[1]
|
Bary, A. (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. W. Engelmann. https://doi.org/10.5962/bhl.title.120970
|
[2]
|
Frank, A.B. (1887) Ueber neue Mycorhiza-Formen. Berichte der Deutschen Botanischen Gesellschaft, 5, 395-409.
|
[3]
|
Frey‐Klett, P., Garbaye, J. and Tarkka, M. (2007) The Mycorrhiza Helper Bacteria Revisited. New Phytologist, 176, 22-36. https://doi.org/10.1111/j.1469-8137.2007.02191.x
|
[4]
|
李晓林, 冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001.
|
[5]
|
李楠海. 丛枝菌根真菌和磷水平对桔梗养分吸收及产量和质量的影响[D]: [硕士学位论文]. 长春: 吉林农业大学, 2021.
|
[6]
|
王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850.
|
[7]
|
王凤凤. 不同植物群落下生物结皮AM真菌研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆大学, 2017.
|
[8]
|
Tian, C., Kasiborski, B., Koul, R., et al. (2010) Regulation of the Nitrogen Transfer Pathway in the Arbuscular Mycorrhizal Symbiosis: Gene Characterization and the Coordination of Expression with Nitrogen Flux. Plant Physiology, 153, 1175-1187.
|
[9]
|
Shi, J., Wang, X. and Wang, E. (2023) Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Review of Plant Biology, 74, 569-607. https://doi.org/10.1146/annurev-arplant-061722-090342
|
[10]
|
Chiu, C.H., Roszak, P., Orvošová, M. and Paszkowski, U. (2022) Arbuscular Mycorrhizal Fungi Induce Lateral Root Development in Angiosperms via a Conserved Set of MAMP Receptors. Current Biology, 32, 4428-4437.e3. https://doi.org/10.1016/j.cub.2022.08.069
|
[11]
|
Smith, S.E. and Smith, F.A. (2011) Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology, 62, 227-250. https://doi.org/10.1146/annurev-arplant-042110-103846
|
[12]
|
Yang, S., Grønlund, M., Jakobsen, I., Grotemeyer, M.S., Rentsch, D., Miyao, A., et al. (2012) Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the Phosphate Transporter1 Gene Family. The Plant Cell, 24, 4236-4251. https://doi.org/10.1105/tpc.112.104901
|
[13]
|
Harrison, M.J., Dewbre, G.R. and Liu, J. (2002) A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi. The Plant Cell, 14, 2413-2429. https://doi.org/10.1105/tpc.004861
|
[14]
|
瞿宋林, 吴一凡, 刘忠宽, 等. 丛枝菌根真菌对紫花苜蓿生长发育特性的影响[J]. 草地学报, 2022, 30(10): 2529-2534.
|
[15]
|
Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., et al. (2005) Nitrogen Transfer in the Arbuscular Mycorrhizal Symbiosis. Nature, 435, 819-823. https://doi.org/10.1038/nature03610
|
[16]
|
Chalk, P., Souza, R., Urquiaga, S., Alves, B. and Boddey, R. (2006) The Role of Arbuscular Mycorrhiza in Legume Symbiotic Performance. Soil Biology and Biochemistry, 38, 2944-2951. https://doi.org/10.1016/j.soilbio.2006.05.005
|
[17]
|
胡振琪, 纪晶晶, 王幼珊, 等. AM真菌对复垦土壤中苜蓿养分吸收的影响[J]. 中国矿业大学学报, 2009, 38(3): 428-432.
|
[18]
|
王晓瑜, 丁婷婷, 李彦忠, 等. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响[J]. 草业学报, 2019, 28(8): 139-149.
|
[19]
|
张炜忠. 丛枝菌根真菌和根瘤菌互作对豌豆生长及蛋白质组的影响[D]: [硕士学位论文]. 兰州: 兰州大学, 2022.
|
[20]
|
Zhu, J. (2002) Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology, 53, 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
|
[21]
|
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M.S., et al. (2019) An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. International Journal of Molecular Sciences, 21, Article No. 148. https://doi.org/10.3390/ijms21010148
|
[22]
|
Navarro, J.M., Pérez-Tornero, O. and Morte, A. (2014) Alleviation of Salt Stress in Citrus Seedlings Inoculated with Arbuscular Mycorrhizal Fungi Depends on the Rootstock Salt Tolerance. Journal of Plant Physiology, 171, 76-85. https://doi.org/10.1016/j.jplph.2013.06.006
|
[23]
|
Chandrasekaran, M., Boughattas, S., Hu, S., Oh, S. and Sa, T. (2014) A Meta-Analysis of Arbuscular Mycorrhizal Effects on Plants Grown under Salt Stress. Mycorrhiza, 24, 611-625. https://doi.org/10.1007/s00572-014-0582-7
|
[24]
|
Pan, J., Peng, F., Tedeschi, A., Xue, X., Wang, T., Liao, J., et al. (2020) Do Halophytes and Glycophytes Differ in Their Interactions with Arbuscular Mycorrhizal Fungi under Salt Stress? A Meta-Analysis. Botanical Studies, 61, Article No. 13. https://doi.org/10.1186/s40529-020-00290-6
|
[25]
|
冯固, 张福锁. 丛枝菌根真菌对棉花耐盐性的影响研究[J]. 中国生态农业学报, 2003, 11(2): 21-24.
|
[26]
|
李倩, 郑爱琴, 马玉一, 等. AMF 对紫花苜蓿抗盐生理特性的影响[J]. 草原与草坪, 2017, 37(5): 85-91.
|
[27]
|
张力. 耐盐植物对含盐污水净化效果及生理生化响应[D]: [硕士学位论文]. 舟山: 浙江海洋学院, 2013.
|
[28]
|
黄翼. 水分胁迫下7种柑橘砧木品种的抗逆性评价[D]: [硕士学位论文]. 重庆: 西南大学, 2014.
|
[29]
|
孔钰凤, 朱先灿, 张建峰, 等. 野生大豆与栽培大豆抗旱性对接种丛枝菌根真菌的响应[J]. 土壤与作物, 2017, 6(1): 25-31.
|
[30]
|
余洁. 丛枝菌根真菌对荆条生长和抗旱性的影响[D]: [硕士学位论文]. 郑州: 河南农业大学, 2019.
|
[31]
|
Aalipour, H., Nikbakht, A., Etemadi, N., Rejali, F. and Soleimani, M. (2020) Biochemical Response and Interactions between Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria during Establishment and Stimulating Growth of Arizona Cypress (Cupressus arizonica G.) under Drought Stress. Scientia Horticulturae, 261, Article ID: 108923. https://doi.org/10.1016/j.scienta.2019.108923
|