[1]
|
Braunwald, E. (2008) Biomarkers in Heart Failure. New England Journal of Medicine, 358, 2148-2159. https://doi.org/10.1056/nejmra0800239
|
[2]
|
Mihalj, M., Heinisch, P.P., Huber, M., Schefold, J.C., Hartmann, A., Walter, M., et al. (2021) Effect of Perioperative Lipid Status on Clinical Outcomes after Cardiac Surgery. Cells, 10, Article No. 2717. https://doi.org/10.3390/cells10102717
|
[3]
|
Boffa, M.B. and Koschinsky, M.L. (2024) Lipoprotein(a) and Cardiovascular Disease. Biochemical Journal, 481, 1277-1296. https://doi.org/10.1042/bcj20240037
|
[4]
|
De Hert, S.G. and Lurati Buse, G.A. (2020) Cardiac Biomarkers for the Prediction and Detection of Adverse Cardiac Events after Noncardiac Surgery: A Narrative Review. Anesthesia & Analgesia, 131, 187-195. https://doi.org/10.1213/ane.0000000000004711
|
[5]
|
Drury, P.L., Ting, R., Zannino, D., Ehnholm, C., Flack, J., Whiting, M., et al. (2010) Estimated Glomerular Filtration Rate and Albuminuria Are Independent Predictors of Cardiovascular Events and Death in Type 2 Diabetes Mellitus: The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia, 54, 32-43. https://doi.org/10.1007/s00125-010-1854-1
|
[6]
|
Danesh, J., Wheeler, J.G., Hirschfield, G.M., Eda, S., Eiriksdottir, G., Rumley, A., et al. (2004) C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. New England Journal of Medicine, 350, 1387-1397. https://doi.org/10.1056/nejmoa032804
|
[7]
|
Xia, F., Liu, G., Shi, Y., et al. (2015) Impact of Microalbuminuria on Incident Coronary Heart Disease, Cardiovascular and All-Cause Mortality: A Meta-Analysis of Prospective Studies. International Journal of Clinical and Experimental Medicine, 8, 1-9.
|
[8]
|
Levey, A.S., Grams, M.E. and Inker, L.A. (2022) Uses of GFR and Albuminuria Level in Acute and Chronic Kidney Disease. New England Journal of Medicine, 386, 2120-2128. https://doi.org/10.1056/nejmra2201153
|
[9]
|
Warren, A.M., Knudsen, S.T. and Cooper, M.E. (2019) Diabetic Nephropathy: An Insight into Molecular Mechanisms and Emerging Therapies. Expert Opinion on Therapeutic Targets, 23, 579-591. https://doi.org/10.1080/14728222.2019.1624721
|
[10]
|
Levey, A.S., Eckardt, K., Dorman, N.M., Christiansen, S.L., Hoorn, E.J., Ingelfinger, J.R., et al. (2020) Nomenclature for Kidney Function and Disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International, 97, 1117-1129. https://doi.org/10.1016/j.kint.2020.02.010
|
[11]
|
American Diabetes Association (2011) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 34, S62-S69. https://doi.org/10.2337/dc11-s062
|
[12]
|
Gansevoort, R.T. and Ritz, E. (2008) Hermann Senator and Albuminuria—Forgotten Pioneering Work in the 19th Century. Nephrology Dialysis Transplantation, 24, 1057-1062. https://doi.org/10.1093/ndt/gfn741
|
[13]
|
Paar, M., Fengler, V.H., Rosenberg, D.J., Krebs, A., Stauber, R.E., Oettl, K., et al. (2021) Albumin in Patients with Liver Disease Shows an Altered Conformation. Communications Biology, 4, Article No. 731. https://doi.org/10.1038/s42003-021-02269-w
|
[14]
|
Merlot, A.M., Kalinowski, D.S. and Richardson, D.R. (2014) Unraveling the Mysteries of Serum Albumin—More than Just a Serum Protein. Frontiers in Physiology, 5, Article No. 299. https://doi.org/10.3389/fphys.2014.00299
|
[15]
|
Devuyst, O. and Ronco, P. (2023) Tubular Handling of Filtered Albumin. Kidney International, 104, 1073-1075. https://doi.org/10.1016/j.kint.2023.10.002
|
[16]
|
Gburek, J., Konopska, B. and Gołąb, K. (2021) Renal Handling of Albumin—From Early Findings to Current Concepts. International Journal of Molecular Sciences, 22, Article No. 5809. https://doi.org/10.3390/ijms22115809
|
[17]
|
Birn, H. and Christensen, E.I. (2006) Renal Albumin Absorption in Physiology and Pathology. Kidney International, 69, 440-449. https://doi.org/10.1038/sj.ki.5000141
|
[18]
|
D’Amico, G. and Bazzi, C. (2003) Pathophysiology of Proteinuria. Kidney International, 63, 809-825. https://doi.org/10.1046/j.1523-1755.2003.00840.x
|
[19]
|
Khan, M.S., Shahid, I., Anker, S.D., Fonarow, G.C., Fudim, M., Hall, M.E., et al. (2023) Albuminuria and Heart Failure. Journal of the American College of Cardiology, 81, 270-282. https://doi.org/10.1016/j.jacc.2022.10.028
|
[20]
|
Comper, W.D., Vuchkova, J. and McCarthy, K.J. (2022) New Insights into Proteinuria/Albuminuria. Frontiers in Physiology, 13, Article ID: 991756. https://doi.org/10.3389/fphys.2022.991756
|
[21]
|
Benzing, T. and Salant, D. (2021) Insights into Glomerular Filtration and Albuminuria. New England Journal of Medicine, 384, 1437-1446. https://doi.org/10.1056/nejmra1808786
|
[22]
|
Cortinovis, M., Perico, N., Ruggenenti, P., Remuzzi, A. and Remuzzi, G. (2022) Glomerular Hyperfiltration. Nature Reviews Nephrology, 18, 435-451. https://doi.org/10.1038/s41581-022-00559-y
|
[23]
|
Pugliese, N.R., Masi, S. and Taddei, S. (2022) Rethinking Albuminuria as a Marker to Drive Treatment in Congestive Heart Failure. European Heart Journal, 44, 381-382. https://doi.org/10.1093/eurheartj/ehac612
|
[24]
|
Ozyol, A., Yucel, O., Ege, M.R., Zorlu, A. and Yilmaz, M.B. (2011) Microalbuminuria Is Associated with the Severity of Coronary Artery Disease Independently of Other Cardiovascular Risk Factors. Angiology, 63, 457-460. https://doi.org/10.1177/0003319711423528
|
[25]
|
Song, J.J., Lee, K., Hyun, Y.Y. and Kim, H. (2018) Trace Albumin in the Urine Dipstick Test Is Associated with Coronary Artery Calcification in Korean Adults. Nephron, 140, 169-174. https://doi.org/10.1159/000490954
|
[26]
|
Giovacchini, G., Cappagli, M., Carro, S., Borrini, S., Montepagani, A., Leoncini, R., et al. (2013) Microalbuminuria Predicts Silent Myocardial Ischaemia in Type 2 Diabetes Patients. European Journal of Nuclear Medicine and Molecular Imaging, 40, 548-557. https://doi.org/10.1007/s00259-012-2323-5
|
[27]
|
Topsakal, R., Kaya, M.G., Duran, M., Gunebakmaz, O., Dogan, A., Inanc, T., et al. (2009) The Relation between Microalbuminuria and Coronary Collateral Vessel Development in Patients with Unstable Coronary Artery Disease. Coronary Artery Disease, 20, 431-434. https://doi.org/10.1097/mca.0b013e3283277650
|
[28]
|
George, L.K., Molnar, M.Z., Lu, J.L., Kalantar-Zadeh, K., Koshy, S.K.G. and Kovesdy, C.P. (2015) Association of Pre-Operative Albuminuria with Post-Operative Outcomes after Coronary Artery Bypass Grafting. Scientific Reports, 5, Article No. 16458. https://doi.org/10.1038/srep16458
|
[29]
|
Shafranskaya, K.S., Kashtalap, V.V., Kutikhin, A.G., Barbarash, O.L. and Barbarash, L.S. (2015) Microalbuminuria and Prediction of Cardiovascular Complications in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus after CABG Surgery. Heart, Lung and Circulation, 24, 951-959. https://doi.org/10.1016/j.hlc.2015.03.004
|
[30]
|
Sacks, D., Baxter, B., Campbell, B.C.V., Carpenter, J.S., Cognard, C., Dippel, D., et al. (2018) Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Journal of Vascular and Interventional Radiology, 29, 441-453. https://doi.org/10.1016/j.jvir.2017.11.026
|
[31]
|
Koyoshi, R., Hitaka-Yoshimine, Y., Shiga, Y., Kuwano, T., Sugihara, M., Ike, A., et al. (2018) Associations between Microalbuminuria and Parameters of Flow-Mediated Vasodilatation Obtained by Continuous Measurement Approaches. Clinical and Experimental Hypertension, 40, 715-720. https://doi.org/10.1080/10641963.2018.1425422
|
[32]
|
von Scholten, B.J., Reinhard, H., Hansen, T.W., Schalkwijk, C.G., Stehouwer, C., Parving, H., et al. (2016) Markers of Inflammation and Endothelial Dysfunction Are Associated with Incident Cardiovascular Disease, All-Cause Mortality, and Progression of Coronary Calcification in Type 2 Diabetic Patients with Microalbuminuria. Journal of Diabetes and its Complications, 30, 248-255. https://doi.org/10.1016/j.jdiacomp.2015.11.005
|
[33]
|
Cao, J.J., Barzilay, J.I., Peterson, D., Manolio, T.A., Psaty, B.M., Kuller, L., et al. (2006) The Association of Microalbuminuria with Clinical Cardiovascular Disease and Subclinical Atherosclerosis in the Elderly: The Cardiovascular Health Study. Atherosclerosis, 187, 372-377. https://doi.org/10.1016/j.atherosclerosis.2005.09.015
|
[34]
|
Kimura, T., Ueno, T., Doi, S., Nakashima, A., Doi, T., Ashitani, A., et al. (2019) High-Normal Albuminuria Is Associated with Subclinical Atherosclerosis in Male Population with Estimated Glomerular Filtration Rate ≥ 60 ml/min/1.73m2: A Cross-Sectional Study. PLOS ONE, 14, e0218290. https://doi.org/10.1371/journal.pone.0218290
|
[35]
|
Liu, F., Shen, X., Zhao, R., Tao, X., Wang, S., Zhou, J., et al. (2016) Pulse Pressure as an Independent Predictor of Stroke: A Systematic Review and a Meta-Analysis. Clinical Research in Cardiology, 105, 677-686. https://doi.org/10.1007/s00392-016-0972-2
|
[36]
|
Li, M., Cheng, A., Sun, J., Fan, C. and Meng, R. (2021) The Role of Urinary Albumin-to-Creatinine Ratio as a Biomarker to Predict Stroke. Brain Circulation, 7, 139-146. https://doi.org/10.4103/bc.bc_64_20
|
[37]
|
Nagarajarao, H.S., Musani, S.K., Cobb, K.E., Pollard, J.D., Cooper, L.L., Anugu, A., et al. (2021) Kidney Function and Aortic Stiffness, Pulsatility, and Endothelial Function in African Americans: The Jackson Heart Study. Kidney Medicine, 3, 702-711.e1. https://doi.org/10.1016/j.xkme.2021.03.018
|
[38]
|
Ye, C., Gong, J., Wang, T., Luo, L., Lian, G., Wang, H., et al. (2020) Relationship between High‐Normal Albuminuria and Arterial Stiffness in Chinese Population. The Journal of Clinical Hypertension, 22, 1674-1681. https://doi.org/10.1111/jch.13979
|
[39]
|
Vasan, R.S., Short, M.I., Niiranen, T.J., Xanthakis, V., DeCarli, C., Cheng, S., et al. (2019) Interrelations between Arterial Stiffness, Target Organ Damage, and Cardiovascular Disease Outcomes. Journal of the American Heart Association, 8, e012141. https://doi.org/10.1161/jaha.119.012141
|
[40]
|
Wattanakit, K., Folsom, A.R., Criqui, M.H., Kramer, H.J., Cushman, M., Shea, S., et al. (2008) Albuminuria and Peripheral Arterial Disease: Results from the Multi-Ethnic Study of Atherosclerosis (Mesa). Atherosclerosis, 201, 212-216. https://doi.org/10.1016/j.atherosclerosis.2007.12.044
|
[41]
|
Ishida, A., Nakachi-Miyagi, M., Kinjo, K., Iseki, K. and Ohya, Y. (2014) A High Normal Ankle-Brachial Index Is Associated with Proteinuria in a Screened Cohort of Japanese. Journal of Hypertension, 32, 1435-1443. https://doi.org/10.1097/hjh.0000000000000196
|
[42]
|
Potier, L., Chequer, R., Roussel, R., Mohammedi, K., Sismail, S., Hartemann, A., et al. (2018) Relationship between Cardiac Microvascular Dysfunction Measured with 82Rubidium-PET and Albuminuria in Patients with Diabetes Mellitus. Cardiovascular Diabetology, 17, Article No. 11. https://doi.org/10.1186/s12933-017-0652-1
|
[43]
|
von Scholten, B.J., Hasbak, P., Christensen, T.E., Ghotbi, A.A., Kjaer, A., Rossing, P., et al. (2015) Cardiac 82Rb PET/CT for Fast and Non-Invasive Assessment of Microvascular Function and Structure in Asymptomatic Patients with Type 2 Diabetes. Diabetologia, 59, 371-378. https://doi.org/10.1007/s00125-015-3799-x
|
[44]
|
Odutayo, A., Hsiao, A.J. and Emdin, C.A. (2016) Prevalence of Albuminuria in a General Population Cohort of Patients with Established Chronic Heart Failure. Journal of Cardiac Failure, 22, 33-37. https://doi.org/10.1016/j.cardfail.2015.10.009
|
[45]
|
Blecker, S., Matsushita, K., Köttgen, A., Loehr, L.R., Bertoni, A.G., Boulware, L.E., et al. (2011) High-Normal Albuminuria and Risk of Heart Failure in the Community. American Journal of Kidney Diseases, 58, 47-55. https://doi.org/10.1053/j.ajkd.2011.02.391
|
[46]
|
Bansal, N., Zelnick, L.R., Alonso, A., Benjamin, E.J., de Boer, I.H., Deo, R., et al. (2017) EGFR and Albuminuria in Relation to Risk of Incident Atrial Fibrillation: A Meta-Analysis of the Jackson Heart Study, the Multi-Ethnic Study of Atherosclerosis, and the Cardiovascular Health Study. Clinical Journal of the American Society of Nephrology, 12, 1386-1398. https://doi.org/10.2215/cjn.01860217
|
[47]
|
Kim, E.D., Soliman, E.Z., Coresh, J., Matsushita, K. and Chen, L.Y. (2020) Two-Week Burden of Arrhythmias across CKD Severity in a Large Community-Based Cohort: The ARIC Study. Journal of the American Society of Nephrology, 32, 629-638. https://doi.org/10.1681/asn.2020030301
|
[48]
|
Dash, S., Chougule, A. and Mohanty, S. (2022) Correlation of Albuminuria and Diabetic Retinopathy in Type-II Diabetes Mellitus Patients. Cureus, 14, e21927. https://doi.org/10.7759/cureus.21927
|
[49]
|
Li, J., Zhang, W., Zhao, L., Zhang, J., She, H., Meng, Y., et al. (2023) Positive Correlation between Hypertensive Retinopathy and Albuminuria in Hypertensive Adults. BMC Ophthalmology, 23, Article No. 66. https://doi.org/10.1186/s12886-023-02807-6
|
[50]
|
Zhong, M., Yang, Y., Zhang, Y. and Yan, S. (2021) Change in Urine Albumin-to-Creatinine Ratio and Risk of Diabetic Peripheral Neuropathy in Type 2 Diabetes: A Retrospective Cohort Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 1763-1772. https://doi.org/10.2147/dmso.s303096
|
[51]
|
Mauer, M., Zinman, B., Gardiner, R., Suissa, S., Sinaiko, A., Strand, T., et al. (2009) Renal and Retinal Effects of Enalapril and Losartan in Type 1 Diabetes. New England Journal of Medicine, 361, 40-51. https://doi.org/10.1056/nejmoa0808400
|
[52]
|
Lewis, E.J., Hunsicker, L.G., Bain, R.P. and Rohde, R.D. (1993) The Effect of Angiotensin-Converting-Enzyme Inhibition on Diabetic Nephropathy. New England Journal of Medicine, 329, 1456-1462. https://doi.org/10.1056/nejm199311113292004
|
[53]
|
Brenner, B.M., Cooper, M.E., de Zeeuw, D., Keane, W.F., Mitch, W.E., Parving, H., et al. (2001) Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 345, 861-869. https://doi.org/10.1056/nejmoa011161
|
[54]
|
Lewis, E.J., Hunsicker, L.G., Clarke, W.R., Berl, T., Pohl, M.A., Lewis, J.B., et al. (2001) Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. New England Journal of Medicine, 345, 851-860. https://doi.org/10.1056/nejmoa011303
|
[55]
|
Ruilope, L.M. and Bakris, G.L. (2011) Renal Function and Target Organ Damage in Hypertension. European Heart Journal, 32, 1599-1604. https://doi.org/10.1093/eurheartj/ehr003
|
[56]
|
Xie, X., Liu, Y., Perkovic, V., Li, X., Ninomiya, T., Hou, W., et al. (2016) Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients with CKD: A Bayesian Network Meta-Analysis of Randomized Clinical Trials. American Journal of Kidney Diseases, 67, 728-741. https://doi.org/10.1053/j.ajkd.2015.10.011
|
[57]
|
Perkovic, V., Jardine, M.J., Neal, B., Bompoint, S., Heerspink, H.J.L., Charytan, D.M., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380, 2295-2306. https://doi.org/10.1056/nejmoa1811744
|
[58]
|
Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446. https://doi.org/10.1056/nejmoa2024816
|
[59]
|
Cardoso, R., Graffunder, F.P., Ternes, C.M.P., Fernandes, A., Rocha, A.V., Fernandes, G., et al. (2021) SGLT2 Inhibitors Decrease Cardiovascular Death and Heart Failure Hospitalizations in Patients with Heart Failure: A Systematic Review and Meta-Analysis. EClinicalMedicine, 36, Article ID: 100933. https://doi.org/10.1016/j.eclinm.2021.100933
|
[60]
|
Wheeler, D.C., Stefansson, B.V., Batiushin, M., Bilchenko, O., Cherney, D.Z.I., Chertow, G.M., et al. (2020) The Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) Trial: Baseline Characteristics. Nephrology Dialysis Transplantation, 35, 1700-1711. https://doi.org/10.1093/ndt/gfaa234
|
[61]
|
Górriz, J.L., Soler, M.J., Navarro-González, J.F., García-Carro, C., Puchades, M.J., D’Marco, L., et al. (2020) GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Call of Attention to Nephrologists. Journal of Clinical Medicine, 9, Article No. 947. https://doi.org/10.3390/jcm9040947
|
[62]
|
Yuan, D., Sharma, H., Krishnan, A., Vangaveti, V.N. and Malabu, U.H. (2022) Effect of Glucagon‐Like Peptide 1 Receptor Agonists on Albuminuria in Adult Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes, Obesity and Metabolism, 24, 1869-1881. https://doi.org/10.1111/dom.14776
|
[63]
|
Gilbert, R.E. and Connelly, K.A. (2019) Reduction in the Incidence of Myocardial Infarction with Sodium-Glucose Linked Cotransporter-2 Inhibitors: Evident and Plausible. Cardiovascular Diabetology, 18, Article No. 6. https://doi.org/10.1186/s12933-019-0812-6
|
[64]
|
Gerstein, H.C., Colhoun, H.M., Dagenais, G.R., Diaz, R., Lakshmanan, M., Pais, P., et al. (2019) Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. The Lancet, 394, 121-130. https://doi.org/10.1016/s0140-6736(19)31149-3
|
[65]
|
Wilding, J.P.H., Batterham, R.L., Calanna, S., Davies, M., Van Gaal, L.F., Lingvay, I., et al. (2021) Once-Weekly Semaglutide in Adults with Overweight or Obesity. New England Journal of Medicine, 384, 989-1002. https://doi.org/10.1056/nejmoa2032183
|
[66]
|
(2022) Tirzepatide Once Weekly for the Treatment of Obesity. New England Journal of Medicine, 387, 1433-1435.
|
[67]
|
Pitt, B., Filippatos, G., Agarwal, R., Anker, S.D., Bakris, G.L., Rossing, P., et al. (2021) Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. New England Journal of Medicine, 385, 2252-2263. https://doi.org/10.1056/nejmoa2110956
|
[68]
|
Filippatos, G., Anker, S.D., Agarwal, R., Pitt, B., Ruilope, L.M., Rossing, P., et al. (2021) Finerenone and Cardiovascular Outcomes in Patients with Chronic Kidney Disease and Type 2 Diabetes. Circulation, 143, 540-552. https://doi.org/10.1161/circulationaha.120.051898
|
[69]
|
Patel, R.B., Fonarow, G.C., Greene, S.J., Zhang, S., Alhanti, B., DeVore, A.D., et al. (2021) Kidney Function and Outcomes in Patients Hospitalized with Heart Failure. Journal of the American College of Cardiology, 78, 330-343. https://doi.org/10.1016/j.jacc.2021.05.002
|
[70]
|
Zahir, D., Bonde, A., Madelaire, C., Malmborg, M., Butt, J.H., Fosbol, E., et al. (2022) Temporal Trends in Initiation of Mineralocorticoid Receptor Antagonists and Risk of Subsequent Withdrawal in Patients with Heart Failure: A Nationwide Study in Denmark from 2003-2017. European Journal of Heart Failure, 24, 539-547. https://doi.org/10.1002/ejhf.2418
|
[71]
|
Agarwal, R., Kolkhof, P., Bakris, G., Bauersachs, J., Haller, H., Wada, T., et al. (2020) Steroidal and Non-Steroidal Mineralocorticoid Receptor Antagonists in Cardiorenal Medicine. European Heart Journal, 42, 152-161. https://doi.org/10.1093/eurheartj/ehaa736
|