTargets and Therapy, 11, 2157-2167.
https://doi.org/10.2147/ott.s157836
[90] Gaya-Bover, A., Hernández-López, R., Alorda-Clara, M., Ibarra de la Rosa, J.M., Falcó, E., Fernández, T., et al. (2020) Antioxidant Enzymes Change in Different Non-Metastatic Stages in Tumoral and Peritumoral Tissues of Colorectal Cancer. The International Journal of Biochemistry & Cell Biology, 120, Article 105698.
https://doi.org/10.1016/j.biocel.2020.105698
[91] Liu, C., Huang, Z., Jiang, H. and Shi, F. (2014) The Sirtuin 3 Expression Profile Is Associated with Pathological and Clinical Outcomes in Colon Cancer Patients. BioMed Research International, 2014, Article 871263.
https://doi.org/10.1155/2014/871263
[92] Ekremoglu, O. and Koc, A. (2021) The Role of SIRT5 and P53 Proteins in the Sensitivity of Colon Cancer Cells to Chemotherapeutic Agent 5-Fluorouracil. Molecular Biology Reports, 48, 5485-5495.
https://doi.org/10.1007/s11033-021-06558-9
[93] Geng, C., Zhang, C., Zhang, J., Gao, P., He, M. and Li, Y. (2018) Overexpression of SIRT6 Is a Novel Biomarker of Malignant Human Colon Carcinoma. Journal of Cellular Biochemistry, 119, 3957-3967.
https://doi.org/10.1002/jcb.26539
[94] Li, N., Mao, D., Cao, Y., Li, H., Ren, F. and Li, K. (2018) Downregulation of SIRT6 by miR-34c-5p Is Associated with Poor Prognosis and Promotes Colon Cancer Proliferation through Inhibiting Apoptosis via the JAK2/STAT3 Signaling Pathway. International Journal of Oncology, 52, 1515-1527.
https://doi.org/10.3892/ijo.2018.4304
[95] Huo, Q., Li, Z., Cheng, L., Yang, F. and Xie, N. (2020) SIRT7 Is a Prognostic Biomarker Associated with Immune Infiltration in Luminal Breast Cancer. Frontiers in Oncology, 10, Article 621.
https://doi.org/10.3389/fonc.2020.00621