|
[1]
|
Eisenberg, M.L., Esteves, S.C., Lamb, D.J., Hotaling, J.M., Giwercman, A., Hwang, K., et al. (2023) Male Infertility. Nature Reviews Disease Primers, 9, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Service, C.A., Puri, D., Al Azzawi, S., Hsieh, T. and Patel, D.P. (2023) The Impact of Obesity and Metabolic Health on Male Fertility: A Systematic Review. Fertility and Sterility, 120, 1098-1111. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hunter, T. (2014) The Genesis of Tyrosine Phosphorylation. Cold Spring Harbor Perspectives in Biology, 6, a020644. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Anonymous (1974) Tyrosine Metabolism and Toxicity. Nutrition Reviews, 32, 219-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Seshagiri, P.B., Mariappa, D. and Aladakatti, R.H. (2007) Tyrosine Phosphorylated Proteins in Mammalian Spermatozoa: Molecular and Functional Aspects. Society of Reproduction and Fertility Supplement, 63, 313-325.
|
|
[6]
|
González-Fernández, L., Macías-García, B., Velez, I.C., Varner, D.D. and Hinrichs, K. (2012) Calcium-Calmodulin and pH Regulate Protein Tyrosine Phosphorylation in Stallion Sperm. Reproduction, 144, 411-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Buffone, M.G., Calamera, J.C., Verstraeten, S.V. and Doncel, G.F. (2005) Capacitation-Associated Protein Tyrosine Phosphorylation and Membrane Fluidity Changes Are Impaired in the Spermatozoa of Asthenozoospermic Patients. Reproduction, 129, 697-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gmoshinski, I.V., Shipelin, V.A., Trusov, N.V., Apryatin, S.A., Mzhelskaya, K.V., Shumakova, A.A., et al. (2021) Effects of Tyrosine and Tryptophan Supplements on the Vital Indicators in Mice Differently Prone to Diet-Induced Obesity. International Journal of Molecular Sciences, 22, Article 5956. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Shipelin, V.A., Trusov, N.V., Apryatin, S.A., Shumakova, A.A., Balakina, A.S., Riger, N.A., et al. (2021) Effects of Tyrosine and Tryptophan in Rats with Diet-Induced Obesity. International Journal of Molecular Sciences, 22, Article 2429. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kim, K.Y., Kim, M.S., Lee, Y.J., Lee, Y.A., Lee, S.Y., Shin, C.H., et al. (2022) Glutamic Acid Decarboxylase and Tyrosine Phosphatase-Related Islet Antigen-2 Positivity among Children and Adolescents with Diabetes in Korea. Diabetes & Metabolism Journal, 46, 948-952. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, J., Cao, Y., Sun, X., Han, L., Li, S., Gu, W., et al. (2018) Plasma Tyrosine and Its Interaction with Low High‐Density Lipoprotein Cholesterol and the Risk of Type 2 Diabetes Mellitus in Chinese. Journal of Diabetes Investigation, 10, 491-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hussain, M., Ikram, W. and Ikram, U. (2023) Role of c-Src and Reactive Oxygen Species in Cardiovascular Diseases. Molecular Genetics and Genomics, 298, 315-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nemet, I., Li, X.S., Haghikia, A., Li, L., Wilcox, J., Romano, K.A., et al. (2023) Atlas of Gut Microbe-Derived Products from Aromatic Amino Acids and Risk of Cardiovascular Morbidity and Mortality. European Heart Journal, 44, 3085-3096. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jiang, M., Zhao, X., Jiang, Z., Wang, G. and Zhang, D. (2022) Protein Tyrosine Nitration in Atherosclerotic Endothelial Dysfunction. Clinica Chimica Acta, 529, 34-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian Randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Porcu, E., Rüeger, S., Lepik, K., Agbessi, M., Ahsan, H., Alves, I., et al. (2019) Mendelian Randomization Integrating GWAS and eQTL Data Reveals Genetic Determinants of Complex and Clinical Traits. Nature Communications, 10, Article No. 330. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zheng, J., Baird, D., Borges, M., Bowden, J., Hemani, G., Haycock, P., et al. (2017) Recent Developments in Mendelian Randomization Studies. Current Epidemiology Reports, 4, 330-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hase, A., Jung, S.E. and aan het Rot, M. (2015) Behavioral and Cognitive Effects of Tyrosine Intake in Healthy Human Adults. Pharmacology Biochemistry and Behavior, 133, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Buffone, M.G. (2004) Human Sperm Subpopulations: Relationship between Functional Quality and Protein Tyrosine Phosphorylation. Human Reproduction, 19, 139-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Katoh, Y., Takebayashi, K., Kikuchi, A., Iki, A., Kikuchi, K., Tamba, M., et al. (2014) Porcine Sperm Capacitation Involves Tyrosine Phosphorylation and Activation of Aldose Reductase. Reproduction, 148, 389-401. [Google Scholar] [CrossRef] [PubMed]
|