成人EB病毒感染的临床特征、诊断及治疗进展
Clinical Characteristics, Diagnosis, and Treatment Advances of Epstein-Barr Virus (EBV) Infection in Adults
DOI: 10.12677/jcpm.2024.34270, PDF, HTML, XML,   
作者: 王 菲, 李用国*:重庆医科大学附属第一医院感染科,重庆
关键词: EB病毒临床特征诊断治疗进展Epstein-Barr Virus Clinical Characteristics Diagnosis Treatment Advances
摘要: EB病毒(Epstein-Barr Virus, EBV)是人类疱疹病毒家族的一员,全世界90%以上的成人都感染过EBV。部分患者感染EBV后,可出现传染性单核细胞增多症、慢性活动性EB病毒感染(Chronic Active Epstein-Barr Virus Infection, CAEBV)以及与淋巴增生性疾病相关的癌症等。本文综述了成人EB病毒感染的临床特征、诊断方法及治疗进展,重点详细描述了治疗进展。
Abstract: Epstein-Barr Virus (EBV), a member of the human herpesvirus family, infects over 90% of adults worldwide. Some individuals experience infectious mononucleosis, chronic active Epstein-Barr virus infection (CAEBV), or EBV-associated lymphoproliferative disorders and cancers following infection. This paper reviews the clinical characteristics, diagnostic methods, and recent advances in the treatment of EBV infection in adults, with a detailed focus on recent therapeutic advancements.
文章引用:王菲, 李用国. 成人EB病毒感染的临床特征、诊断及治疗进展[J]. 临床个性化医学, 2024, 3(4): 1922-1928. https://doi.org/10.12677/jcpm.2024.34270

1. 临床特征

1.1. 传染性单核细胞增多症(Infectious Mononucleosis, IM)

IM是EBV感染最常见的临床表现,特别是在青少年中。典型症状包括发热、咽喉痛、淋巴结肿大和疲劳[1]。此外,还可能出现肝脾肿大和肝功能异常[2]。该病预后良好,病程短,但少数患者病情迁延,反复发作,转变为CAEBV。该病病死率为1%~2%,患者多死于脾破裂、急性肝炎、呼吸道阻塞等并发症。

1.2. 慢性活动性EB病毒感染(Chronic Active Epstein-Barr Virus Infection, CAEBV)

B细胞是EBV宿主细胞,EBV会终生潜伏于体内记忆B细胞[3]。CAEBV是一种罕见但严重的EBV相关疾病,表现为持续或反复发热、肝脾肿大、淋巴结肿大和皮肤病变[4]。CAEBV感染可累及多个系统如消化、血液、呼吸、免疫及神经等,以消化系统最多见[5]。成人CAEBV患者与儿童相比,表现出更复杂的临床症状和更差的预后[5]

1.3. 与EBV相关的淋巴增生性疾病

EBV感染与多种淋巴增生性疾病有关,包括霍奇金淋巴瘤、非霍奇金淋巴瘤、伯基特淋巴瘤以及移植后淋巴增生性疾病(Post-Transplant Lymphoproliferative Disorder, PTLD)。患者通常表现为B症状(发热、盗汗、体重减轻)、淋巴结肿大和其他肿瘤相关症状[6]

2. 诊断方法

2.1. 血清学检测

血清学检测是诊断EBV感染的主要方法。EBV编码多种结构抗原,包括病毒衣壳抗原(viral capsid antigen, VCA)、早期抗原(early antigen, EA)、膜抗原(membrane antigen, MA)、核抗原(nuclear antigen, NA)等。不同抗体在急性感染、既往感染和再感染中的意义各不相同。其还可用于CAEBV或EBV相关肿瘤的诊断和监测[7]

2.2. 分子生物学检测

定量PCR技术常用于评估EBV的病毒载量和监测疾病的进展,该方法具备高灵敏度和特异性。定量的EBV-DNA检测已经成为支持EBV相关疾病诊断和管理的重要工具,其实用性在免疫抑制患者中更为显著。

2.3. 影像学检查

影像学检查,如超声、CT和MRI可用于评估EBV相关病变的范围和严重程度。超声主要用于检测淋巴结肿大、肝脾肿大等[8]。CT在评估EBV相关的恶性肿瘤具有重要作用。CT能够提供详细的横断面图像,有助于评估肿瘤的大小、位置及其与周围组织的关系[9]。MRI在评估软组织病变方面具有优势,特别是对中枢神经系统和骨髓的评估[10]。它广泛用于检测和监测EBV相关的中枢神经系统疾病、肝脏病变和淋巴增生性疾病[11]

2.4. 组织病理学检查

组织病理学检查结合免疫组化染色和分子生物学检测是诊断EBV相关淋巴增生性疾病的重要手段。通过这些技术,可以准确识别和分类不同类型的淋巴增生性疾病,为临床治疗提供重要依据。

3. 治疗策略

EBV感染的治疗方法包括支持治疗、抗病毒药物、免疫疗法、单克隆抗体治疗、造血干细胞移植治疗、诱导病毒溶解疗法和疫苗接种等。

3.1. 支持治疗

对于IM等症状较轻患者的治疗主要是支持性护理,包括休息、液体补充和对症治疗[12]。支持治疗的主要目的是缓解症状和防止并发症。通过使用镇痛药和解热药,患者的咽痛和发热症状可以得到有效控制,大多数患者在数周内逐渐恢复[13]。液体摄入和充分休息可以防止脱水并促进康复。

3.2. 抗病毒药物

尽管多种抗病毒药物在体外显示出对EBV的抑制效果,但在临床应用中效果有限,目前尚无特效药物获批用于EBV感染,以下为几种临床中常用的抗病毒药。

更昔洛韦(Ganciclovir)是一种核苷类似物,通过竞争性抑制病毒DNA聚合酶,并通过终止DNA链的延伸来阻止病毒复制。其主要用于治疗免疫功能受损患者的EBV相关疾病,如移植后淋巴增生性疾病(PTLD),对免疫功能正常的患者效果有限[14]。研究表明,更昔洛韦在治疗EBV脑炎和移植后爆发性肝炎中具有显著疗效[15]

阿昔洛韦(Acyclovir)通过抑制病毒DNA聚合酶来阻止病毒复制。常用于早期传染性单核细胞增多症的治疗,尤其是用于缓解喉咙痛和发热等症状[16]。尽管阿昔洛韦能有效抑制EBV在口咽部的复制,但其对临床症状的影响有限[17]

马立巴韦(Maribavir)是一种新型抗病毒药物,通过抑制病毒蛋白激酶UL97,阻止病毒DNA的复制和病毒粒子的装配。马立巴韦在临床前研究中显示出对EBV的有效抑制作用,特别是用于治疗急性EBV感染和EBV相关恶性肿瘤。临床试验的初步结果显示,马立巴韦在治疗EBV感染方面具有良好的安全性和有效性,但其长期效果和大规模应用仍需进一步研究[14]

二磷酸甲胺嘧啶(Cidofovir)是一种核苷类似物,通过抑制病毒DNA聚合酶来阻止病毒复制。二磷酸甲胺嘧啶主要用于治疗EBV相关的恶性肿瘤,如鼻咽癌和伯基特淋巴瘤。该药物可以与放疗联合使用,以增强治疗效果[18]

3.3. 免疫疗法

免疫治疗已成为治疗EBV相关疾病的重要方法,通过增强或调节宿主免疫反应来清除病毒感染的细胞。并且近年来,免疫治疗在EBV相关鼻咽癌(Epstein-Barr Virus-Associated Nasopharyngeal Carcinoma, EBV-Associated NPC)中取得了重要进展。

3.3.1. 过继细胞疗法(Adoptive Cell Therapy)

过继细胞疗法利用体外扩增的EBV特异性细胞毒性T淋巴细胞(Cytotoxic T Lymphocytes, CTLs)来对抗EBV感染的细胞。过继细胞疗法主要用于治疗PTLD、霍奇金淋巴瘤和鼻咽癌等EBV相关的恶性肿瘤。特别是在接受造血干细胞移植(Hematopoietic Stem Cell Transplantation, HSCT)和实体器官移植后的患者中,CTL疗法显示出显著疗效[19]

3.3.2. 抗CD20单克隆抗体疗法(Anti-CD20 Monoclonal Antibody Therapy)

抗CD20单克隆抗体如Rituximab,通过结合B细胞表面的CD20抗原,介导B细胞的凋亡,从而减少EBV的潜伏感染库[20]。Rituximab主要用于治疗PTLD和其他EBV相关的B细胞淋巴增生性疾病。它可以作为单药治疗,也可以与化疗联合使用。Rituximab在治疗EBV相关PTLD中显示出显著疗效,患者的病毒载量显著降低,症状得到有效控制[21]。但是,长期使用可能导致免疫抑制和感染风险增加[20]

3.3.3. 免疫检查点抑制剂(Immune Checkpoint Inhibitors)

免疫检查点抑制剂如抗PD-1/PD-L1单克隆抗体,通过阻断PD-1/PD-L1通路,恢复T细胞的抗肿瘤活性,从而增强免疫系统对EBV感染细胞的攻击[22]。PD-1/PD-L1抑制剂主要用于治疗难治性或复发性的EBV相关恶性肿瘤,如鼻咽癌和某些类型的淋巴瘤。它们也被用于治疗CAEBV。一项回顾性研究显示,接受PD-1抑制剂的鼻咽癌患者,疾病控制率(DCR)达到86.5%,而使用化疗的患者DCR为74.5%,尽管差异未达到显著性,但PD-1治疗组在肿瘤负荷减少和生存率提高方面更有优势[23]。然而,这类药物可能引起免疫相关的不良反应,如皮疹、肝功能异常和内分泌紊乱[22]

3.3.4. Tabelecleucel疗法(Tabelecleucel Therapy)

Tabelecleucel是一种现成的同种异体EBV特异性T细胞疗法,通过在体外扩增并选择性靶向EBV感染细胞,从而增强患者的抗病毒免疫反应。Tabelecleucel主要用于治疗EBV相关的PTLD,尤其是在对Rituximab治疗无效的患者中。它也被用于治疗其他EBV相关的恶性肿瘤[24]。最近研究表明,该疗法在临床上显示出明显的益处和良好的安全性[25]

3.4. 造血干细胞移植(Hematopoietic Stem Cell Transplantation, HSCT)

造血干细胞移植(HSCT)在治疗EB病毒感染相关疾病中发挥着重要作用,其主要机制包括:免疫重建[26]和抗病毒特异性T细胞[27]。HSCT主要用于治疗与EBV相关的严重和复发性疾病,如PTLD、CAEBV和EBV相关的恶性肿瘤[28]。同种异体造血干细胞移植(allo-HSCT)被认为是治疗CAEBV和EBV-HLH的唯一治愈方法。研究显示,allo-HSCT治疗后,CAEBV患者的三年总体生存率显著提高[29]。对于没有匹配供者的患者,脐带血移植(Cord Blood Transplantation, CBT)是一种有效的替代选择。研究表明,CBT在治疗成人EBV-HLH中显示出良好的疗效[30]

3.5. 化疗

对于某些EBV相关的淋巴增生性疾病,化疗仍然是主要治疗方法之一。常用的化疗方案包括CHOP (环磷酰胺、多柔比星、长春新碱和泼尼松)等[31]。同时最新的研究指出PD-1抑制剂与R-CHOP联合治疗在临床试验中表现出较高的整体响应率和良好的耐受性[32]

3.6. 诱导病毒溶解疗法(Lytic Induction Therapy)

诱导病毒溶解疗法通过使用药物如组蛋白去乙酰化酶(HDAC)抑制剂、铁螯合剂、及某些化疗药物激活EBV的溶解期基因,从而使潜伏的病毒进入活跃复制阶段。然后,使用抗病毒药物如更昔洛韦来杀死这些活跃的病毒颗粒和感染的细胞。这种策略主要用于治疗EBV相关的淋巴增生性疾病和其他恶性肿瘤,如伯基特淋巴瘤和鼻咽癌。初步研究显示,诱导病毒溶解疗法在一些难治性EBV相关肿瘤中显示出良好的疗效。患者的病毒载量显著降低,临床症状得到改善[33]

3.7. EBV疫苗(EBV Vaccines)

EBV疫苗通过诱导体内产生针对EBV抗原的特异性免疫反应,从而预防EBV感染或减少其导致的疾病。目前正在进行多项临床试验,探索EBV疫苗在预防传染性单核细胞增多症和EBV相关恶性肿瘤中的效果。特别是对于高风险人群,如接受器官移植的患者,EBV疫苗可能提供显著的保护作用。尽管EBV疫苗的研究还处于早期阶段,但初步结果显示其在诱导特异性免疫反应和减少EBV感染率方面具有良好的潜力[34]

治疗总结如表1

Table 1. The summary of common treatment methods for Epstein-Barr Virus (EBV) infection

1. EBV常见治疗方法总结

治疗方法

适用人群

副作用

支持治疗

大多数急性EBV感染患者,尤其是症状较轻者

较少,但可能包括疲劳和脱水

抗病毒药物

体质较弱或免疫功能受损患者,尤其是EBV相关的恶性肿瘤

肾功能损伤、骨髓抑制、头痛、恶心等

免疫疗法

复发性或难治性EBV相关疾病患者

免疫抑制、感染风险增加

造血干细胞移植治疗

严重EBV相关疾病患者,如PTLD

移植物抗宿主病(GVHD)、感染风险

诱导病毒溶解疗法

难治性EBV相关肿瘤患者

细胞因子释放综合征(CRS)、肝功能损伤

疫苗接种

预防性措施,适用于高风险人群

注射部位反应、轻度发热、过敏反应等

4. 结论

成人EB病毒感染的临床表现多样,从急性传染性单核细胞增多症到慢性活动性EB病毒感染及相关的淋巴增生性疾病,其诊断主要依赖于血清学和分子生物学检测。治疗方面,支持性护理是大多数急性感染病例的主要方法,对于严重和复杂的病例,抗病毒药物、免疫疗法和造血干细胞移植是有效的治疗手段。未来,随着新型抗病毒药物和免疫疗法的发展,EBV相关疾病的治疗前景将更加广阔。

NOTES

*通讯作者。

参考文献

[1] Dunmire, S.K., Verghese, P.S. and Balfour, H.H. (2018) Primary Epstein-Barr Virus Infection. Journal of Clinical Virology, 102, 84-92.
https://doi.org/10.1016/j.jcv.2018.03.001
[2] Lin, J., Su, M., Zheng, J., Gu, L., Wu, H., Wu, X., et al. (2022) Fas/FasL and Complement Activation Are Associated with Chronic Active Epstein-Barr Virus Hepatitis. Journal of Clinical and Translational Hepatology, 11, 540-549.
https://doi.org/10.14218/jcth.2022.00227
[3] Shannon-Lowe, C., Rickinson, A.B. and Bell, A.I. (2017) Epstein-Barr Virus-Associated Lymphomas. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, Article 20160271.
https://doi.org/10.1098/rstb.2016.0271
[4] Xu, N., Fan, H.W., Huang, X.M., Wang, Y. and Sha, Y. (2018) Clinical Features of Adult Patients with Chronic Active Epstein-Barr Virus Infection. Chinese Journal of Internal Medicine, 57, 811-815.
[5] Kawamoto, K., Miyoshi, H., Seto, M., Kimura, H. and Ohshima, K. (2017) Subtype of Epstein-Barr Virus-Positive T/NK-Cell Disorder among Adult Patients in Japan. Journal of Clinical Pathology, 70, 1010-1016.
[6] Cohen, J.I. (2003) Benign and Malignant Epstein-Barr Virus-Associated B-Cell Lymphoproliferative Diseases. Seminars in Hematology, 40, 116-123.
https://doi.org/10.1016/s0037-1963(03)70003-1
[7] 全国儿童EB病毒感染协作组, 中华实验和临床病毒学杂志编辑委员会. EB病毒感染实验室诊断及临床应用专家共识[J]. 中华实验和临床病毒学杂志, 2018, 32(1): 2-8.
[8] Schwarze, V., Lindner, F., Marschner, C., Negrão de Figueiredo, G., Rübenthaler, J. and Clevert, D. (2019) Single-Center Study: The Diagnostic Performance of Contrast-Enhanced Ultrasound (CEUS) for Assessing Focal Splenic Lesions Compared to CT and MRI. Clinical Hemorheology and Microcirculation, 73, 65-71.
https://doi.org/10.3233/ch-199204
[9] Tahara, M., Maekura, T., Kasai, T. and Akira, M. (2017) Primary Pulmonary MALT Lymphoma with Ground-Glass Nodule. Internal Medicine, 56, 3119-3120.
https://doi.org/10.2169/internalmedicine.9000-17
[10] Xiang, Y., Liu, C., Xue, Y., Li, S., Sui, Y., Li, J., et al. (2020) Primary Central Nervous System Lymphomatoid Granulomatosis: Systemic Review. Frontiers in Neurology, 11, Article 901.
https://doi.org/10.3389/fneur.2020.00901
[11] Lu, X., Wei, A., Yang, X., Liu, J., Li, S., Kan, Y., et al. (2022) The Role of Pre-Therapeutic 18F-FDG PET/CT in Pediatric Hemophagocytic Lymphohistiocytosis with Epstein-Barr Virus Infection. Frontiers in Medicine, 8, Article 836438.
https://doi.org/10.3389/fmed.2021.836438
[12] Leung, A.K.C., Lam, J.M. and Barankin, B. (2024) Infectious Mononucleosis: An Updated Review. Current Pediatric Reviews, 20, 305-322.
https://doi.org/10.2174/1573396320666230801091558
[13] Gomes, K. and Goldman, R.D. (2023) Corticosteroids for Infectious Mononucleosis. Canadian Family Physician, 69, 101-102.
https://doi.org/10.46747/cfp.6902101
[14] Caillard, S. and Green, M. (2019) Prevention and Treatment of EBV-Related Complications. In: Infectious Diseases in Solid-Organ Transplant Recipients, Springer, 81-91.
https://doi.org/10.1007/978-3-030-15394-6_7
[15] Haverkos, B.M., Alpdogan, O., Baiocchi, R., Brammer, J.E., Feldman, T.A., Capra, M., et al. (2021) Nanatinostat (Nstat) and Valganciclovir (VGCV) in Relapsed/refractory (R/R) Epstein-Barr Virus-Positive (EBV+) Lymphomas: Final Results from the Phase 1b/2VT3996-201 Study. Blood, 138, 623-623.
https://doi.org/10.1182/blood-2021-152603
[16] Ebell, M.H. (2004) Epstein-Barr Virus Infectious Mononucleosis. American Family Physician, 70, 1279-1287.
[17] Troger, A., Burrel, S., Pineton de Chambrun, M., Schmidt, M., Bréchot, N., Bomme, O., et al. (2022) Preemptive Acyclovir to Prevent Herpes Simplex Virus Bronchopneumonitis in Mechanically Ventilated Patients with Herpes Simplex Virus Oropharyngeal Reactivation: An Ancillary Study of the Preemptive Treatment for Herpesviridae Trial. Antiviral Therapy, 27, 1-8.
[18] Abdulkarim, B., Sabri, S., Zelenika, D., Deutsch, E., Frascogna, V., Klijanienko, J., et al. (2003) Antiviral Agent Cidofovir Decreases Epstein-Barr Virus (EBV) Oncoproteins and Enhances the Radiosensitivity in EBV-Related Malignancies. Oncogene, 22, 2260-2271.
https://doi.org/10.1038/sj.onc.1206402
[19] Liu, J., Zhang, J., Zhan, H., Sun, L. and Wei, L. (2021) EBV-Specific Cytotoxic T Lymphocytes for Refractory EBV-Associated Post-Transplant Lymphoproliferative Disorder in Solid Organ Transplant Recipients: A Systematic Review. Transplant International, 34, 2483-2493.
https://doi.org/10.1111/tri.14107
[20] Alrashoudi, R. (2023) Unleashing the Power of Anti-Cd20 Immunotherapy: Mitigating Multiple Sclerosis Risk in Epstein-Barr Virus Latent Infections. Advances in Clinical and Experimental Medicine, 33, 869-880.
https://doi.org/10.17219/acem/172240
[21] Jimenez, S. (2015) Epstein-Barr Virus-Associated Post-Transplantation Lymphoproliferative Disorder: Potential Treatments and Implications for Nursing Practice. Clinical Journal of Oncology Nursing, 19, 94-98.
https://doi.org/10.1188/15.cjon.94-98
[22] Rao, M., Valentini, D., Dodoo, E., Zumla, A. and Maeurer, M. (2017) Anti-pd-1/pd-l1 Therapy for Infectious Diseases: Learning from the Cancer Paradigm. International Journal of Infectious Diseases, 56, 221-228.
https://doi.org/10.1016/j.ijid.2017.01.028
[23] Bei, W., Dong, S., Liu, G., Lin, L., Jiang, Y., Lu, N., et al. (2024) Efficacy and Safety of Re-Challenging PD-1 Inhibitors in Second-Line Treatment in Metastatic Nasopharyngeal Carcinoma Previously Treated with Chemotherapy and PD-1 Inhibitors. Cancer Management and Research, 16, 771-780.
https://doi.org/10.2147/cmar.s460716
[24] Prockop, S., Gamelin, L., Dinavahi, R., Sun, Y., Zhao, W., Galderisi, F., et al. (2021) Overall Survival by Best Overall Response with Tabelecleucel in Patients with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease Following Solid Organ or Allogeneic Hematopoietic Cell Transplant. Blood, 138, 887-887.
https://doi.org/10.1182/blood-2021-147226
[25] Choquet, S., Clark, A., Renard, C., Uttenthal, B., Chaganti, S., Trappe, R.U., et al. (2023) Effectiveness and Safety Outcomes in Patients with Ebv+ PTLD Treated with Allogeneic EBV-Specific T-Cell Immunotherapy (Tabelecleucel) under an Expanded Access Program (EAP) in Europe. Journal of Clinical Oncology, 41, 7521-7521.
https://doi.org/10.1200/jco.2023.41.16_suppl.7521
[26] Bollard, C.M. and Heslop, H.E. (2016) T Cells for Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant. Blood, 127, 3331-3340.
https://doi.org/10.1182/blood-2016-01-628982
[27] Hanley, P.J., Shaffer, D.R., Cruz, C.R.Y., Ku, S., Tzou, B., Liu, H., et al. (2011) Expansion of T Cells Targeting Multiple Antigens of Cytomegalovirus, Epstein-Barr Virus and Adenovirus to Provide Broad Antiviral Specificity after Stem Cell Transplantation. Cytotherapy, 13, 976-986.
https://doi.org/10.3109/14653249.2011.575356
[28] Zhang, Q., Zhang, B. and Chen, H. (2015) Cellular Immune Therapy for Epstein-Barr Virus Infection after Hematopoietic Stem Cell Transplantation. Chinese Association of Pathophysiology, 23, 1763-1768.
[29] Sawada, A., Inoue, M. and Kawa, K. (2017) How We Treat Chronic Active Epstein-Barr Virus Infection. International Journal of Hematology, 105, 406-418.
https://doi.org/10.1007/s12185-017-2192-6
[30] Kuriyama, T., Kawano, N., Yamashita, K. and Kikuchi, I. (2016) Cord Blood Transplantation Following Reduced-Intensity Conditioning for Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis during Systemic Lupus Erythematosus Treatment. Journal of Clinical and Experimental Hematopathology, 56, 126-129.
https://doi.org/10.3960/jslrt.56.126
[31] Chen, X., Chen, Y., Lei, T., Yu, H., Li, C., Hong, Y., et al. (2023) PD-1 Blockade Combined with R-CHOP in Patients with Newly Diagnosed EBV-Positive Diffuse Large B-Cell Lymphoma: A Retrospective Analysis. Blood, 142, 4506-4506.
https://doi.org/10.1182/blood-2023-182685
[32] Arai, A., Imadome, K., Watanabe, Y., Yoshimori, M., Koyama, T., Kawaguchi, T., et al. (2011) Clinical Features of Adult-Onset Chronic Active Epstein-Barr Virus Infection: A Retrospective Analysis. International Journal of Hematology, 93, 602-609.
https://doi.org/10.1007/s12185-011-0831-x
[33] Green, M. (2001) Management of Epstein-Barr Virus-Induced Post-Transplant Lymphoproliferative Disease in Recipients of Solid Organ Transplantation. American Journal of Transplantation, 1, 103-108.
https://doi.org/10.1034/j.1600-6143.2001.10202.x
[34] Dasari, V., Sinha, D., Neller, M.A., Smith, C. and Khanna, R. (2019) Prophylactic and Therapeutic Strategies for Epstein-Barr Virus-Associated Diseases: Emerging Strategies for Clinical Development. Expert Review of Vaccines, 18, 457-474.
https://doi.org/10.1080/14760584.2019.1605906