|
[1]
|
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Paller, C.J. and Antonarakis, E.S. (2013) Management of Biochemically Recurrent Prostate Cancer after Local Therapy: Evolving Standards of Care and New Directions. Clinical Advances in Hematology & Oncology, 11, 14-23.
|
|
[4]
|
Kanesvaran, R., Castro, E., Wong, A., Fizazi, K., Chua, M.L.K., Zhu, Y., et al. (2022) Panasian Adapted ESMO Clinical Practice Guidelines for the Diagnosis, Treatment and Follow-Up of Patients with Prostate Cancer. ESMO Open, 7, Article ID: 100518. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Parker, C., Castro, E., Fizazi, K., Heidenreich, A., Ost, P., Procopio, G., et al. (2020) Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 31, 1119-1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Baltrusaitis, T., Ahuja, C. and Morency, L. (2019) Multimodal Machine Learning: A Survey and Taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 423-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Duhamel, A., Nuttens, M.C., Devos, P., Picavet, M. and Beuscart, R. (2003) A Preprocessing Method for Improving Data Mining Techniques. Application to a Large Medical Diabetes Database. Studies in Health Technology and Informatics, 95, 269-274.
|
|
[8]
|
Li, X., Qiu, Y., Zhou, J. and Xie, Z. (2021) Applications and Challenges of Machine Learning Methods in Alzheimer’s Disease Multi-Source Data Analysis. Current Genomics, 22, 564-582. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jiang, J. and Shang, J. (2023) Feature Screening for High-Dimensional Variable Selection in Generalized Linear Models. Entropy, 25, Article No. 851. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, J., Borji, A., Jay Kuo, C. and Itti, L. (2016) Learning a Combined Model of Visual Saliency for Fixation Prediction. IEEE Transactions on Image Processing, 25, 1566-1579. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sharma, H., Drukker, L., Papageorghiou, A.T. and Noble, J.A. (2021) Multi-Modal Learning from Video, Eye Tracking, and Pupillometry for Operator Skill Characterization in Clinical Fetal Ultrasound. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, 13-16 April 2021, 1646-1649. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gao, J., Li, P., Chen, Z. and Zhang, J. (2020) A Survey on Deep Learning for Multimodal Data Fusion. Neural Computation, 32, 829-864. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sedghi, A., Mehrtash, A., Jamzad, A., Amalou, A., Wells, W.M., Kapur, T., et al. (2020) Improving Detection of Prostate Cancer Foci via Information Fusion of MRI and Temporal Enhanced Ultrasound. International Journal of Computer Assisted Radiology and Surgery, 15, 1215-1223. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yang, H., Zhou, T., Zhou, Y., Zhang, Y. and Fu, H. (2023) Flexible Fusion Network for Multi-Modal Brain Tumor Segmentation. IEEE Journal of Biomedical and Health Informatics, 27, 3349-3359. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
He, X., Liu, X., Zuo, F., Shi, H. and Jing, J. (2023) Artificial Intelligence-Based Multi-Omics Analysis Fuels Cancer Precision Medicine. Seminars in Cancer Biology, 88, 187-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Light, A., Mayor, N., Cullen, E., Kirkham, A., Padhani, A.R., Arya, M., et al. (2024) The Transatlantic Recommendations for Prostate Gland Evaluation with Magnetic Resonance Imaging after Focal Therapy (TARGET): A Systematic Review and International Consensus Recommendations. European Urology, 85, 466-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., et al. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 86, 148-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lowrance, W.T., Murad, M.H., Oh, W.K., Jarrard, D.F., Resnick, M.J. and Cookson, M.S. (2018) Castration-Resistant Prostate Cancer: AUA Guideline Amendment 2018. Journal of Urology, 200, 1264-1272. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, Q., Ketteler, S., Bagheri, S., Ebrahimifard, A., Luster, M., Librizzi, D., et al. (2024) Diagnostic Efficacy of [(99m)Tc]Tc-PSMA SPECT/CT for Prostate Cancer: A Meta-Analysis. BMC Cancer, 24, Article No. 982. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hofman, M.S., Hicks, R.J., Maurer, T. and Eiber, M. (2018) Prostate-Specific Membrane Antigen PET: Clinical Utility in Prostate Cancer, Normal Patterns, Pearls, and Pitfalls. RadioGraphics, 38, 200-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vishnu, P. and Tan, W.W. (2010) Update on Options for Treatment of Metastatic Castration-Resistant Prostate Cancer. OncoTargets and Therapy, 3, 39-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shoji, S. (2019) Magnetic Resonance Imaging-Transrectal Ultrasound Fusion Image-Guided Prostate Biopsy: Current Status of the Cancer Detection and the Prospects of Tailor-Made Medicine of the Prostate Cancer. Investigative and Clinical Urology, 60, 4-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Fu, Q., Zhang, K., Zhang, J., Zhu, A., Sun, D., Guo, S., et al. (2020) Is Targeted Magnetic Resonance Imaging/Transrectal Ultrasound Fusion Prostate Biopsy Enough for the Detection of Prostate Cancer in Patients with PI-RADS ≥ 3: Results of a Prospective, Randomized Clinical Trial. Journal of Cancer Research and Therapeutics, 16, Article No. 1698. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, L., Zhang, Y., Zuo, S. and Xu, Y. (2021) A Review of the Research Progress of Interventional Medical Equipment and Methods for Prostate Cancer. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2303. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lim, S., Jun, C., Chang, D., Petrisor, D., Han, M. and Stoianovici, D. (2019) Robotic Transrectal Ultrasound Guided Prostate Biopsy. IEEE Transactions on Biomedical Engineering, 66, 2527-2537. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, Y., Yuan, Q., Muhammad Muzzammil, H., Gao, G. and Xu, Y. (2023) Image-Guided Prostate Biopsy Robots: A Review. Mathematical Biosciences and Engineering, 20, 15135-15166. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Grizzi, F. and Taverna, G. (2024) Editorial: PET/CT and MRI in Prostate Cancer. Frontiers in Oncology, 14, Article ID: 1421542. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hoffman, A. and Amiel, G.E. (2023) The Impact of PSMA PET/CT on Modern Prostate Cancer Management and Decision Making—The Urological Perspective. Cancers, 15, Article No. 3402. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gammel, M.C.M., Solari, E.L., Eiber, M., Rauscher, I. and Nekolla, S.G. (2024) A Clinical Role of PET-MRI in Prostate Cancer? Seminars in Nuclear Medicine, 54, 132-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Awiwi, M.O., Gjoni, M., Vikram, R., Altinmakas, E., Dogan, H., Bathala, T.K., et al. (2023) MRI and PSMA PET/CT of Biochemical Recurrence of Prostate Cancer. RadioGraphics, 43, e230112. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Subesinghe, M., Kulkarni, M. and Cook, G.J. (2020) The Role of PET-CT Imaging in Prostate Cancer. Seminars in Ultrasound, CT and MRI, 41, 373-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ingvar, J., Hvittfeldt, E., Trägårdh, E., Simoulis, A. and Bjartell, A. (2022) Assessing the Accuracy of [18F]PSMA-1007 PET/CT for Primary Staging of Lymph Node Metastases in Intermediate-and High-Risk Prostate Cancer Patients. EJNMMI Research, 12, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shanmugasundaram, R., Saad, J., Heyworth, A., Wong, V., Pelecanos, A., Arianayagam, M., et al. (2023) Intra‐Individual Comparison of Prostate‐Specific Membrane Antigen Positron Emission Tomography/Computed Tomography versus Bone Scan in Detecting Skeletal Metastasis at Prostate Cancer Diagnosis. BJU International, 133, 25-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pepe, P., Pepe, L., Curduman, M., Pennisi, M. and Fraggetta, F. (2024) Ductal Prostate Cancer Staging: Role of PSMA PET/CT. Archivio Italiano di Urologia e Andrologia, 96, Article No. 12132. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Decazes, P., Hinault, P., Veresezan, O., Thureau, S., Gouel, P. and Vera, P. (2021) Trimodality PET/CT/MRI and Radiotherapy: A Mini-Review. Frontiers in Oncology, 10, Article ID: 614008. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hoff, B.A., Brisset, J.C., Galbán, S., et al (2018) Multimodal Imaging Provides Insight into Targeted Therapy Response in Meta-Static Prostate Cancer to the Bone. American Journal of Nuclear Medicine and Molecular Imaging, 8, 189-199.
|
|
[37]
|
Dilixiati, D., Kadier, K., Laihaiti, D., Lu, J., Azhati, B. and Rexiati, M. (2023) The Association between Sexual Dysfunction and Prostate Cancer: A Systematic Review and Meta-Analysis. The Journal of Sexual Medicine, 20, 184-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Panaiyadiyan, S. and Kumar, R. (2024) Prostate Cancer Nomograms and Their Application in Asian Men: A Review. Prostate International, 12, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Gamito, E.J., Stone, N.N., Batuello, J.T. and Crawford, E.D. (2000) Use of Artificial Neural Networks in the Clinical Staging of Prostate Cancer: Implications for Prostate Brachytherapy. Techniques in Urology, 6, 60-63.
|
|
[40]
|
Baccala, A., Reuther, A.M., Bianco, F.J., Scardino, P.T., Kattan, M.W. and Klein, E.A. (2007) Complete Resection of Seminal Vesicles at Radical Prostatectomy Results in Substantial Long-Term Disease-Free Survival: Multi-Institutional Study of 6740 Patients. Urology, 69, 536-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gilliland, F.D., Hoffman, R.M., Hamilton, A., Albertsen, P., Eley, J.W., Harlan, L., et al. (1999) Predicting Extracapsular Extension of Prostate Cancer in Men Treated with Radical Prostatectomy: Results from the Population Based Prostate Cancer Outcomes Study. Journal of Urology, 162, 1341-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hou, Y., Bao, M., Wu, C., Zhang, J., Zhang, Y. and Shi, H. (2019) A Machine Learning‐Assisted Decision‐Support Model to Better Identify Patients with Prostate Cancer Requiring an Extended Pelvic Lymph Node Dissection. BJU International, 124, 972-983. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, S.-L., et al. (2024) Advances in Multiparametric Magnetic Resonance Imaging Combined with Biomarkers for the Diagnosis of High-Grade Prostate Cancer. Frontiers in Surgery, 11, Article ID: 1429831.
|
|
[44]
|
Morris, K.E., Grimberg, D., Arcot, R. and Moul, J.W. (2021) Aggressive Prostate Cancer Masquerading as Acute Prostatitis. The Canadian Journal of Urology, 28, 10799-10801.
|
|
[45]
|
Lokant, M.T. and Naz, R.K. (2014) Presence of PSA Auto-Antibodies in Men with Prostate Abnormalities (Prostate Cancer/Benign Prostatic Hyperplasia/Prostatitis). Andrologia, 47, 328-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Choi, M.H., Ha, U., Park, Y., Hong, S., Lee, J.Y., Lee, Y.J., et al. (2023) Combined MRI and PSA Strategy Improves Biopsy Decisions Compared with PSA Only: Longitudinal Observations of a Cohort of Patients with a PSA Level Less than 20 ng/ml. Academic Radiology, 30, 509-515. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Mikah, P., Krabbe, L., Eminaga, O., Herrmann, E., Papavassilis, P., Hinkelammert, R., et al. (2016) Dynamic Changes of Alkaline Phosphatase Are Strongly Associated with PSA-Decline and Predict Best Clinical Benefit Earlier than PSA-Changes under Therapy with Abiraterone Acetate in Bone Metastatic Castration Resistant Prostate Cancer. BMC Cancer, 16, Article No. 214. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sciarra, A., Panebianco, V., Cattarino, S., Busetto, G.M., De Berardinis, E., Ciccariello, M., et al. (2012) Multiparametric Magnetic Resonance Imaging of the Prostate Can Improve the Predictive Value of the Urinary Prostate Cancer Antigen 3 Test in Patients with Elevated Prostate‐Specific Antigen Levels and a Previous Negative Biopsy. BJU International, 110, 1661-1665. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Glemser, P.A., Rotkopf, L.T., Ziener, C.H., Beuthien-Baumann, B., Weru, V., Kopp-Schneider, A., et al. (2022) Hybrid Imaging with [(68)Ga]PSMA-11 PET-CT and PET-MRI in Biochemically Recurrent Prostate Cancer. Cancer Imaging, 22, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhao, Z., Ma, W., Zeng, G., Qi, D., Ou, L. and Liang, Y. (2011) Serum Early Prostate Cancer Antigen (EPCA) Level and Its Association with Disease Progression in Prostate Cancer in a Chinese Population. PLOS ONE, 6, e19284. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lim, S.M., Kim, Y.N., Park, K.H., Kang, B., Chon, H.J., Kim, C., et al. (2016) Bone Alkaline Phosphatase as a Surrogate Marker of Bone Metastasis in Gastric Cancer Patients. BMC Cancer, 16, Article No. 385. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Qiao, X., Gu, X., Liu, Y., Shu, X., Ai, G., Qian, S., et al. (2023) MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer. Cancers, 15, Article No. 4536. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhou, C., Zhang, Y., Guo, S., Wang, D., Lv, H., Qiao, X., et al. (2023) Multiparametric MRI Radiomics in Prostate Cancer for Predicting KI-67 Expression and Gleason Score: A Multicenter Retrospective Study. Discover Oncology, 14, Article No. 133. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhang, Y., Zhou, C., Guo, S., Wang, C., Yang, J., Yang, Z., et al. (2024) Deep Learning Algorithm-Based Multimodal MRI Radiomics and Pathomics Data Improve Prediction of Bone Metastases in Primary Prostate Cancer. Journal of Cancer Research and Clinical Oncology, 150, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zhou, C., Zhang, Y., Guo, S., Huang, Y., Qiao, X., Wang, R., et al. (2024) Multimodal Data Integration for Predicting Progression Risk in Castration-Resistant Prostate Cancer Using Deep Learning: A Multicenter Retrospective Study. Frontiers in Oncology, 14, Article ID: 1287995. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hiremath, A., Corredor, G., Li, L., Leo, P., Magi-Galluzzi, C., Elliott, R., et al. (2024) An Integrated Radiology-Pathology Machine Learning Classifier for Outcome Prediction Following Radical Prostatectomy: Preliminary Findings. Heliyon, 10, e29602. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Hu, C., Qiao, X., Huang, R., Hu, C., Bao, J. and Wang, X. (2024) Development and Validation of a Multimodality Model Based on Whole-Slide Imaging and Biparametric MRI for Predicting Postoperative Biochemical Recurrence in Prostate Cancer. Radiology: Imaging Cancer, 6, e230143. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Harmon, S.A., Gesztes, W., Young, D., Mehralivand, S., McKinney, Y., Sanford, T., et al. (2021) Prognostic Features of Biochemical Recurrence of Prostate Cancer Following Radical Prostatectomy Based on Multiparametric MRI and Immunohistochemistry Analysis of MRI-Guided Biopsy Specimens. Radiology, 299, 613-623. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Robinson, D., Van Allen, E.M., Wu, Y., Schultz, N., Lonigro, R.J., Mosquera, J., et al. (2015) Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 161, 1215-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Dinis Fernandes, C., Schaap, A., Kant, J., van Houdt, P., Wijkstra, H., Bekers, E., et al. (2023) Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer. Cancers, 15, Article No. 3074. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Fischer, S., Tahoun, M., Klaan, B., Thierfelder, K.M., Weber, M., Krause, B.J., et al. (2019) A Radiogenomic Approach for Decoding Molecular Mechanisms Underlying Tumor Progression in Prostate Cancer. Cancers, 11, Article No. 1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ferro, M., de Cobelli, O., Vartolomei, M.D., Lucarelli, G., Crocetto, F., Barone, B., et al. (2021) Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. International Journal of Molecular Sciences, 22, Article No. 9971. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Ren, S., Wei, G., Liu, D., Wang, L., Hou, Y., Zhu, S., et al. (2018) Whole-Genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. European Urology, 73, 322-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Zhang, Y., Dong, Z., Wang, S., Yu, X., Yao, X., Zhou, Q., et al. (2020) Advances in Multimodal Data Fusion in Neuroimaging: Overview, Challenges, and Novel Orientation. Information Fusion, 64, 149-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Huang, B., Yang, F., Yin, M., Mo, X. and Zhong, C. (2020) A Review of Multimodal Medical Image Fusion Techniques. Computational and Mathematical Methods in Medicine, 2020, Article ID: 8279342. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Wei, L., Osman, S., Hatt, M. and El Naqa, I. (2019) Machine Learning for Radiomics-Based Multimodality and Multiparametric Modeling. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 63, 323-338. [Google Scholar] [CrossRef] [PubMed]
|