[1]
|
Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S. and Tabernero, J. (2017) Consensus Molecular Subtypes and the Evolution of Precision Medicine in Colorectal Cancer. Nature Reviews Cancer, 17, 79-92. https://doi.org/10.1038/nrc.2016.126
|
[2]
|
Ye, X., Li, M., Hou, T., Gao, T., Zhu, W. and Yang, Y. (2016) Sirtuins in Glucose and Lipid Metabolism. Oncotarget, 8, 1845-1859. https://doi.org/10.18632/oncotarget.12157
|
[3]
|
Shore, D., Squire, M. and Nasmyth, K.A. (1984) Characterization of Two Genes Required for the Position-Effect Control of Yeast Mating-Type Genes. The EMBO Journal, 3, 2817-2823. https://doi.org/10.1002/j.1460-2075.1984.tb02214.x
|
[4]
|
Preyat, N. and Leo, O. (2013) Sirtuin Deacylases: A Molecular Link between Metabolism and Immunity. Journal of Leukocyte Biology, 93, 669-680. https://doi.org/10.1189/jlb.1112557
|
[5]
|
Satoh, A., Brace, C.S., Ben-Josef, G., West, T., Wozniak, D.F., Holtzman, D.M., et al. (2010) SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. The Journal of Neuroscience, 30, 10220-10232. https://doi.org/10.1523/jneurosci.1385-10.2010
|
[6]
|
Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. and Horikawa, I. (2005) Evolutionarily Conserved and Nonconserved Cellular Localizations and Functions of Human SIRT Proteins. Molecular Biology of the Cell, 16, 4623-4635. https://doi.org/10.1091/mbc.e05-01-0033
|
[7]
|
Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. and Horio, Y. (2007) Nucleocytoplasmic Shuttling of the NAD+-Dependent Histone Deacetylase SIRT1. Journal of Biological Chemistry, 282, 6823-6832. https://doi.org/10.1074/jbc.m609554200
|
[8]
|
Alves-Fernandes, D.K. and Jasiulionis, M.G. (2019) The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. International Journal of Molecular Sciences, 20, Article 3153. https://doi.org/10.3390/ijms20133153
|
[9]
|
Kitada, M., Ogura, Y., Monno, I. and Koya, D. (2019) Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Frontiers in Endocrinology, 10, Article 187. https://doi.org/10.3389/fendo.2019.00187
|
[10]
|
Fujita, Y. and Yamashita, T. (2018) Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Frontiers in Neuroscience, 12, Article 778. https://doi.org/10.3389/fnins.2018.00778
|
[11]
|
Yang, S., Yang, G., Wang, X., Xiang, J., Kang, L. and Liang, Z. (2023) SIRT2 Alleviated Renal Fibrosis by Deacetylating SMAD2 and SMAD3 in Renal Tubular Epithelial Cells. Cell Death & Disease, 14, Article No. 646. https://doi.org/10.1038/s41419-023-06169-1
|
[12]
|
Bai, N., Li, N., Cheng, R., Guan, Y., Zhao, X., Song, Z., et al. (2022) Inhibition of SIRT2 Promotes APP Acetylation and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice. Cell Reports, 40, Article 111062. https://doi.org/10.1016/j.celrep.2022.111062
|
[13]
|
Duran-Castells, C., Llano, A., Kawana-Tachikawa, A., Prats, A., Martinez-Zalacain, I., Kobayashi-Ishihara, M., et al. (2023) Sirtuin-2, NAD-Dependent Deacetylase, Is a New Potential Therapeutic Target for HIV-1 Infection and HIV-Related Neurological Dysfunction. Journal of Virology, 97, e01655-22. https://doi.org/10.1128/jvi.01655-22
|
[14]
|
He, M., Chiang, H., Luo, H., Zheng, Z., Qiao, Q., Wang, L., et al. (2020) An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metabolism, 31, 580-591.E5. https://doi.org/10.1016/j.cmet.2020.01.009
|
[15]
|
Nakamura, Y., Ogura, M., Tanaka, D. and Inagaki, N. (2008) Localization of Mouse Mitochondrial SIRT Proteins: Shift of SIRT3 to Nucleus by Co-Expression with SIRT5. Biochemical and Biophysical Research Communications, 366, 174-179. https://doi.org/10.1016/j.bbrc.2007.11.122
|
[16]
|
Xin, T. and Lu, C. (2020) SIRT3 Activates AMPK-Related Mitochondrial Biogenesis and Ameliorates Sepsis-Induced Myocardial Injury. Aging, 12, 16224-16237. https://doi.org/10.18632/aging.103644
|
[17]
|
Gao, J., Feng, Z., Wang, X., Zeng, M., Liu, J., Han, S., et al. (2017) SIRT3/SOD2 Maintains Osteoblast Differentiation and Bone Formation by Regulating Mitochondrial Stress. Cell Death & Differentiation, 25, 229-240. https://doi.org/10.1038/cdd.2017.144
|
[18]
|
Mishra, Y. and Kaundal, R.K. (2023) Role of SIRT3 in Mitochondrial Biology and Its Therapeutic Implications in Neurodegenerative Disorders. Drug Discovery Today, 28, Article 103583. https://doi.org/10.1016/j.drudis.2023.103583
|
[19]
|
Wood, J.G., Schwer, B., Wickremesinghe, P.C., Hartnett, D.A., Burhenn, L., Garcia, M., et al. (2018) SIRT4 Is a Mitochondrial Regulator of Metabolism and Lifespan in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 115, 1564-1569. https://doi.org/10.1073/pnas.1720673115
|
[20]
|
Hu, Q., Qin, Y., Ji, S., Xu, W., Liu, W., Sun, Q., et al. (2019) UHRF1 Promotes Aerobic Glycolysis and Proliferation via Suppression of SIRT4 in Pancreatic Cancer. Cancer Letters, 452, 226-236. https://doi.org/10.1016/j.canlet.2019.03.024
|
[21]
|
Huang, G., Cui, F., Yu, F., Lu, H., Zhang, M., Tang, H., et al. (2015) Sirtuin-4 (SIRT4) Is Downregulated and Associated with Some Clinicopathological Features in Gastric Adenocarcinoma. Biomedicine & Pharmacotherapy, 72, 135-139. https://doi.org/10.1016/j.biopha.2015.04.013
|
[22]
|
Li, J., Zhao, M., Fan, W., et al. (2024) SIRT4 Is Associated with Microvascular Infiltration, Immune Cell Infiltration, and Epithelial Mesenchymal Transition in Hepatocellular Carcinoma. Histology and Histopathology. https://doi.org/10.14670/HH-18-794
|
[23]
|
Garber, M.E., Troyanskaya, O.G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-Gengelbach, M., et al. (2001) Diversity of Gene Expression in Adenocarcinoma of the Lung. Proceedings of the National Academy of Sciences, 98, 13784-13789. https://doi.org/10.1073/pnas.241500798
|
[24]
|
Xie, L., Li, C., Wang, C., Wu, Z., Wang, C., Chen, C., et al. (2024) Aspirin‐Mediated Acetylation of SIRT1 Maintains Intestinal Immune Homeostasis. Advanced Science, 11, 2306378. https://doi.org/10.1002/advs.202306378
|
[25]
|
Jung, Y.R., Kim, E.J., Choi, H.J., Park, J., Kim, H., Lee, Y., et al. (2015) Aspirin Targets SIRT1 and AMPK to Induce Senescence of Colorectal Carcinoma Cells. Molecular Pharmacology, 88, 708-719. https://doi.org/10.1124/mol.115.098616
|
[26]
|
Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., et al. (2009) SIRT1 Is an Inhibitor of Proliferation and Tumor Formation in Colon Cancer. Journal of Biological Chemistry, 284, 18210-18217. https://doi.org/10.1074/jbc.m109.000034
|
[27]
|
Wang, X., Jiang, Y., Ye, W., Shao, C., Xie, J. and Li, X. (2023) SIRT1 Promotes the Progression and Chemoresistance of Colorectal Cancer through the p53/miR-101/KPNA3 Axis. Cancer Biology & Therapy, 24, Article 2235770. https://doi.org/10.1080/15384047.2023.2235770
|
[28]
|
Wang, X., Liu, S., Xu, B., Liu, Y., Kong, P., Li, C., et al. (2021) Circ-SIRT1 Promotes Colorectal Cancer Proliferation and EMT by Recruiting and Binding to eiF4A3. Analytical Cellular Pathology, 2021, Article 5739769. https://doi.org/10.1155/2021/5739769
|
[29]
|
Lee, Y., Kim, S., Fang, X., Song, N., Kim, D., Suh, J., et al. (2022) JNK‐Mediated Ser27 Phosphorylation and Stabilization of SIRT1 Promote Growth and Progression of Colon Cancer through Deacetylation‐Dependent Activation of Snail. Molecular Oncology, 16, 1555-1571. https://doi.org/10.1002/1878-0261.13143
|
[30]
|
García-Martínez, J.M., Chocarro-Calvo, A., Martínez-Useros, J., Fernández-Aceñero, M.J., Fiuza, M.C., Cáceres-Rentero, J., et al. (2023) Vitamin D Induces SIRT1 Activation through K610 Deacetylation in Colon Cancer. eLife, 12, RP86913. https://doi.org/10.7554/elife.86913
|
[31]
|
Jung, J., Lee, Y., Fang, X., Kim, S., Kim, S.H., Kim, D., et al. (2021) IL-1β Induces Expression of Proinflammatory Cytokines and Migration of Human Colon Cancer Cells through Upregulation of SIRT1. Archives of Biochemistry and Biophysics, 703, Article 108847. https://doi.org/10.1016/j.abb.2021.108847
|
[32]
|
Simmons, G., Pruitt, W. and Pruitt, K. (2015) Diverse Roles of SIRT1 in Cancer Biology and Lipid Metabolism. International Journal of Molecular Sciences, 16, 950-965. https://doi.org/10.3390/ijms16010950
|
[33]
|
Kim, H., Vassilopoulos, A., Wang, R., Lahusen, T., Xiao, Z., Xu, X., et al. (2011) SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity. Cancer Cell, 20, 487-499. https://doi.org/10.1016/j.ccr.2011.09.004
|
[34]
|
Maxwell, M.M., Tomkinson, E.M., Nobles, J., Wizeman, J.W., Amore, A.M., Quinti, L., et al. (2011) The Sirtuin 2 Microtubule Deacetylase Is an Abundant Neuronal Protein That Accumulates in the Aging CNS. Human Molecular Genetics, 20, 3986-3996. https://doi.org/10.1093/hmg/ddr326
|
[35]
|
Wang, B., Ye, Y., Yang, X., Liu, B., Wang, Z., Chen, S., et al. (2020) Sirt2‐Dependent IDH1 Deacetylation Inhibits Colorectal Cancer and Liver Metastases. EMBO reports, 21, e48183. https://doi.org/10.15252/embr.201948183
|
[36]
|
Li, J., Zheng, S., Cheng, T., Li, Y., Mai, X., Jiang, G., et al. (2022) Decylubiquinone Inhibits Colorectal Cancer Growth through Upregulating Sirtuin2. Frontiers in Pharmacology, 12, Article 804265. https://doi.org/10.3389/fphar.2021.804265
|
[37]
|
Zhang, L., Zhan, L., Jin, Y., Min, Z., Wei, C., Wang, Q., et al. (2017) SIRT2 Mediated Antitumor Effects of Shikonin on Metastatic Colorectal Cancer. European Journal of Pharmacology, 797, 1-8. https://doi.org/10.1016/j.ejphar.2017.01.008
|
[38]
|
Zhao, Y., Yu, T., Zhang, N., Chen, J., Zhang, P., Li, S., et al. (2019) Nuclear E-Cadherin Acetylation Promotes Colorectal Tumorigenesis via Enhancing β-Catenin Activity. Molecular Cancer Research, 17, 655-665. https://doi.org/10.1158/1541-7786.mcr-18-0637
|
[39]
|
Hu, F., Sun, X., Li, G., Wu, Q., Chen, Y., Yang, X., et al. (2018) Inhibition of SIRT2 Limits Tumour Angiogenesis via Inactivation of the STAT3/VEGFA Signalling Pathway. Cell Death & Disease, 10, Article No. 9. https://doi.org/10.1038/s41419-018-1260-z
|
[40]
|
Jiang, B., Ke, C., Zhou, H., Xia, T., Xie, X. and Xu, H. (2023) Sirtuin 2 Up‐Regulation Suppresses the Anti‐Tumour Activity of Exhausted Natural Killer Cells in Mesenteric Lymph Nodes in Murine Colorectal Carcinoma. Scandinavian Journal of Immunology, 98, e13317. https://doi.org/10.1111/sji.13317
|
[41]
|
Yang, M.H., Laurent, G., Bause, A.S., Spang, R., German, N., Haigis, M.C., et al. (2013) HDAC6 and SIRT2 Regulate the Acetylation State and Oncogenic Activity of Mutant K-RAS. Molecular Cancer Research, 11, 1072-1077. https://doi.org/10.1158/1541-7786.mcr-13-0040-t
|
[42]
|
Bellizzi, D., Rose, G., Cavalcante, P., Covello, G., Dato, S., De Rango, F., et al. (2005) A Novel VNTR Enhancer within the SIRT3 Gene, a Human Homologue of SIR2, Is Associated with Survival at Oldest Ages. Genomics, 85, 258-263. https://doi.org/10.1016/j.ygeno.2004.11.003
|
[43]
|
Sundaresan, N.R., Samant, S.A., Pillai, V.B., Rajamohan, S.B. and Gupta, M.P. (2008) SIRT3 Is a Stress-Responsive Deacetylase in Cardiomyocytes That Protects Cells from Stress-Mediated Cell Death by Deacetylation of Ku70. Molecular and Cellular Biology, 28, 6384-6401. https://doi.org/10.1128/mcb.00426-08
|
[44]
|
Li, T., Fan, L., Jia, Y., Xu, C., Guo, W., Wang, Y., et al. (2024) Colorectal Cancer Cells with Stably Expressed SIRT3 Demonstrate Proliferating Retardation by Wnt/β‐Catenin Cascade Inactivation. Clinical and Experimental Pharmacology and Physiology, 51, e13856. https://doi.org/10.1111/1440-1681.13856
|
[45]
|
Mou, Y., Chen, Y., Fan, Z., Ye, L., Hu, B., Han, B., et al. (2024) Discovery of a Novel Small-Molecule Activator of SIRT3 That Inhibits Cell Proliferation and Migration by Apoptosis and Autophagy-Dependent Cell Death Pathways in Colorectal Cancer. Bioorganic Chemistry, 146, Article 107327. https://doi.org/10.1016/j.bioorg.2024.107327
|
[46]
|
Zuo, Z., He, L., Duan, X., Peng, Z. and Han, J. (2022) Glycyrrhizic Acid Exhibits Strong Anticancer Activity in Colorectal Cancer Cells via SIRT3 Inhibition. Bioengineered, 13, 2720-2731. https://doi.org/10.1080/21655979.2021.2001925
|
[47]
|
Zhang, Y., Wang, X., Zhou, M., Kang, C., Lang, H., Chen, M., et al. (2018) Crosstalk between Gut Microbiota and Sirtuin-3 in Colonic Inflammation and Tumorigenesis. Experimental & Molecular Medicine, 50, 1-11. https://doi.org/10.1038/s12276-017-0002-0
|
[48]
|
Wang, Y., Sun, X., Ji, K., Du, L., Xu, C., He, N., et al. (2018) RETRACTED: SIRT3-Mediated Mitochondrial Fission Regulates the Colorectal Cancer Stress Response by Modulating the AKT/PTEN Signalling Pathway. Biomedicine & Pharmacotherapy, 105, 1172-1182. https://doi.org/10.1016/j.biopha.2018.06.071
|
[49]
|
Wei, Z., Song, J., Wang, G., Cui, X., Zheng, J., Tang, Y., et al. (2018) Deacetylation of Serine Hydroxymethyl-Transferase 2 by SIRT3 Promotes Colorectal Carcinogenesis. Nature Communications, 9, Article No. 4468. https://doi.org/10.1038/s41467-018-06812-y
|
[50]
|
Gan, L., Li, Q., Nie, W., Zhang, Y., Jiang, H., Tan, C., et al. (2023) Prox1-Mediated Epigenetic Silencing of SIRT3 Contributes to Proliferation and Glucose Metabolism in Colorectal Cancer. International Journal of Biological Sciences, 19, 50-65. https://doi.org/10.7150/ijbs.73530
|
[51]
|
He, J., Shangguan, X., Zhou, W., Cao, Y., Zheng, Q., Tu, J., et al. (2021) Glucose Limitation Activates AMPK Coupled SENP1-SIRT3 Signalling in Mitochondria for T Cell Memory Development. Nature Communications, 12, Article No. 4371. https://doi.org/10.1038/s41467-021-24619-2
|
[52]
|
D’Onofrio, N., Martino, E., Balestrieri, A., Mele, L., Neglia, G., Balestrieri, M.L., et al. (2021) SIRT3 and Metabolic Reprogramming Mediate the Antiproliferative Effects of Whey in Human Colon Cancer Cells. Cancers, 13, Article 5196. https://doi.org/10.3390/cancers13205196
|
[53]
|
Torrens-Mas, M., Hernández-López, R., Pons, D., Roca, P., Oliver, J. and Sastre-Serra, J. (2019) Sirtuin 3 Silencing Impairs Mitochondrial Biogenesis and Metabolism in Colon Cancer Cells. American Journal of Physiology-Cell Physiology, 317, C398-C404. https://doi.org/10.1152/ajpcell.00112.2019
|
[54]
|
Kumar, S. and Lombard, D.B. (2015) Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer. Antioxidants & Redox Signaling, 22, 1060-1077. https://doi.org/10.1089/ars.2014.6213
|
[55]
|
Miyo, M., Yamamoto, H., Konno, M., Colvin, H., Nishida, N., Koseki, J., et al. (2015) Tumour-Suppressive Function of SIRT4 in Human Colorectal Cancer. British Journal of Cancer, 113, 492-499. https://doi.org/10.1038/bjc.2015.226
|
[56]
|
Huang, G., Cheng, J., Yu, F., Liu, X., Yuan, C., Liu, C., et al. (2016) Clinical and Therapeutic Significance of Sirtuin-4 Expression in Colorectal Cancer. Oncology Reports, 35, 2801-2810. https://doi.org/10.3892/or.2016.4685
|
[57]
|
Cui, Y., Bai, Y., Yang, J., Yao, Y., Zhang, C., Liu, C., et al. (2020) SIRT4 Is the Molecular Switch Mediating Cellular Proliferation in Colorectal Cancer through GLS Mediated Activation of AKT/GSK3β/CyclinD1 Pathway. Carcinogenesis, 42, 481-492. https://doi.org/10.1093/carcin/bgaa134
|
[58]
|
Deng, J., Wang, H., Liang, Y., Zhao, L., Li, Y., Yan, Y., et al. (2023) MiR-15a-5p Enhances the Malignant Phenotypes of Colorectal Cancer Cells through the STAT3/TWIST1 and PTEN/AKT Signaling Pathways by Targeting SIRT4. Cellular Signalling, 101, Article 110517. https://doi.org/10.1016/j.cellsig.2022.110517
|
[59]
|
Zhu, Y., Wang, G., Li, X., Wang, T., Weng, M. and Zhang, Y. (2018) Knockout of SIRT4 Decreases Chemosensitivity to 5-FU in Colorectal Cancer Cells. Oncology Letters, 16, 1675-1681. https://doi.org/10.3892/ol.2018.8850
|
[60]
|
Shi, L., Yan, H., An, S., Shen, M., Jia, W., Zhang, R., et al. (2018) SIRT5‐Mediated Deacetylation of LDHB Promotes Autophagy and Tumorigenesis in Colorectal Cancer. Molecular Oncology, 13, 358-375. https://doi.org/10.1002/1878-0261.12408
|
[61]
|
Teng, P., Cui, K., Yao, S., Fei, B., Ling, F., Li, C., et al. (2023) SIRT5-Mediated ME2 Desuccinylation Promotes Cancer Growth by Enhancing Mitochondrial Respiration. Cell Death & Differentiation, 31, 65-77. https://doi.org/10.1038/s41418-023-01240-y
|
[62]
|
Ren, M., Yang, X., Bie, J., Wang, Z., Liu, M., Li, Y., et al. (2020) Citrate Synthase Desuccinylation by SIRT5 Promotes Colon Cancer Cell Proliferation and Migration. Biological Chemistry, 401, 1031-1039. https://doi.org/10.1515/hsz-2020-0118
|
[63]
|
Yang, X., Wang, Z., Li, X., Liu, B., Liu, M., Liu, L., et al. (2018) SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Research, 78, 372-386. https://doi.org/10.1158/0008-5472.can-17-1912
|
[64]
|
Wang, K., Hu, Z., Zhang, C., Yang, L., Feng, L., Yang, P., et al. (2020) SIRT5 Contributes to Colorectal Cancer Growth by Regulating T Cell Activity. Journal of Immunology Research, 2020, Article 3792409. https://doi.org/10.1155/2020/3792409
|
[65]
|
Klein, M.A. and Denu, J.M. (2020) Biological and Catalytic Functions of Sirtuin 6 as Targets for Small-Molecule Modulators. Journal of Biological Chemistry, 295, 11021-11041. https://doi.org/10.1074/jbc.rev120.011438
|
[66]
|
Zhu, Y., Gu, L., Lin, X., Liu, C., Lu, B., Cui, K., et al. (2020) Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Molecular Cell, 77, 138-149.E5. https://doi.org/10.1016/j.molcel.2019.10.015
|
[67]
|
Zhang, Y., Nie, L., Xu, K., Fu, Y., Zhong, J., Gu, K., et al. (2019) SIRT6, a Novel Direct Transcriptional Target of FoxO3a, Mediates Colon Cancer Therapy. Theranostics, 9, 2380-2394. https://doi.org/10.7150/thno.29724
|
[68]
|
Liu, W., Wu, M., Du, H., Shi, X., Zhang, T. and Li, J. (2018) SIRT6 Inhibits Colorectal Cancer Stem Cell Proliferation by Targeting CDC25A. Oncology Letters, 15, 5368-5374. https://doi.org/10.3892/ol.2018.7989
|
[69]
|
Shang, J., Zhu, Z., Chen, Y., Song, J., Huang, Y., Song, K., et al. (2020) Small-Molecule Activating SIRT6 Elicits Therapeutic Effects and Synergistically Promotes Anti-Tumor Activity of Vitamin D3 in Colorectal Cancer. Theranostics, 10, 5845-5864. https://doi.org/10.7150/thno.44043
|
[70]
|
Wang, S., Zhang, Z. and Gao, Q. (2021) Transfer of MicroRNA-25 by Colorectal Cancer Cell-Derived Extracellular Vesicles Facilitates Colorectal Cancer Development and Metastasis. Molecular Therapy—Nucleic Acids, 23, 552-564. https://doi.org/10.1016/j.omtn.2020.11.018
|
[71]
|
Tian, J. and Yuan, L. (2018) Sirtuin 6 Inhibits Colon Cancer Progression by Modulating PTEN/AKT Signaling. Biomedicine & Pharmacotherapy, 106, 109-116. https://doi.org/10.1016/j.biopha.2018.06.070
|
[72]
|
Lin, Z., Yang, H., Tan, C., Li, J., Liu, Z., Quan, Q., et al. (2013) USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation. Cell Reports, 5, 1639-1649. https://doi.org/10.1016/j.celrep.2013.11.029
|
[73]
|
Xiao, F., Hu, B., Si, Z., Yang, H. and Xie, J. (2023) Sirtuin 6 Is a Negative Regulator of the Anti-Tumor Function of Natural Killer Cells in Murine Inflammatory Colorectal Cancer. Molecular Immunology, 158, 68-78. https://doi.org/10.1016/j.molimm.2023.04.011
|
[74]
|
Wu, X., Wang, S., Zhao, X., Lai, S., Yuan, Z., Zhan, Y., et al. (2022) Clinicopathological and Prognostic Value of SIRT6 in Patients with Solid Tumors: A Meta-Analysis and TCGA Data Review. Cancer Cell International, 22, Article No. 84. https://doi.org/10.1186/s12935-022-02511-3
|
[75]
|
Vazquez, B.N., Thackray, J.K., Simonet, N.G., Kane‐Goldsmith, N., Martinez‐Redondo, P., Nguyen, T., et al. (2016) SIRT 7 Promotes Genome Integrity and Modulates Non‐Homologous End Joining DNA Repair. The EMBO Journal, 35, 1488-1503. https://doi.org/10.15252/embj.201593499
|
[76]
|
Lagunas-Rangel, F.A. (2022) SIRT7 in the Aging Process. Cellular and Molecular Life Sciences, 79, Article No. 297. https://doi.org/10.1007/s00018-022-04342-x
|
[77]
|
Li, L., Dong, Z., Yang, J., et al. (2019) Progress in Roles and Mechanisms of Deacetylase SIRT7. Chinese Journal of Biotechnology, 35, 13-26.
|
[78]
|
Qi, H., Shi, X., Yu, M., Liu, B., Liu, M., Song, S., et al. (2018) Sirtuin 7-Mediated Deacetylation of WD Repeat Domain 77 (WDR77) Suppresses Cancer Cell Growth by Reducing WDR77/PRMT5 Transmethylase Complex Activity. Journal of Biological Chemistry, 293, 17769-17779. https://doi.org/10.1074/jbc.ra118.003629
|
[79]
|
Liu, X., Li, C., Li, Q., Chang, H. and Tang, Y. (2020) SIRT7 Facilitates CENP-A Nucleosome Assembly and Suppresses Intestinal Tumorigenesis. iScience, 23, Article 101461. https://doi.org/10.1016/j.isci.2020.101461
|
[80]
|
Wang, D., Wei, X., Chen, X., Wang, Q., Zhang, J., Kalvakolanu, D.V., et al. (2021) GRIM-19 Inhibits Proliferation and Induces Apoptosis in a P53-Dependent Manner in Colorectal Cancer Cells through the SIRT7/PCAF/MDM2 Axis. Experimental Cell Research, 407, Article 112799. https://doi.org/10.1016/j.yexcr.2021.112799
|
[81]
|
Tang, M., Lu, X., Zhang, C., Du, C., Cao, L., Hou, T., et al. (2017) Downregulation of SIRT7 by 5-Fluorouracil Induces Radiosensitivity in Human Colorectal Cancer. Theranostics, 7, 1346-1359. https://doi.org/10.7150/thno.18804
|
[82]
|
Yu, H., Ye, W., Wu, J., Meng, X., Liu, R., Ying, X., et al. (2014) Overexpression of SIRT7 Exhibits Oncogenic Property and Serves as a Prognostic Factor in Colorectal Cancer. Clinical Cancer Research, 20, 3434-3445. https://doi.org/10.1158/1078-0432.ccr-13-2952
|
[83]
|
Jung, W., Hong, K.D., Jung, W.Y., Lee, E., Shin, B.K., Kim, H.K., et al. (2013) SIRT1 Expression Is Associated with Good Prognosis in Colorectal Cancer. Korean Journal of Pathology, 47, 332-339. https://doi.org/10.4132/koreanjpathol.2013.47.4.332
|
[84]
|
Wu, S., Jiang, J., Liu, J., Wang, X., Gan, Y. and Tang, Y. (2017) Meta-Analysis of SIRT1 Expression as a Prognostic Marker for Overall Survival in Gastrointestinal Cancer. Oncotarget, 8, 62589-62599. https://doi.org/10.18632/oncotarget.19880
|
[85]
|
Zu, G., Ji, A., Zhou, T. and Che, N. (2016) Clinicopathological Significance of SIRT1 Expression in Colorectal Cancer: A Systematic Review and Meta Analysis. International Journal of Surgery, 26, 32-37. https://doi.org/10.1016/j.ijsu.2016.01.002
|
[86]
|
Chen, X., Sun, K., Jiao, S., Cai, N., Zhao, X., Zou, H., et al. (2014) High Levels of SIRT1 Expression Enhance Tumorigenesis and Associate with a Poor Prognosis of Colorectal Carcinoma Patients. Scientific Reports, 4, Article No. 7481. https://doi.org/10.1038/srep07481
|
[87]
|
Lee, G.J., Jung, Y.H., Kim, T., Chong, Y., Jeong, S., Lee, I.K., et al. (2021) Surtuin 1 as a Potential Prognostic Biomarker in Very Elderly Patients with Colorectal Cancer. The Korean Journal of Internal Medicine, 36, S235-S244. https://doi.org/10.3904/kjim.2019.249
|
[88]
|
He, Q., Chen, K., Ye, R., Dai, N., Guo, P. and Wang, L. (2020) Associations of Sirtuins with Clinicopathological Variables and Prognosis in Human Ovarian Cancer. Oncology Letters, 19, 3278-3288. https://doi.org/10.3892/ol.2020.11432
|
[89]
|
Zhou, Y., Cheng, S., Chen, S. and Zhao, Y. (2018) Prognostic and Clinicopathological Value of SIRT3 Expression in Various Cancers: A Systematic Review and Meta-Analysis. OncoTargets and Therapy, 11, 2157-2167. https://doi.org/10.2147/ott.s157836
|
[90]
|
Gaya-Bover, A., Hernández-López, R., Alorda-Clara, M., Ibarra de la Rosa, J.M., Falcó, E., Fernández, T., et al. (2020) Antioxidant Enzymes Change in Different Non-Metastatic Stages in Tumoral and Peritumoral Tissues of Colorectal Cancer. The International Journal of Biochemistry & Cell Biology, 120, Article 105698. https://doi.org/10.1016/j.biocel.2020.105698
|
[91]
|
Liu, C., Huang, Z., Jiang, H. and Shi, F. (2014) The Sirtuin 3 Expression Profile Is Associated with Pathological and Clinical Outcomes in Colon Cancer Patients. BioMed Research International, 2014, Article 871263. https://doi.org/10.1155/2014/871263
|
[92]
|
Ekremoglu, O. and Koc, A. (2021) The Role of SIRT5 and P53 Proteins in the Sensitivity of Colon Cancer Cells to Chemotherapeutic Agent 5-Fluorouracil. Molecular Biology Reports, 48, 5485-5495. https://doi.org/10.1007/s11033-021-06558-9
|
[93]
|
Geng, C., Zhang, C., Zhang, J., Gao, P., He, M. and Li, Y. (2018) Overexpression of SIRT6 Is a Novel Biomarker of Malignant Human Colon Carcinoma. Journal of Cellular Biochemistry, 119, 3957-3967. https://doi.org/10.1002/jcb.26539
|
[94]
|
Li, N., Mao, D., Cao, Y., Li, H., Ren, F. and Li, K. (2018) Downregulation of SIRT6 by miR-34c-5p Is Associated with Poor Prognosis and Promotes Colon Cancer Proliferation through Inhibiting Apoptosis via the JAK2/STAT3 Signaling Pathway. International Journal of Oncology, 52, 1515-1527. https://doi.org/10.3892/ijo.2018.4304
|
[95]
|
Huo, Q., Li, Z., Cheng, L., Yang, F. and Xie, N. (2020) SIRT7 Is a Prognostic Biomarker Associated with Immune Infiltration in Luminal Breast Cancer. Frontiers in Oncology, 10, Article 621. https://doi.org/10.3389/fonc.2020.00621
|