[1]
|
Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L. and Wymer, M. (2016) Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology, 64, 73-84. https://doi.org/10.1002/hep.28431
|
[2]
|
中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018更新版) [J]. 传染病信息, 2018, 31(5): 393-402+420.
|
[3]
|
Diehl, A.M., Goodman, Z. and Ishak, K.G. (1988) Alcohollike Liver Disease in Nonalcoholics. Gastroenterology, 95, 1056-1062. https://doi.org/10.1016/0016-5085(88)90183-7
|
[4]
|
Ludwig, J., Viggiano, T.R., McGill, D.B. and Ott, B.J. (1980) Nonalcoholic Steatohepatitis Mayo Clinic Experiences with a Hitherto Unnamed Disease. Mayo Clinic Proceedings, 55, 434-438. https://doi.org/10.1016/s0025-6196(24)00530-5
|
[5]
|
Zhou, Z., Sang, L., Wang, J., Song, L., Zhu, L., Wang, Y., et al. (2021) Relationships among N, n-Dimethylformamide Exposure, CYP2E1 and TM6SF2 Genes, and Non-Alcoholic Fatty Liver Disease. Ecotoxicology and Environmental Safety, 228, Article 112986. https://doi.org/10.1016/j.ecoenv.2021.112986
|
[6]
|
Romeo, S., Kozlitina, J., Xing, C., Pertsemlidis, A., Cox, D., Pennacchio, L.A., et al. (2008) Genetic Variation in PNPLA3 Confers Susceptibility to Nonalcoholic Fatty Liver Disease. Nature Genetics, 40, 1461-1465. https://doi.org/10.1038/ng.257
|
[7]
|
Yoneda, M., Hotta, K., Nozaki, Y., Endo, H., Uchiyama, T., Mawatari, H., et al. (2008) Association between PPARGC1A Polymorphisms and the Occurrence of Nonalcoholic Fatty Liver Disease (NAFLD). BMC Gastroenterology, 8, Article No. 27. https://doi.org/10.1186/1471-230x-8-27
|
[8]
|
Taghvaei, S., Saremi, L. and Babaniamansour, S. (2021) Computational Analysis of Gly482ser Single-Nucleotide Polymorphism in PPARGC1A Gene Associated with CAD, NAFLD, T2DM, Obesity, Hypertension, and Metabolic Diseases. PPAR Research, 2021, 1-12. https://doi.org/10.1155/2021/5544233
|
[9]
|
Song, J., Da Costa, K.A., Fischer, L.M., Kohlmeier, M., Kwock, L., Wang, S., et al. (2005) Polymorphism of Thepemtgene and Susceptibility to Nonalcoholic Fatty Liver Disease (NAFLD). The FASEB Journal, 19, 1266-1271. https://doi.org/10.1096/fj.04-3580com
|
[10]
|
Wei, Z., Li-Qun, Z., Xiao-Ling, H., Jian, Q. and Guo-Yue, Y. (2016) Association of Adiponectin Gene Polymorphisms and Additional Gene-Gene Interaction with Nonalcoholic Fatty Liver Disease in the Chinese Han Population. Hepatology International, 10, 511-517. https://doi.org/10.1007/s12072-015-9687-0
|
[11]
|
Dove, D.E., Su, Y.R., Zhang, W., Jerome, W.G., Swift, L.L., Linton, M.F., et al. (2005) ACAT1 Deficiency Disrupts Cholesterol Efflux and Alters Cellular Morphology in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 128-134. https://doi.org/10.1161/01.atv.0000148323.94021.e5
|
[12]
|
Wang, Y., Wang, Y., Ma, Y., Fu, Z., Yang, Y., Ma, X., et al. (2017) ACAT-1Gene Polymorphism Is Associated with Increased Susceptibility to Coronary Artery Disease in Chinese Han Population: A Case-Control Study. Oncotarget, 8, 89055-89063. https://doi.org/10.18632/oncotarget.21649
|
[13]
|
Abosheaishaa, H., Hussein, M., Ghallab, M., Abdelhamid, M., Balassiano, N., Ahammed, M.R., et al. (2024) Association between Non-Alcoholic Fatty Liver Disease and Coronary Artery Disease Outcomes: A Systematic Review and Meta-Analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 18, Article 102938. https://doi.org/10.1016/j.dsx.2023.102938
|
[14]
|
Chitturi, S., Wong, V.W., Chan, W., Wong, G.L., Wong, S.K., Sollano, J., et al. (2017) The Asia-Pacific Working Party on Non-Alcoholic Fatty Liver Disease Guidelines 2017—Part 2: Management and Special Groups. Journal of Gastroenterology and Hepatology, 33, 86-98. https://doi.org/10.1111/jgh.13856
|
[15]
|
Dove, D.E., Su, Y.R., Swift, L.L., Linton, M.F. and Fazio, S. (2006) ACAT1 Deficiency Increases Cholesterol Synthesis in Mouse Peritoneal Macrophages. Atherosclerosis, 186, 267-274. https://doi.org/10.1016/j.atherosclerosis.2005.08.005
|
[16]
|
Peng, K., Wang, S., Liu, R., Zhou, L., Jeong, G.H., Jeong, I.H., et al. (2023) Effects of UBE3A on Cell and Liver Metabolism through the Ubiquitination of PDHA1 and ACAT1. Biochemistry, 62, 1274-1286. https://doi.org/10.1021/acs.biochem.2c00624
|
[17]
|
Chang, T., Chang, C.C.Y., Lin, S., Yu, C., Li, B. and Miyazaki, A. (2001) Roles of Acyl-Coenzyme A: Cholesterol Acyltransferase-1 and-2. Current Opinion in Lipidology, 12, 289-296. https://doi.org/10.1097/00041433-200106000-00008
|
[18]
|
Yin, R., Wu, D., Aung, L.H.H., Yan, T., Cao, X., Long, X., et al. (2012) Several Lipid-Related Gene Polymorphisms Interact with Overweight/Obesity to Modulate Blood Pressure Levels. International Journal of Molecular Sciences, 13, 12062-12081. https://doi.org/10.3390/ijms130912062
|
[19]
|
Wu, D., Yin, R., Cao, X. and Chen, W. (2014) Association between Single Nucleotide Polymorphism Rs1044925 and the Risk of Coronary Artery Disease and Ischemic Stroke. International Journal of Molecular Sciences, 15, 3546-3559. https://doi.org/10.3390/ijms15033546
|
[20]
|
Rashkovan, M., Albero, R., Gianni, F., Perez-Duran, P., Miller, H.I., Mackey, A.L., et al. (2022) Intracellular Cholesterol Pools Regulate Oncogenic Signaling and Epigenetic Circuitries in Early T-Cell Precursor Acute Lymphoblastic Leukemia. Cancer Discovery, 12, 856-871. https://doi.org/10.1158/2159-8290.cd-21-0551
|
[21]
|
Wang, M., Wang, W., You, S., Hou, Z., Ji, M., Xue, N., et al. (2023) ACAT1 Deficiency in Myeloid Cells Promotes Glioblastoma Progression by Enhancing the Accumulation of Myeloid-Derived Suppressor Cells. Acta Pharmaceutica Sinica B, 13, 4733-4747. https://doi.org/10.1016/j.apsb.2023.09.005
|
[22]
|
Zhang, G., Huang, R., Zhao, H., Xia, Y., Huang, H., Qian, M., et al. (2023) ACAT1-Mediated METTL3 Acetylation Inhibits Cell Migration and Invasion in Triple Negative Breast Cancer. Genes & Immunity, 24, 99-107. https://doi.org/10.1038/s41435-023-00202-1
|
[23]
|
Chen, L., Peng, T., Luo, Y., Zhou, F., Wang, G., Qian, K., et al. (2019) ACAT1 and Metabolism-Related Pathways Are Essential for the Progression of Clear Cell Renal Cell Carcinoma (CCRCC), as Determined by Co-Expression Network Analysis. Frontiers in Oncology, 9, Article 957. https://doi.org/10.3389/fonc.2019.00957
|
[24]
|
Wang, T., Wang, G., Shan, D., Fang, Y., Zhou, F., Yu, M., et al. (2024) ACAT1 Promotes Proliferation and Metastasis of Bladder Cancer via Akt/GSK3β/c-Myc Signaling Pathway. Journal of Cancer, 15, 3297-3312. https://doi.org/10.7150/jca.95549
|
[25]
|
Bryleva, E.Y., Rogers, M.A., Chang, C.C.Y., Buen, F., Harris, B.T., Rousselet, E., et al. (2010) ACAT1 Gene Ablation Increases 24(s)-Hydroxycholesterol Content in the Brain and Ameliorates Amyloid Pathology in Mice with AD. Proceedings of the National Academy of Sciences, 107, 3081-3086. https://doi.org/10.1073/pnas.0913828107
|
[26]
|
Mao, T., Qin, F., Zhang, M., Li, J., Li, J. and Lai, M. (2023) Elevated Serum Β-Hydroxybutyrate, a Circulating Ketone Metabolite, Accelerates Colorectal Cancer Proliferation and Metastasis via ACAT1. Oncogene, 42, 1889-1899. https://doi.org/10.1038/s41388-023-02700-y
|
[27]
|
Yang, W., Bai, Y., Xiong, Y., Zhang, J., Chen, S., Zheng, X., et al. (2016) Potentiating the Antitumour Response of CD8+ T Cells by Modulating Cholesterol Metabolism. Nature, 531, 651-655. https://doi.org/10.1038/nature17412
|
[28]
|
Wang, Q., Du, T., Zhang, Z., Zhang, Q., Zhang, J., Li, W., et al. (2024) Target Fishing and Mechanistic Insights of the Natural Anticancer Drug Candidate Chlorogenic Acid. Acta Pharmaceutica Sinica B, 14, 4431-4442. https://doi.org/10.1016/j.apsb.2024.07.005
|