[1]
|
张婷, 郭文玲. 慢性射血分数降低性心力衰竭治疗的研究进展[J]. 中西医结合心脑血管病杂志, 2019, 17(16): 2458-2461.
|
[2]
|
毛静远, 朱明军. 慢性心力衰竭中医诊疗专家共识[J]. 中医杂志, 2014, 55(14): 1258-1260.
|
[3]
|
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 心脑血管病防治, 2023, 23(7): 1-19, 24.
|
[4]
|
王宙, 周琳, 刘洋, 等. 慢性心力衰竭的流行病学研究现状及其防治研究进展[J]. 中国循证心血管医学杂志, 2019, 11(8): 1022-1024.
|
[5]
|
王敏. 中医饮证与阳气的关系[J]. 长春中医药大学学报, 2010, 26(2): 171-172.
|
[6]
|
董国菊. 从“微饮”立论射血分数保留的心力衰竭早期防治思想[J]. 中华中医药学刊, 2024, 42(6): 6-8.
|
[7]
|
宋宗华, 戴舒佳, 黎辉琴, 等. 苓桂术甘汤配伍机制研究[J]. 中国中药杂志, 2002(10): 43-45.
|
[8]
|
曾蕾, 樊明媛, 龙静, 等. 论苓桂术甘汤中妙用桂枝治慢性心力衰竭[J]. 世界科学技术-中医药现代化, 2021, 23(11): 3956-3962.
|
[9]
|
周媛, 李启注, 徐京育. 苓桂术甘汤治疗心力衰竭研究进展[J]. 陕西中医, 2022, 43(12): 1819-1821.
|
[10]
|
周雪玉. 苓桂术甘汤对慢性心力衰竭患者脑钠肽、左室射血分数等指标的影响[J]. 中医临床研究, 2023, 15(20): 89-92.
|
[11]
|
周鑫智. 加味苓桂术甘汤对阳虚水泛型HFrEF患者左室重构的影响及临床疗效观察[D]: [硕士学位论文]. 合肥: 安徽中医药大学, 2023.
|
[12]
|
洪铭. 慢性心衰运用苓桂术甘汤联合地高辛治疗的临床疗效分析[J]. 现代诊断与治疗, 2023, 34(5): 668-670.
|
[13]
|
张渊博, 郭欣, 任耀龙. 苓桂术甘汤加减联合曲美他嗪治疗阳虚证慢性心力衰竭的效果及对氧化应激指标、HSP27、ApoE表达的影响[J]. 临床医学研究与实践, 2022, 7(31): 136-139.
|
[14]
|
胡红杰. 苓桂术甘汤辅治左室射血分数降低慢性心衰阳虚水泛型效果观察[J]. 实用中医药杂志, 2021, 37(8): 1377-1379.
|
[15]
|
陈少旭. 苓桂术甘汤治疗射血分数降低的慢性心力衰竭(阳虚水泛证)的临床研究[D]: [硕士学位论文]. 广州: 广州中医药大学中医内科学, 2018.
|
[16]
|
Zhou, B. and Tian, R. (2018) Mitochondrial Dysfunction in Pathophysiology of Heart Failure. Journal of Clinical Investigation, 128, 3716-3726. https://doi.org/10.1172/jci120849
|
[17]
|
Yang, Y., Tian, Y., Hu, S., Bi, S., Li, S., Hu, Y., et al. (2017) Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca2+-Calcineurin-Mediated DRP1 Signaling Pathways. International Journal of Molecular Sciences, 18, Article No. 1825. https://doi.org/10.3390/ijms18091825
|
[18]
|
Lee, I.C., Ho, X.Y., George, S.E., Goh, C.W., Sundaram, J.R., Pang, K.K.L., et al. (2017) Oxidative Stress Promotes SIRT1 Recruitment to the GADD34/PP1alpha Complex to Activate Its Deacetylase Function. Cell Death & Differentiation, 25, 255-267. https://doi.org/10.1038/cdd.2017.152
|
[19]
|
杨鑫宇, 高树新, 贾振伟. AMPK对线粒体质量的调控作用[J]. 中国细胞生物学学报, 2020, 42(5): 881-887.
|
[20]
|
Herzig, S. and Shaw, R.J. (2017) AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nature Reviews Molecular Cell Biology, 19, 121-135. https://doi.org/10.1038/nrm.2017.95
|
[21]
|
Yu, S., Qian, H., Tian, D., Yang, M., Li, D., Xu, H., et al. (2023) Linggui Zhugan Decoction Activates the SIRT1-AMPK-PGC1alpha Signaling Pathway to Improve Mitochondrial and Oxidative Damage in Rats with Chronic Heart Failure Caused by Myocardial Infarction. Frontiers in Pharmacology, 14, Article ID: 1074837. https://doi.org/10.3389/fphar.2023.1074837
|
[22]
|
Bugga, P., Alam, M.J., Kumar, R., Pal, S., Chattopadyay, N. and Banerjee, S.K. (2022) Sirt3 Ameliorates Mitochondrial Dysfunction and Oxidative Stress through Regulating Mitochondrial Biogenesis and Dynamics in Cardiomyoblast. Cellular Signalling, 94, Article ID: 110309. https://doi.org/10.1016/j.cellsig.2022.110309
|
[23]
|
Xin, T. and Lu, C. (2020) Sirt3 Activates Ampk-Related Mitochondrial Biogenesis and Ameliorates Sepsis-Induced Myocardial Injury. Aging, 12, 16224-16237. https://doi.org/10.18632/aging.103644
|
[24]
|
Eid, R.A., Bin-Meferij, M.M., El-kott, A.F., Eleawa, S.M., Zaki, M.S.A., Al-Shraim, M., et al. (2020) Exendin-4 Protects against Myocardial Ischemia-Reperfusion Injury by Upregulation of SIRT1 and SIRT3 and Activation of Ampk. Journal of Cardiovascular Translational Research, 14, 619-635. https://doi.org/10.1007/s12265-020-09984-5
|
[25]
|
Röhrig, F. and Schulze, A. (2016) The Multifaceted Roles of Fatty Acid Synthesis in Cancer. Nature Reviews Cancer, 16, 732-749. https://doi.org/10.1038/nrc.2016.89
|
[26]
|
Guan, W., Liu, Y., Liu, Y., Wang, Q., Ye, H., Cheng, Y., et al. (2019) Proteomics Research on the Protective Effect of Mangiferin on H9C2 Cell Injury Induced by H2O2. Molecules, 24, Article No. 1911. https://doi.org/10.3390/molecules24101911
|
[27]
|
王旭. 基于网络药理学和代谢组学的苓桂术甘汤治疗心力衰竭的作用机制研究[D]: [博士学位论文]. 石家庄: 河北医科大学, 2020.
|
[28]
|
Opie, L.H. and Knuuti, J. (2009) The Adrenergic-Fatty Acid Load in Heart Failure. Journal of the American College of Cardiology, 54, 1637-1646. https://doi.org/10.1016/j.jacc.2009.07.024
|
[29]
|
Matsumura, N., Takahara, S., Maayah, Z.H., Parajuli, N., Byrne, N.J., Shoieb, S.M., et al. (2018) Resveratrol Improves Cardiac Function and Exercise Performance in Mi-Induced Heart Failure through the Inhibition of Cardiotoxic HETE Metabolites. Journal of Molecular and Cellular Cardiology, 125, 162-173. https://doi.org/10.1016/j.yjmcc.2018.10.023
|
[30]
|
Adili, R., Tourdot, B.E., Mast, K., Yeung, J., Freedman, J.C., Green, A., et al. (2017) First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion in Vivo with Minimal Effects on Hemostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1828-1839. https://doi.org/10.1161/atvbaha.117.309868
|
[31]
|
Revermann, M., Schloss, M., Mieth, A., Babelova, A., Schröder, K., Neofitidou, S., et al. (2011) Levosimendan Attenuates Pulmonary Vascular Remodeling. Intensive Care Medicine, 37, 1368-1377. https://doi.org/10.1007/s00134-011-2254-9
|
[32]
|
Altman, R., Luciardi, H.L., Muntaner, J., Del Rio, F., Berman, S.G., Lopez, R., et al. (2002) Efficacy Assessment of Meloxicam, a Preferential Cyclooxygenase-2 Inhibitor, in Acute Coronary Syndromes without St-Segment Elevation: The Nonsteroidal Anti-Inflammatory Drugs in Unstable Angina Treatment-2 (NUT-2) Pilot Study. Circulation, 106, 191-195. https://doi.org/10.1161/01.cir.0000021599.56755.a1
|
[33]
|
Tsuge, K., Inazumi, T., Shimamoto, A. and Sugimoto, Y. (2019) Molecular Mechanisms Underlying Prostaglandin E2-Exacerbated Inflammation and Immune Diseases. International Immunology, 31, 597-606. https://doi.org/10.1093/intimm/dxz021
|
[34]
|
Wang, X., Gao, Y., Zhang, J., Zhang, H., Sun, S., Su, S., et al. (2023) Revealment Study on the Regulation of Lipid Metabolism by Lingguizhugan Decoction in Heart Failure Treatment Based on Integrated Lipidomics and Proteomics. Biomedicine & Pharmacotherapy, 158, Article ID: 114066. https://doi.org/10.1016/j.biopha.2022.114066
|
[35]
|
Jin, Q., Zhu, Q., Wang, K., Chen, M. and Li, X. (2021) Allisartan Isoproxil Attenuates Oxidative Stress and Inflammation through the SIRT1/Nrf2/NF‑kappaB Signalling Pathway in Diabetic Cardiomyopathy Rats. Molecular Medicine Reports, 23, Article No. 215. https://doi.org/10.3892/mmr.2021.11854
|
[36]
|
宋琳琳, 薛一涛. 心力衰竭氧化应激与中医药研究进展[J]. 世界中医药, 2022, 17(12): 1769-1772, 1777.
|
[37]
|
王全伟, 凡文博, 王智昊, 等. 氧化应激与心血管疾病关系的研究进展[J]. 中国老年学杂志, 2014, 34(1): 270-273.
|
[38]
|
高萍萍, 宋湘. 氧化应激对心血管疾病影响的研究进展[J]. 心血管康复医学杂志, 2023, 32(2): 163-166.
|
[39]
|
张媛, 范谦, 杨新春. 氧化应激与心力衰竭[J]. 中华老年心脑血管病杂志, 2006, 8(8): 572-573.
|
[40]
|
Nitti, M., Piras, S., Marinari, U., Moretta, L., Pronzato, M. and Furfaro, A. (2017) HO-1 Induction in Cancer Progression: A Matter of Cell Adaptation. Antioxidants, 6, Article No. 29. https://doi.org/10.3390/antiox6020029
|
[41]
|
Wang, X., Tang, T., Zhai, M., Ge, R., Wang, L., Huang, J., et al. (2020) Ling‐Gui-Zhu-Gan Decoction Protects H9c2 Cells against H2O2‐Induced Oxidative Injury via Regulation of the Nrf2/Keap1/HO-1 Signaling Pathway. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 8860603. https://doi.org/10.1155/2020/8860603
|
[42]
|
王翔, 莫佳佳, 汤同娟, 等. 基于Nrf2/BNIP3通路探讨苓桂术甘汤改善心肌梗死诱导大鼠心力衰竭的作用及机制[J]. 中国药理学通报, 2023, 39(12): 2390-2397.
|
[43]
|
Gutiérrez-Cuevas, J., Galicia-Moreno, M., Monroy-Ramírez, H.C., Sandoval-Rodriguez, A., García-Bañuelos, J., Santos, A., et al. (2022) The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants, 11, Article No. 235. https://doi.org/10.3390/antiox11020235
|
[44]
|
Zang, H., Mathew, R.O. and Cui, T. (2020) The Dark Side of Nrf2 in the Heart. Frontiers in Physiology, 11, 722. https://doi.org/10.3389/fphys.2020.00722
|
[45]
|
Ahmed, S.M.U., Luo, L., Namani, A., Wang, X.J. and Tang, X. (2017) Nrf2 Signaling Pathway: Pivotal Roles in Inflammation. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
|
[46]
|
汤同娟, 王翔, 周鹏, 等. 基于Nrf2/BNIP3信号通路探讨苓桂术甘汤含药血清对心肌细胞线粒体氧化应激的影响[J]. 中国中药杂志, 2022, 47(12): 3303-3311.
|
[47]
|
Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. https://doi.org/10.1038/s41392-021-00762-6
|
[48]
|
张翥, 陶亮亮, 刘品刚, 等. Wnt/β-catenin抑制剂XAV939对心肌梗死大鼠心肌纤维化的影响[J]. 岭南心血管病杂志, 2021, 27(2): 214-218.
|
[49]
|
高雅婷, 邱对鑫, 高磊, 等. Wnt/β-catenin信号通路在心肌纤维化中的作用研究进展[J]. 广州医药, 2024, 55(1): 85-90, 105.
|
[50]
|
杨潮, 李雪萍, 魏蜀君, 等. 苓桂术甘汤加减联合西医治疗对慢性心力衰竭患者炎性因子、T淋巴细胞亚群及心功能的影响[J]. 中国免疫学杂志, 2018, 34(7): 1001-1005.
|
[51]
|
施慧, 许闪, 王靓, 等. 苓桂术甘汤调节心室重构模型大鼠心肌组织NF-κB信号通路的分子机制研究[J]. 中药材, 2017, 40(3): 680-683.
|
[52]
|
李向阳, 姚娟, 汤同娟, 等. 苓桂术甘汤对心梗后慢性心衰模型大鼠心肌纤维化及心肌组织Wnt1/β-catenin信号通路蛋白表达的影响[J]. 中药材, 2023(6): 1501-1506.
|