|
[1]
|
Popere, B.C., Della Pelle, A.M. and Thayumanavan, S. (2011) Bodipy-Based Donor-Acceptor Π-Conjugated Alternating Copolymers. Macromolecules, 44, 4767-4776. [Google Scholar] [CrossRef]
|
|
[2]
|
Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Tang, B.Z., Chen, H., et al. (2001) Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chemical Communications, 2001, 1740-1741. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, D., Lee, M.M.S., Shan, G., Kwok, R.T.K., Lam, J.W.Y., Su, H., et al. (2018) Highly Efficient Photosensitizers with Far-Red/Near-Infrared Aggregation-Induced Emission for in Vitro and in Vivo Cancer Theranostics. Advanced Materials, 30, Article 1802105. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xu, W., Lee, M.M.S., Nie, J., Zhang, Z., Kwok, R.T.K., Lam, J.W.Y., et al. (2020) Three-Pronged Attack by Homologous Far-Red/Nir Aiegens to Achieve 1 + 1 + 1 > 3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie International Edition, 59, 9610-9616. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wan, Q., Zhang, R., Zhuang, Z., Li, Y., Huang, Y., Wang, Z., et al. (2020) Molecular Engineering to Boost Aie-Active Free Radical Photogenerators and Enable High-Performance Photodynamic Therapy under Hypoxia. Advanced Functional Materials, 30, Article 2002057. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, D., Xu, Q., Wang, W., Shao, J., Huang, W. and Dong, X. (2021) Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small, 17, Article 2006742. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, Z., Xu, W., Kang, M., Wen, H., Guo, H., Zhang, P., et al. (2020) An All-Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imaging-Guided Synergistic Therapy. Advanced Materials, 32, Article 2003210. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wen, H., Zhang, Z., Kang, M., Li, H., Xu, W., Guo, H., et al. (2021) One-for-All Phototheranostics: Single Component AIE Dots as Multi-Modality Theranostic Agent for Fluorescence-Photoacoustic Imaging-Guided Synergistic Cancer Therapy. Biomaterials, 274, Article 120892. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhu, W., Kang, M., Wu, Q., Zhang, Z., Wu, Y., Li, C., et al. (2020) Zwitterionic Aiegens: Rational Molecular Design for NIR-II Fluorescence Imaging-Guided Synergistic Phototherapy. Advanced Functional Materials, 31, Article 2007026. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhang, T., Zhang, J., Wang, F., Cao, H., Zhu, D., Chen, X., et al. (2022) Mitochondria-Targeting Phototheranostics by Aggregation-Induced NIR-II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multi-Modal Synergistic Therapy. Advanced Functional Materials, 32, Article 2110526. [Google Scholar] [CrossRef]
|
|
[11]
|
Wan, Y., Lu, G., Wei, W., Huang, Y., Li, S., Chen, J., et al. (2020) Stable Organic Photosensitizer Nanoparticles with Absorption Peak Beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS Nano, 14, 9917-9928. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Roncali, J. (1997) Synthetic Principles for Bandgap Control in Linear Π-Conjugated Systems. Chemical Reviews, 97, 173-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Qian, G., Zhong, Z., Luo, M., Yu, D., Zhang, Z., Wang, Z.Y., et al. (2009) Simple and Efficient Near-Infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission above 1000 nm. Advanced Materials, 21, 111-116. [Google Scholar] [CrossRef]
|
|
[14]
|
Lin, Y. and Zhan, X. (2015) Oligomer Molecules for Efficient Organic Photovoltaics. Accounts of Chemical Research, 49, 175-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Antaris, A.L., Chen, H., Cheng, K., Sun, Y., Hong, G., Qu, C., et al. (2015) A Small-Molecule Dye for NIR-II Imaging. Nature Materials, 15, 235-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Farnum, D.G., Mehta, G., Moore, G.G.I. and Siegal, F.P. (1974) Attempted Reformatskii Reaction of Benzonitrile, 1,4-Diketo-3,6-Diphenylpyrrolo[3,4-C]pyrrole. A Lactam Analogue of Pentalene. Tetrahedron Letters, 15, 2549-2552. [Google Scholar] [CrossRef]
|
|
[17]
|
Grzybowski, M. and Gryko, D.T. (2015) Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties. Advanced Optical Materials, 3, 280-320. [Google Scholar] [CrossRef]
|
|
[18]
|
Kaur, M. and Choi, D.H. (2015) Diketopyrrolopyrrole: Brilliant Red Pigment Dye-Based Fluorescent Probes and Their Applications. Chemical Society Reviews, 44, 58-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Molina, D., Álvaro-Martins, M.J. and Sastre-Santos, Á. (2021) Diketopyrrolopyrrole-Based Single Molecules in Photovoltaic Technologies. Journal of Materials Chemistry C, 9, 16078-16109. [Google Scholar] [CrossRef]
|
|
[20]
|
Ma, Q., Sun, X., Wang, W., Yang, D., Yang, C., Shen, Q., et al. (2022) Diketopyrrolopyrrole-Derived Organic Small Molecular Dyes for Tumor Phototheranostics. Chinese Chemical Letters, 33, 1681-1692. [Google Scholar] [CrossRef]
|
|
[21]
|
Liang, P., Wang, Y., Wang, P., Zou, J., Xu, H., Zhang, Y., et al. (2017) Triphenylamine Flanked Furan-Diketopyrrolopyrrole for Multi-Imaging Guided Photothermal/photodynamic Cancer Therapy. Nanoscale, 9, 18890-18896. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Cai, Y., Liang, P., Tang, Q., Yang, X., Si, W., Huang, W., et al. (2017) Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic Imaging-Guided Photodynamic/Photothermal Synergistic Tumor Therapy. ACS Nano, 11, 1054-1063. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cai, Y., Liang, P., Si, W., Zhao, B., Shao, J., Huang, W., et al. (2018) A Selenophene Substituted Diketopyrrolopyrrole Nanotheranostic Agent for Highly Efficient Photoacoustic/infrared-Thermal Imaging-Guided Phototherapy. Organic Chemistry Frontiers, 5, 98-105. [Google Scholar] [CrossRef]
|
|
[24]
|
Feng, L., Li, C., Liu, L., Wang, Z., Chen, Z., Yu, J., et al. (2022) Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy via Type I PDT and PTT. ACS Nano, 16, 4162-4174. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shin, J., Xu, Y., Koo, S., Lim, J.H., Lee, J.Y., Sharma, A., et al. (2021) Mitochondria-Targeted Nanotheranostic: Harnessing Single-Laser-Activated Dual Phototherapeutic Processing for Hypoxic Tumor Treatment. Matter, 4, 2508-2521. [Google Scholar] [CrossRef]
|
|
[26]
|
Cai, Y., Si, W., Tang, Q., Liang, P., Zhang, C., Chen, P., et al. (2016) Small-Molecule Diketopyrrolopyrrole-Based Therapeutic Nanoparticles for Photoacoustic Imaging-Guided Photothermal Therapy. Nano Research, 10, 794-801. [Google Scholar] [CrossRef]
|
|
[27]
|
Yang, J., Cai, Y., Zhou, Y., Zhang, C., Liang, P., Zhao, B., et al. (2017) Highly Effective Thieno[2,3-B]indole-Diketopyrrolopyrrole Near-Infrared Photosensitizer for Photodynamic/Photothermal Dual Mode Therapy. Dyes and Pigments, 147, 270-282. [Google Scholar] [CrossRef]
|
|
[28]
|
Zong, S., Wang, X., Lin, W., Liu, S. and Zhang, W. (2018) Simple D-A-D Structural Bisbithiophenyl Diketopyrrolopyrrole as Efficient Bioimaging and Photothermal Agents. Bioconjugate Chemistry, 29, 2619-2627. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, X., Yu, Q., Yang, N., Xue, L., Shao, J., Li, B., et al. (2019) Thieno[3,2-b]thiophene-dpp Based Near-Infrared Nanotheranostic Agent for Dual Imaging-Guided Photothermal/Photodynamic Synergistic Therapy. Journal of Materials Chemistry B, 7, 2454-2462. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Suzuki, T., Fujii, H., Yamashita, Y., Kabuto, C., Tanaka, S., Harasawa, M., et al. (1992) Clathrate Formation and Molecular Recognition by Novel Chalcogen-Cyano Interactions in Tetracyanoquinodimethanes Fused with Thiadiazole and Selenadiazole Rings. Journal of the American Chemical Society, 114, 3034-3043. [Google Scholar] [CrossRef]
|
|
[31]
|
Karikomi, M., Kitamura, C., Tanaka, S. and Yamashita, Y. (1995) New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-Thiadiazole) and Thiophenes. Journal of the American Chemical Society, 117, 6791-6792. [Google Scholar] [CrossRef]
|
|
[32]
|
Qian, G., Dai, B., Luo, M., Yu, D., Zhan, J., Zhang, Z., et al. (2008) Band Gap Tunable, Donor-Acceptor-Donor Charge-Transfer Heteroquinoid-Based Chromophores: Near Infrared Photoluminescence and Electroluminescence. Chemistry of Materials, 20, 6208-6216. [Google Scholar] [CrossRef]
|
|
[33]
|
Chen, J. and Cao, Y. (2009) Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices. Accounts of Chemical Research, 42, 1709-1718. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Grabowski, Z.R., Rotkiewicz, K. and Rettig, W. (2003) Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chemical Reviews, 103, 3899-4032. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sasaki, S., Drummen, G.P.C. and Konishi, G. (2016) Recent Advances in Twisted Intramolecular Charge Transfer (TICT) Fluorescence and Related Phenomena in Materials Chemistry. Journal of Materials Chemistry C, 4, 2731-2743. [Google Scholar] [CrossRef]
|
|
[36]
|
Liu, S., Zhou, X., Zhang, H., Ou, H., Lam, J.W.Y., Liu, Y., et al. (2019) Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 141, 5359-5368. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Song, S., Zhao, Y., Kang, M., Zhang, Z., Wu, Q., Fu, S., et al. (2021) Side-Chain Engineering of Aggregation-Induced Emission Molecules for Boosting Cancer Phototheranostics. Advanced Functional Materials, 31, Article 2107545. [Google Scholar] [CrossRef]
|
|
[38]
|
Lin, F., Zuo, L., Gao, K., Zhang, M., Jo, S.B., Liu, F., et al. (2019) Regio-Specific Selenium Substitution in Non-Fullerene Acceptors for Efficient Organic Solar Cells. Chemistry of Materials, 31, 6770-6778. [Google Scholar] [CrossRef]
|
|
[39]
|
Wen, K., Tan, H., Peng, Q., Chen, H., Ma, H., Wang, L., et al. (2022) Achieving Efficient NIR-II Type-I Photosensitizers for Photodynamic/Photothermal Therapy Upon Regulating Chalcogen Elements. Advanced Materials, 34, Article 2108146. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, S., Deng, Q., Zhang, Y., Li, X., Wen, G., Cui, X., et al. (2020) Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIR-II Biowindow. Advanced Materials, 32, Article 2001146. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Alifu, N., Zebibula, A., Qi, J., Zhang, H., Sun, C., Yu, X., et al. (2018) Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. ACS Nano, 12, 11282-11293. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Guo, B., Huang, Z., Shi, Q., Middha, E., Xu, S., Li, L., et al. (2019) Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Advanced Functional Materials, 30, Article 1907093. [Google Scholar] [CrossRef]
|
|
[43]
|
Cheng, Z., Zhang, T., Wang, W., Shen, Q., Hong, Y., Shao, J., et al. (2021) D-A-D Structured Selenadiazolesbenzothiadiazole-Based Near-Infrared Dye for Enhanced Photoacoustic Imaging and Photothermal Cancer Therapy. Chinese Chemical Letters, 32, 1580-1585. [Google Scholar] [CrossRef]
|