白蛋白尿与心血管疾病的研究进展
Research Progress of Albuminuria and Cardiovascular Disease
DOI: 10.12677/acm.2024.14123172, PDF, HTML, XML,   
作者: 杜 洋, 佘 强*:重庆医科大学附属第二医院心血管内科,重庆
关键词: 白蛋白尿心血管疾病慢性肾脏病预后Albuminuria Cardiovascular Disease Chronic Kidney Disease Prognosis
摘要: 白蛋白尿,作为一种生物标志物,其在慢性肾脏疾病(CKD)进展监测中的作用已得到广泛验证。然而,近年来的研究表明,白蛋白尿同样具有预测心血管疾病(CVD)风险的重要价值。例如,即使在GFR正常的患者中,白蛋白尿的存在与发生心力衰竭(HF)的可能性增加相关,并且最近有研究已经描述了白蛋白尿在动脉粥样硬化中的作用。白蛋白尿与死亡率和因心力衰竭住院等不良结局相关。然而,白蛋白尿的筛查率仍然较低。幸运的是,白蛋白尿的存在是可以改变的,现在有新的治疗方法可以逆转心肾相互作用中的这一常见风险因素。现就白蛋白尿的概念以及白蛋白尿与心血管疾病的关系及其潜在的病理生理机制作一综述,以期为心血管疾病的预防与治疗提供新的见解与策略。
Abstract: Albuminuria, as a biomarker, has been widely validated for its role in monitoring the progression of chronic kidney disease (CKD). However, recent studies have indicated that albuminuria also holds significant value in predicting cardiovascular disease (CVD) risk. For instance, even in patients with normal glomerular filtration rate (GFR), the presence of albuminuria is associated with an increased likelihood of developing heart failure (HF), and recent research has described the role of albuminuria in atherosclerosis. Albuminuria is correlated with adverse outcomes such as mortality and hospitalization due to heart failure. Nevertheless, the screening rate for albuminuria remains low. Fortunately, the presence of albuminuria is modifiable, and there are new treatment approaches available to reverse this common risk factor in the heart-kidney interaction. This review aims to provide an overview of the concept of albuminuria, its relationship with cardiovascular diseases, and its potential pathophysiological mechanisms, with the hope of offering new insights and strategies for the prevention and treatment of cardiovascular diseases.
文章引用:杜洋, 佘强. 白蛋白尿与心血管疾病的研究进展[J]. 临床医学进展, 2024, 14(12): 951-960. https://doi.org/10.12677/acm.2024.14123172

1. 引言

心血管疾病(CVDs)构成了全球范围内主要的致死因素之一。随着对CVD病理生理学认识的加深,一系列生物标志物已被识别并应用于临床,以辅助评估疾病风险。近十年来,心血管生物标志物的识别和应用领域取得了显著进展[1]。胆固醇等传统风险标志物[2]为更复杂的指标,如脂蛋白(a) [3]、肌钙蛋白水平、B型利钠肽(BNP) [4]和C反应蛋白(CRP)的使用铺平了道路。白蛋白尿在影响肾脏和心脏的一系列病理过程中普遍存在,它传统上被认为是肾脏疾病的标志物,特别是在糖尿病患者中。白蛋白尿同样被确认为CVD的风险因素[5]。在一般人群中,白蛋白尿的普遍性与CRP水平升高相当,且其与CVD的关联性也同样显著。CRP水平升高可使心血管疾病(CAD)风险增加约45% [6],而蛋白尿则可使临床心血管疾病风险增加约40% [7]。尽管如此,白蛋白尿作为疾病风险的生物标志物在心脏病学界尚未得到充分的认识和应用。此外,近年来,它已经超越了其仅作为损伤生物标志物的作用,成为治疗靶点[8]。考虑到新药物的引入可能会改变心肾疾病的自然病程,越来越有必要去理解蛋白尿的病理生理过程。本综述通过探讨白蛋白尿作为心血管疾病的危险标志物在心肾相互作用中的机制,并描述新的治疗途径,从而提高人们对白蛋白尿在心血管疾病中重要性的认识。

2. 白蛋白尿的概念

白蛋白尿为尿中白蛋白的异常丢失,导致尿液中白蛋白含量异常升高,已被认定为肾功能异常的最敏感指标[9]。根据肾脏疾病改善全球结局(KDIGO)共识会议[10]的肾功能和疾病命名法,白蛋白尿定义为尿白蛋白排泄率(AER) > 10 mg/d或白蛋白–肌酐比(ACR) > 10 mg/g。测定24小时尿液样本中的白蛋白水平被认为是诊断白蛋白尿的金标准[11]。考虑到白蛋白尿的分级及其与全因死亡率、心血管死亡率、急性肾损伤(AKI)、肾衰竭(KF)和进行性慢性肾脏病的相关性,白蛋白尿分为三个等级:正常(<30 mg/24h)、中度增加/微量白蛋白尿(30~300 mg/24h)和严重增加/大量白蛋白尿(>300 mg/24h) [12]。尿白蛋白与肌酐比值(UACR),比值<3、3~30和>30 mg/mmol分别对应正常、中度和重度白蛋白尿。该分类旨在促进慢性肾脏病严重程度的评估,并根据GFR和蛋白尿的存在确定个体心血管风险。

3. 白蛋白尿的病理生理学

白蛋白是血浆中的一种主要蛋白质,由肝细胞合成。白蛋白的主要功能是维持胶体压力。它具有抗氧化活性,并参与内源性物质(钙、胆红素等)和外源性物质,如药物的转运[13] [14]。多种途径参与白蛋白的分解代谢,在肾脏水平,肾小球滤过、近端小管重吸收和细胞内降解等机制在白蛋白的分解代谢中发挥作用[15] [16]。在正常情况下,每天只有少量白蛋白可经尿液排泄[15]。然而肾小球滤过屏障(GFB)功能的任何损害或肾小管损伤都可能导致尿液中白蛋白升高[16]。肾小球滤过屏障由内皮细胞、基底膜和足细胞构成[17],其主要功能是保持血液和尿液之间的选择性通透性。在病理状态下,如高血压、糖尿病或免疫介导的炎症,肾小球滤过屏障的完整性受损,导致白蛋白等大分子物质通过滤过进入尿液。另一个参与调节白蛋白排泄的肾单位结构是肾小管,正常情况下,少量通过肾小球滤过的白蛋白会被近端肾小管上皮细胞重吸收[17]。当肾小管上皮细胞功能受损时,重吸收能力下降,导致尿液中白蛋白含量升高[18]。GFB的改变导致肾小管对白蛋白的重吸收增加,这反过来又与肾小球系膜活性增加和肾内补体激活相关,导致炎症和肾小管损伤。这反过来又触发神经系统激活,增加肾素–血管紧张素–醛固酮系统的活性,从而促进钠和水潴留,导致容量超负荷[15] [19] [20]。蛋白尿的出现通常与超滤机制有关。这种现象可以表现为正常数量功能肾单位的肾脏GFR的超生理性增加。这种情况的例子包括妊娠及健康个体在高蛋白摄入后或在高蛋白摄入期间经历肾小球滤过率升高。此外,高滤过可能发生在患有肥胖症、糖尿病或常染色体显性遗传性肾多囊性疾病的患者中。也可以在肾单位数量减少的情况下观察到[21] [22]。在这两种情况下——无论是肾单位数量正常还是减少——目的都是提高GFR,从而导致肾小球性高血压。这种压力的增加可能与蛋白尿、肾小球硬化和肾功能受损有[19] [22]。其他可能与蛋白尿的发展有关的机制,特别是在急性心衰患者中,涉及中心静脉压(CVP)升高,导致全身充血、肾间质流体静压升高以及肾小球和全身内皮功能障碍[23]

4. 白蛋白尿与心血管疾病

4.1. 冠状动脉疾病

与正常白蛋白尿个体相比,白蛋白尿与患者的CAD严重程度增加[24];冠状动脉钙化评分增高[25];存在未检测到的无症状缺血[26];CAD区域的侧支血管发育较低[27];冠状动脉旁路移植术后预后较差[28] [29]相关。一项Meta分析报告表明,蛋白尿患者发生临床CAD的相对风险为1.41 (95% CI, 1.17~1.69) [7]。还有研究表明,蛋白尿的风险与既往心肌梗死相当[30]。在该研究中,有蛋白尿且既往无心肌梗死病史的患者与既往有心肌梗死且蛋白尿正常的患者血管事件发生率相似。已证实,白蛋白尿与CAD相关的机制与血管舒张受损[31]和炎症因子增加[32]相关。在心血管健康研究的一份报告中,在3312名年龄 ≥ 65岁、无高血压或糖尿病的参与者中,白蛋白尿与亚临床动脉粥样硬化的风险无关(OR, 1.14 [95% CI, 0.59~2.23])。相反,在高血压(OR, 1.58 [95% CI, 1.08~2.30])或糖尿病(OR, 2.51 [95% CI, 1.27~4.94])参与者中,它与亚临床动脉粥样硬化相关[33]。白蛋白尿和临床CAD之间的关联可能涉及高血压和糖尿病患者潜在动脉粥样硬化血管疾病的不稳定性,以及非高血压和糖尿病患者的内皮功能障碍。最近的报道发现,在没有糖尿病的情况下,白蛋白尿和亚临床动脉粥样硬化之间存在关联[34],因此实际的病理生理学需要进一步研究。

4.2. 中风

蛋白尿与卒中发生率之间的相关性已在2项Meta分析中得到证实。一项对38项研究(1,735,390例受试者)进行的Meta分析得出结论,任何水平的白蛋白尿都与更高的卒中风险相关,即使在调整了其他心血管风险因素后也是如此[35] (相对风险,1.72 [95% CI, 1.51~1.95])。在最近对7项研究(159,302例受试者)进行的Meta分析中,与无蛋白尿相比,有蛋白尿的卒中风险也增加[36] (风险比[HR],1.84 [95% CI, 1.49~2.28];P < 0.01)。

4.3. 动脉硬化和外周动脉疾病

横断面和前瞻性研究表明,蛋白尿与动脉硬化之间存在统计学显著的双向关联。在非裔美国人的杰克逊心脏研究中,较高的颈动脉–股动脉脉搏波速度与普遍的蛋白尿有关[37] (OR, 1.66 [95% CI, 1.32~2.11]; P < 0.001)。一项来自中国的研究报告,在高白蛋白尿和大量白蛋白尿的参与者中,UACR与颈动脉–股动脉脉搏波速度相关[38]。在Frachial Offspring研究中,颈动脉–股动脉脉搏波速度增加与蛋白尿事件相关[39]。流行病学研究表明外周动脉疾病和蛋白尿之间存在关联。在糖尿病患者中,有蛋白尿(微量白蛋白尿和大量白蛋白尿合并)的患者患外周动脉疾病的可能性是无蛋白尿患者的1.90倍(95% CI, 1.19~3.04) [40]。冲绳外周动脉疾病研究还表明外周动脉疾病与蛋白尿之间存在相关性,这可能是年轻个体动脉僵硬的结果[41]

4.4. 心肌微血管疾病

蛋白尿与心肌血流储备(也称为微血管毛细血管流量)的关系主要在糖尿病患者中进行研究。心肌血流储备是负荷心肌血流量与静息心肌血流量的比值,与心血管结局相关。在1项研究中,心肌血流储备随着尿白蛋白排泄量的增加而逐渐减少(正常白蛋白尿:2.9,SD 1.1;微量白蛋白尿:2.3,SD 1.0;大量白蛋白尿:1.8,SD 0.7;P < 0.0001) [42]。在另一项研究中,无明显CVD且有蛋白尿的T2 D患者冠状动脉微血管功能障碍的患病率较高[43]

4.5. 心衰

在对1999年至2012年国家健康和营养检查调查的1214例成人心力衰竭(HF)患者进行的横断面分析中,22.1%的患者有微量白蛋白尿,10.4%的患者有大量白蛋白尿。在校正分析中,HF患者(n = 1214)发生白蛋白尿的几率是无HF患者的1.89倍(n = 37,961) [44]。同样,在ARIC (社区动脉粥样硬化风险)研究中,10,975例患者中,正常高UACR水平(<30 mg/g)与随后的HF相关[45]。与UACR < 5 mg/g相比,UACR为5~9 mg/g和10~29 mg/g的受试者的HF校正HR分别为1.54 (95% CI, 1.12~2.11)和1.91 (95% CI, 1.38~2.66)。在同一项研究中,微量白蛋白尿和大量白蛋白尿的校正HR分别为2.49 (95% CI, 1.77~3.50)和3.47 (95% CI, 2.10~5.72)。这些估计值似乎与CAD和eGFR无关。

4.6. 心律失常

3项主要队列研究的Meta分析(杰克逊心脏研究,动脉粥样硬化的多种族研究和心血管健康研究)发现,在微量白蛋白尿(HR, 1.47 [95% CI, 1.20~1.79])和大量白蛋白尿(HR, 1.76 [95% CI, 1.18~2.62])中,房颤事件的校正风险逐步增加[46]。最近,在ARIC研究中,蛋白尿始终与较高的房颤患病率和房颤时间百分比以及较高的非持续性室性心动过速患病率相关[47]

4.7. 其他心血管疾病

白蛋白尿还与心血管系统的其他疾病相关。在T2D患者中,一项250名参与者的横断面研究显示,尿白蛋白排泄水平与糖尿病视网膜病变(潜在微血管疾病的标志)的严重程度之间存在明确的相关性[48]。在包含2271例高血压患者的研究中发现,高血压患者的高血压性视网膜病变(HR)分级与蛋白尿之间存在显著相关性。与正常人相比,HR 1级受试者的UACR增加1.42 mg/g,白蛋白尿的几率增加57%,HR 2级受试者的UACR增加2.62 mg/g,白蛋白尿的几率增加102%;在3级HR的受试者中,UACR增加了5.17 mg/g,白蛋白尿的几率增加了112%。提示随着HR的加重,蛋白尿更明显,肾损害更严重[49]。微血管疾病和白蛋白尿之间的相关性也与糖尿病周围神经病变有关,其中UACR的变化≥30%可能表明新发糖尿病周围神经病变的风险[50]

5. 降低蛋白尿对心血管结局的影响

目前有几类药物可以降低蛋白尿从而降低CVD的风险。特别令人感兴趣的是肾素–血管紧张素–醛固酮系统(RAAS)抑制剂、钠–葡萄糖协同转运蛋白2 (SGLT2)抑制剂,胰高血糖素样肽1受体激动剂(GLP-1 RA)以及甾体和非甾体盐皮质激素受体拮抗剂(MRA)。

5.1. RASS抑制剂

使用血管紧张素转换酶抑制剂(ACEI)或血管紧张素受体阻滞剂(ARB)降低肾小球内压可最大程度地减少甚至预防肾小球疾病和白蛋白排泄。一项在正常白蛋白尿的1型糖尿病患者中进行的实验表明,早期阻断1型糖尿病患者的肾素–血管紧张素系统在预防微量白蛋白尿的发展方面没有显示出任何益处[51]。2型糖尿病患者的结果尚无定论。更多可靠的数据支持RAAS抑制剂在伴有明显蛋白尿的糖尿病肾病中的应用。研究组评估了卡托普利与安慰剂对1型糖尿病和蛋白尿患者CKD进展的影响[52]。尽管血压控制相似,但卡托普利组慢性肾脏疾病进展或终末期肾脏病的发生率显著较低。类似地,RENAAL (血管紧张素II拮抗剂氯沙坦降低NIDDM终点) [53]和IDNT (厄贝沙坦糖尿病肾病试验) [54]试验的数据证实了ARB在伴有蛋白尿的糖尿病肾病患者中的肾保护作用。白蛋白尿是心血管和肾脏两个轴相互作用的最重要的风险因素之一[55]。随着白蛋白尿增加,心血管事件和死亡的风险显著增加。对CKD患者的Meta分析显示,血管紧张素转换酶抑制剂(OR, 0.82 [95% CI, 0.71~0.92])和血管紧张素II受体阻滞剂(OR, 0.76 [95% CI, 0.62~0.89])降低了肾衰竭和心血管事件的风险[56]。因此,多年来,RAAS阻滞剂的使用一直被认为是降低心血管风险和减缓糖尿病肾病进展的金标准疗法。

5.2. SGLT2i

SGLT2i可降低UACR并预防伴或不伴T2DM患者的肾衰竭进展[57] [58]。这些药物还可预防HFrEF和HFpEF的发生,并减少伴或不伴T2DM的心血管死亡或因HF住院/紧急访视的复合终点[59]。在过去几年中,发表了2项SGLT2抑制剂试验,旨在研究其对肾脏主要终点的影响。CREDENCE研究(卡格列净和确诊肾病的糖尿病患者的肾脏事件临床评价)将4401例T2D和白蛋白尿CKD (UACR为300~5000 mg/g)已接受ACE抑制剂或ARB治疗的患者随机分为卡格列净或安慰剂组[57]。由于卡格列净的明显获益,研究提前终止(中位随访时间为2.62年,而预计持续时间为5.5年)。卡格列净显著降低了主要结局的风险(终末期肾病(ESKD)、SCr加倍或肾脏或心血管原因导致的死亡;HR,0.70 [95% CI, 0.59~0.82]),以及ESKD和SCr加倍的个体风险。在CREDENCE中,心血管死亡(主要结局的组成部分)也显著降低(HR, 0.78 [95% CI, 0.61~1.00])。最重要的是,尽管试验提前终止,但与安慰剂相比,卡格列净可降低所有报告的复合或个体心血管结局,包括心血管死亡或因心力衰竭住院。全因死亡率呈下降趋势(HR, 0.83 [95% CI, 0.68~1.02])。DAPA-CKD (评价达格列净对慢性肾脏病患者肾脏结局和心血管死亡率影响的研究)旨在评价达格列净10 mg每日一次与安慰剂相比在伴或不伴糖尿病的CKD患者中的作用。主要入选标准为eGFR ≥ 25且≤75 mL/min/1.73m2,UACR 200且≤5000 mg/g,以及接受最大耐受标示剂量的ACE抑制剂或ARB治疗[58] [60]。该研究招募了4304名参与者(67.5%患有T2 D),平均eGFR为43.1 mL/min/1.73m2,中位UACR为949 mg/g。DAPA-CKD由于获益证据也提前终止(中位数为2.4年),显示主要结局(eGFR、ESKD或心血管或肾脏死亡下降≥50%)显著降低(HR, 0.61 [95% CI, 0.51~0.72])。

5.3. GLP-1 RA

GLP-1受体激动剂(GLP-1 RA)是一种抗糖尿病药物,具有通过抑制氧化应激、纤维化和细胞凋亡减缓慢性肾病(CKD)进展的潜力[61]。根据最近包含至少22篇已发表文章的荟萃分析[62],与安慰剂相比,GLP-1 RA的使用与2型糖尿病患者的白蛋白尿显著减少(16.14%)相关。此外,它们有助于预防非致命性和致命性中风和心肌梗死的发展,这可能与GLP-1对血小板活化和动脉粥样硬化斑块稳定性的影响有关[63]。在2型糖尿病(REWIND)试验中,68%的参与者没有已知的CVD,GLP-1 RA度拉糖肽减少了既往有和无CVD患者的主要不良心血管事件[64]。GLP-1 RA还可降低食欲和体重,司美格鲁肽可独立于T2 DM降低体重[65]。与安慰剂相比,每周一次替泽帕肽还可显著和持续降低肥胖患者或心血管高危超重患者的体重,这些患者还伴有较低的BP、甘油三酯和LDL胆固醇,以及升高的HDL胆固醇[66]这种总体改善的特征可能会改善心血管和肾脏结局。

5.4. MRA

甾体类MRA螺内酯和依普利酮可降低UACR,但由于高钾血症风险,禁用于重度肾病患者(eGFR <30 mL/min/1.73m2)。然而,尽管它们也能降低顽固性高血压患者的血压和HFrEF患者(可能为HFpEF)的心血管结局,但由于担心高钾血症,即使在肾功能正常的患者中,它们的使用仍不理想。然而,非甾体类MRA(如非那利酮)的开发和临床使用与糖尿病肾病患者的高钾血症发生率较低、肾衰竭进展较慢以及心血管结局减少相关[67]-[70]。与甾体类MRAs相比,非甾体类MRA与盐皮质激素受体的结合模式不同,干扰不同的转录辅激活因子伴侣,并且它们在肾脏和心脏之间的分布也不同[71]。甾体类MRA主要分布在肾脏,较少分布在心脏,而非甾体类MRA在肾脏和心脏之间分布更均匀,这可能是高钾血症发生率较低的部分原因。特别令人感兴趣的是非那利酮降低糖尿病肾病心血管死亡率和发病率(FIGARO)试验的发现,其中62%的患者显示UACR水平>30 mg但eGFR > 60 mL/min/1.73m2,并且其中非那利酮降低心血管结局(主要是因HF住院)和进展为肾衰竭[69]。虽然在FIGARO试验中,随机接受非那利酮治疗的患者高钾血症的发生率是对照组的两倍,但因高钾血症而停用非那利酮的患者比例仅为1%左右[70]。SGLT 2和MRA单独使用或与RAS阻断剂联合使用有望预防蛋白尿患者,包括UACR < 30 mg/g和eGFR > 60 mL/min/1.73m2的患者的心肾结局。此外,目前的数据表明,低剂量SGLT2i恩格列净和非甾体MRA芬利酮联合用药在降低死亡率方面具有相加作用[67]。需要进一步的研究来评估上述药物在早期白蛋白尿(UACR 10~30 mg/g)和eGFR > 60 mL/min/1.73m2患者中预防CKD恶化的疗效、安全性和成本效益。

6. 小结

白蛋白尿是生理应激增加的标志,也是需要加强医疗护理的指标。它的识别和治疗可以改善医疗结果并降低医疗成本。已经确定,蛋白尿与CVD的几种表现和CVD死亡率有很强的相关性。尽管有这些知识,高风险患者(如糖尿病或高血压患者)的白蛋白尿筛查率仍然很低。敦促卫生保健专业人员按照现行指南筛查蛋白尿。提高对推荐的白蛋白尿检测指南的依从性可能会提供大量的临床和经济效益。白蛋白尿诊断支持识别有CVD和CKD风险的患者,并提供了一个关键的早期机会,可以通过心肾保护性治疗进行干预,以减缓疾病进展并改善患者结局。指南的建议也应该更明确,明确指导谁筛查,何时筛查,以及如何管理蛋白尿。

参考文献

[1] Braunwald, E. (2008) Biomarkers in Heart Failure. New England Journal of Medicine, 358, 2148-2159.
https://doi.org/10.1056/nejmra0800239
[2] Mihalj, M., Heinisch, P.P., Huber, M., Schefold, J.C., Hartmann, A., Walter, M., et al. (2021) Effect of Perioperative Lipid Status on Clinical Outcomes after Cardiac Surgery. Cells, 10, Article No. 2717.
https://doi.org/10.3390/cells10102717
[3] Boffa, M.B. and Koschinsky, M.L. (2024) Lipoprotein(a) and Cardiovascular Disease. Biochemical Journal, 481, 1277-1296.
https://doi.org/10.1042/bcj20240037
[4] De Hert, S.G. and Lurati Buse, G.A. (2020) Cardiac Biomarkers for the Prediction and Detection of Adverse Cardiac Events after Noncardiac Surgery: A Narrative Review. Anesthesia & Analgesia, 131, 187-195.
https://doi.org/10.1213/ane.0000000000004711
[5] Drury, P.L., Ting, R., Zannino, D., Ehnholm, C., Flack, J., Whiting, M., et al. (2010) Estimated Glomerular Filtration Rate and Albuminuria Are Independent Predictors of Cardiovascular Events and Death in Type 2 Diabetes Mellitus: The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia, 54, 32-43.
https://doi.org/10.1007/s00125-010-1854-1
[6] Danesh, J., Wheeler, J.G., Hirschfield, G.M., Eda, S., Eiriksdottir, G., Rumley, A., et al. (2004) C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. New England Journal of Medicine, 350, 1387-1397.
https://doi.org/10.1056/nejmoa032804
[7] Xia, F., Liu, G., Shi, Y., et al. (2015) Impact of Microalbuminuria on Incident Coronary Heart Disease, Cardiovascular and All-Cause Mortality: A Meta-Analysis of Prospective Studies. International Journal of Clinical and Experimental Medicine, 8, 1-9.
[8] Levey, A.S., Grams, M.E. and Inker, L.A. (2022) Uses of GFR and Albuminuria Level in Acute and Chronic Kidney Disease. New England Journal of Medicine, 386, 2120-2128.
https://doi.org/10.1056/nejmra2201153
[9] Warren, A.M., Knudsen, S.T. and Cooper, M.E. (2019) Diabetic Nephropathy: An Insight into Molecular Mechanisms and Emerging Therapies. Expert Opinion on Therapeutic Targets, 23, 579-591.
https://doi.org/10.1080/14728222.2019.1624721
[10] Levey, A.S., Eckardt, K., Dorman, N.M., Christiansen, S.L., Hoorn, E.J., Ingelfinger, J.R., et al. (2020) Nomenclature for Kidney Function and Disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International, 97, 1117-1129.
https://doi.org/10.1016/j.kint.2020.02.010
[11] American Diabetes Association (2011) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 34, S62-S69.
https://doi.org/10.2337/dc11-s062
[12] Gansevoort, R.T. and Ritz, E. (2008) Hermann Senator and Albuminuria—Forgotten Pioneering Work in the 19th Century. Nephrology Dialysis Transplantation, 24, 1057-1062.
https://doi.org/10.1093/ndt/gfn741
[13] Paar, M., Fengler, V.H., Rosenberg, D.J., Krebs, A., Stauber, R.E., Oettl, K., et al. (2021) Albumin in Patients with Liver Disease Shows an Altered Conformation. Communications Biology, 4, Article No. 731.
https://doi.org/10.1038/s42003-021-02269-w
[14] Merlot, A.M., Kalinowski, D.S. and Richardson, D.R. (2014) Unraveling the Mysteries of Serum Albumin—More than Just a Serum Protein. Frontiers in Physiology, 5, Article No. 299.
https://doi.org/10.3389/fphys.2014.00299
[15] Devuyst, O. and Ronco, P. (2023) Tubular Handling of Filtered Albumin. Kidney International, 104, 1073-1075.
https://doi.org/10.1016/j.kint.2023.10.002
[16] Gburek, J., Konopska, B. and Gołąb, K. (2021) Renal Handling of Albumin—From Early Findings to Current Concepts. International Journal of Molecular Sciences, 22, Article No. 5809.
https://doi.org/10.3390/ijms22115809
[17] Birn, H. and Christensen, E.I. (2006) Renal Albumin Absorption in Physiology and Pathology. Kidney International, 69, 440-449.
https://doi.org/10.1038/sj.ki.5000141
[18] D’Amico, G. and Bazzi, C. (2003) Pathophysiology of Proteinuria. Kidney International, 63, 809-825.
https://doi.org/10.1046/j.1523-1755.2003.00840.x
[19] Khan, M.S., Shahid, I., Anker, S.D., Fonarow, G.C., Fudim, M., Hall, M.E., et al. (2023) Albuminuria and Heart Failure. Journal of the American College of Cardiology, 81, 270-282.
https://doi.org/10.1016/j.jacc.2022.10.028
[20] Comper, W.D., Vuchkova, J. and McCarthy, K.J. (2022) New Insights into Proteinuria/Albuminuria. Frontiers in Physiology, 13, Article ID: 991756.
https://doi.org/10.3389/fphys.2022.991756
[21] Benzing, T. and Salant, D. (2021) Insights into Glomerular Filtration and Albuminuria. New England Journal of Medicine, 384, 1437-1446.
https://doi.org/10.1056/nejmra1808786
[22] Cortinovis, M., Perico, N., Ruggenenti, P., Remuzzi, A. and Remuzzi, G. (2022) Glomerular Hyperfiltration. Nature Reviews Nephrology, 18, 435-451.
https://doi.org/10.1038/s41581-022-00559-y
[23] Pugliese, N.R., Masi, S. and Taddei, S. (2022) Rethinking Albuminuria as a Marker to Drive Treatment in Congestive Heart Failure. European Heart Journal, 44, 381-382.
https://doi.org/10.1093/eurheartj/ehac612
[24] Ozyol, A., Yucel, O., Ege, M.R., Zorlu, A. and Yilmaz, M.B. (2011) Microalbuminuria Is Associated with the Severity of Coronary Artery Disease Independently of Other Cardiovascular Risk Factors. Angiology, 63, 457-460.
https://doi.org/10.1177/0003319711423528
[25] Song, J.J., Lee, K., Hyun, Y.Y. and Kim, H. (2018) Trace Albumin in the Urine Dipstick Test Is Associated with Coronary Artery Calcification in Korean Adults. Nephron, 140, 169-174.
https://doi.org/10.1159/000490954
[26] Giovacchini, G., Cappagli, M., Carro, S., Borrini, S., Montepagani, A., Leoncini, R., et al. (2013) Microalbuminuria Predicts Silent Myocardial Ischaemia in Type 2 Diabetes Patients. European Journal of Nuclear Medicine and Molecular Imaging, 40, 548-557.
https://doi.org/10.1007/s00259-012-2323-5
[27] Topsakal, R., Kaya, M.G., Duran, M., Gunebakmaz, O., Dogan, A., Inanc, T., et al. (2009) The Relation between Microalbuminuria and Coronary Collateral Vessel Development in Patients with Unstable Coronary Artery Disease. Coronary Artery Disease, 20, 431-434.
https://doi.org/10.1097/mca.0b013e3283277650
[28] George, L.K., Molnar, M.Z., Lu, J.L., Kalantar-Zadeh, K., Koshy, S.K.G. and Kovesdy, C.P. (2015) Association of Pre-Operative Albuminuria with Post-Operative Outcomes after Coronary Artery Bypass Grafting. Scientific Reports, 5, Article No. 16458.
https://doi.org/10.1038/srep16458
[29] Shafranskaya, K.S., Kashtalap, V.V., Kutikhin, A.G., Barbarash, O.L. and Barbarash, L.S. (2015) Microalbuminuria and Prediction of Cardiovascular Complications in Patients with Coronary Artery Disease and Type 2 Diabetes Mellitus after CABG Surgery. Heart, Lung and Circulation, 24, 951-959.
https://doi.org/10.1016/j.hlc.2015.03.004
[30] Sacks, D., Baxter, B., Campbell, B.C.V., Carpenter, J.S., Cognard, C., Dippel, D., et al. (2018) Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Journal of Vascular and Interventional Radiology, 29, 441-453.
https://doi.org/10.1016/j.jvir.2017.11.026
[31] Koyoshi, R., Hitaka-Yoshimine, Y., Shiga, Y., Kuwano, T., Sugihara, M., Ike, A., et al. (2018) Associations between Microalbuminuria and Parameters of Flow-Mediated Vasodilatation Obtained by Continuous Measurement Approaches. Clinical and Experimental Hypertension, 40, 715-720.
https://doi.org/10.1080/10641963.2018.1425422
[32] von Scholten, B.J., Reinhard, H., Hansen, T.W., Schalkwijk, C.G., Stehouwer, C., Parving, H., et al. (2016) Markers of Inflammation and Endothelial Dysfunction Are Associated with Incident Cardiovascular Disease, All-Cause Mortality, and Progression of Coronary Calcification in Type 2 Diabetic Patients with Microalbuminuria. Journal of Diabetes and its Complications, 30, 248-255.
https://doi.org/10.1016/j.jdiacomp.2015.11.005
[33] Cao, J.J., Barzilay, J.I., Peterson, D., Manolio, T.A., Psaty, B.M., Kuller, L., et al. (2006) The Association of Microalbuminuria with Clinical Cardiovascular Disease and Subclinical Atherosclerosis in the Elderly: The Cardiovascular Health Study. Atherosclerosis, 187, 372-377.
https://doi.org/10.1016/j.atherosclerosis.2005.09.015
[34] Kimura, T., Ueno, T., Doi, S., Nakashima, A., Doi, T., Ashitani, A., et al. (2019) High-Normal Albuminuria Is Associated with Subclinical Atherosclerosis in Male Population with Estimated Glomerular Filtration Rate ≥ 60 ml/min/1.73m2: A Cross-Sectional Study. PLOS ONE, 14, e0218290.
https://doi.org/10.1371/journal.pone.0218290
[35] Liu, F., Shen, X., Zhao, R., Tao, X., Wang, S., Zhou, J., et al. (2016) Pulse Pressure as an Independent Predictor of Stroke: A Systematic Review and a Meta-Analysis. Clinical Research in Cardiology, 105, 677-686.
https://doi.org/10.1007/s00392-016-0972-2
[36] Li, M., Cheng, A., Sun, J., Fan, C. and Meng, R. (2021) The Role of Urinary Albumin-to-Creatinine Ratio as a Biomarker to Predict Stroke. Brain Circulation, 7, 139-146.
https://doi.org/10.4103/bc.bc_64_20
[37] Nagarajarao, H.S., Musani, S.K., Cobb, K.E., Pollard, J.D., Cooper, L.L., Anugu, A., et al. (2021) Kidney Function and Aortic Stiffness, Pulsatility, and Endothelial Function in African Americans: The Jackson Heart Study. Kidney Medicine, 3, 702-711.e1.
https://doi.org/10.1016/j.xkme.2021.03.018
[38] Ye, C., Gong, J., Wang, T., Luo, L., Lian, G., Wang, H., et al. (2020) Relationship between High‐Normal Albuminuria and Arterial Stiffness in Chinese Population. The Journal of Clinical Hypertension, 22, 1674-1681.
https://doi.org/10.1111/jch.13979
[39] Vasan, R.S., Short, M.I., Niiranen, T.J., Xanthakis, V., DeCarli, C., Cheng, S., et al. (2019) Interrelations between Arterial Stiffness, Target Organ Damage, and Cardiovascular Disease Outcomes. Journal of the American Heart Association, 8, e012141.
https://doi.org/10.1161/jaha.119.012141
[40] Wattanakit, K., Folsom, A.R., Criqui, M.H., Kramer, H.J., Cushman, M., Shea, S., et al. (2008) Albuminuria and Peripheral Arterial Disease: Results from the Multi-Ethnic Study of Atherosclerosis (Mesa). Atherosclerosis, 201, 212-216.
https://doi.org/10.1016/j.atherosclerosis.2007.12.044
[41] Ishida, A., Nakachi-Miyagi, M., Kinjo, K., Iseki, K. and Ohya, Y. (2014) A High Normal Ankle-Brachial Index Is Associated with Proteinuria in a Screened Cohort of Japanese. Journal of Hypertension, 32, 1435-1443.
https://doi.org/10.1097/hjh.0000000000000196
[42] Potier, L., Chequer, R., Roussel, R., Mohammedi, K., Sismail, S., Hartemann, A., et al. (2018) Relationship between Cardiac Microvascular Dysfunction Measured with 82Rubidium-PET and Albuminuria in Patients with Diabetes Mellitus. Cardiovascular Diabetology, 17, Article No. 11.
https://doi.org/10.1186/s12933-017-0652-1
[43] von Scholten, B.J., Hasbak, P., Christensen, T.E., Ghotbi, A.A., Kjaer, A., Rossing, P., et al. (2015) Cardiac 82Rb PET/CT for Fast and Non-Invasive Assessment of Microvascular Function and Structure in Asymptomatic Patients with Type 2 Diabetes. Diabetologia, 59, 371-378.
https://doi.org/10.1007/s00125-015-3799-x
[44] Odutayo, A., Hsiao, A.J. and Emdin, C.A. (2016) Prevalence of Albuminuria in a General Population Cohort of Patients with Established Chronic Heart Failure. Journal of Cardiac Failure, 22, 33-37.
https://doi.org/10.1016/j.cardfail.2015.10.009
[45] Blecker, S., Matsushita, K., Köttgen, A., Loehr, L.R., Bertoni, A.G., Boulware, L.E., et al. (2011) High-Normal Albuminuria and Risk of Heart Failure in the Community. American Journal of Kidney Diseases, 58, 47-55.
https://doi.org/10.1053/j.ajkd.2011.02.391
[46] Bansal, N., Zelnick, L.R., Alonso, A., Benjamin, E.J., de Boer, I.H., Deo, R., et al. (2017) EGFR and Albuminuria in Relation to Risk of Incident Atrial Fibrillation: A Meta-Analysis of the Jackson Heart Study, the Multi-Ethnic Study of Atherosclerosis, and the Cardiovascular Health Study. Clinical Journal of the American Society of Nephrology, 12, 1386-1398.
https://doi.org/10.2215/cjn.01860217
[47] Kim, E.D., Soliman, E.Z., Coresh, J., Matsushita, K. and Chen, L.Y. (2020) Two-Week Burden of Arrhythmias across CKD Severity in a Large Community-Based Cohort: The ARIC Study. Journal of the American Society of Nephrology, 32, 629-638.
https://doi.org/10.1681/asn.2020030301
[48] Dash, S., Chougule, A. and Mohanty, S. (2022) Correlation of Albuminuria and Diabetic Retinopathy in Type-II Diabetes Mellitus Patients. Cureus, 14, e21927.
https://doi.org/10.7759/cureus.21927
[49] Li, J., Zhang, W., Zhao, L., Zhang, J., She, H., Meng, Y., et al. (2023) Positive Correlation between Hypertensive Retinopathy and Albuminuria in Hypertensive Adults. BMC Ophthalmology, 23, Article No. 66.
https://doi.org/10.1186/s12886-023-02807-6
[50] Zhong, M., Yang, Y., Zhang, Y. and Yan, S. (2021) Change in Urine Albumin-to-Creatinine Ratio and Risk of Diabetic Peripheral Neuropathy in Type 2 Diabetes: A Retrospective Cohort Study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 1763-1772.
https://doi.org/10.2147/dmso.s303096
[51] Mauer, M., Zinman, B., Gardiner, R., Suissa, S., Sinaiko, A., Strand, T., et al. (2009) Renal and Retinal Effects of Enalapril and Losartan in Type 1 Diabetes. New England Journal of Medicine, 361, 40-51.
https://doi.org/10.1056/nejmoa0808400
[52] Lewis, E.J., Hunsicker, L.G., Bain, R.P. and Rohde, R.D. (1993) The Effect of Angiotensin-Converting-Enzyme Inhibition on Diabetic Nephropathy. New England Journal of Medicine, 329, 1456-1462.
https://doi.org/10.1056/nejm199311113292004
[53] Brenner, B.M., Cooper, M.E., de Zeeuw, D., Keane, W.F., Mitch, W.E., Parving, H., et al. (2001) Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 345, 861-869.
https://doi.org/10.1056/nejmoa011161
[54] Lewis, E.J., Hunsicker, L.G., Clarke, W.R., Berl, T., Pohl, M.A., Lewis, J.B., et al. (2001) Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. New England Journal of Medicine, 345, 851-860.
https://doi.org/10.1056/nejmoa011303
[55] Ruilope, L.M. and Bakris, G.L. (2011) Renal Function and Target Organ Damage in Hypertension. European Heart Journal, 32, 1599-1604.
https://doi.org/10.1093/eurheartj/ehr003
[56] Xie, X., Liu, Y., Perkovic, V., Li, X., Ninomiya, T., Hou, W., et al. (2016) Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients with CKD: A Bayesian Network Meta-Analysis of Randomized Clinical Trials. American Journal of Kidney Diseases, 67, 728-741.
https://doi.org/10.1053/j.ajkd.2015.10.011
[57] Perkovic, V., Jardine, M.J., Neal, B., Bompoint, S., Heerspink, H.J.L., Charytan, D.M., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380, 2295-2306.
https://doi.org/10.1056/nejmoa1811744
[58] Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/nejmoa2024816
[59] Cardoso, R., Graffunder, F.P., Ternes, C.M.P., Fernandes, A., Rocha, A.V., Fernandes, G., et al. (2021) SGLT2 Inhibitors Decrease Cardiovascular Death and Heart Failure Hospitalizations in Patients with Heart Failure: A Systematic Review and Meta-Analysis. EClinicalMedicine, 36, Article ID: 100933.
https://doi.org/10.1016/j.eclinm.2021.100933
[60] Wheeler, D.C., Stefansson, B.V., Batiushin, M., Bilchenko, O., Cherney, D.Z.I., Chertow, G.M., et al. (2020) The Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) Trial: Baseline Characteristics. Nephrology Dialysis Transplantation, 35, 1700-1711.
https://doi.org/10.1093/ndt/gfaa234
[61] Górriz, J.L., Soler, M.J., Navarro-González, J.F., García-Carro, C., Puchades, M.J., D’Marco, L., et al. (2020) GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Call of Attention to Nephrologists. Journal of Clinical Medicine, 9, Article No. 947.
https://doi.org/10.3390/jcm9040947
[62] Yuan, D., Sharma, H., Krishnan, A., Vangaveti, V.N. and Malabu, U.H. (2022) Effect of Glucagon‐Like Peptide 1 Receptor Agonists on Albuminuria in Adult Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes, Obesity and Metabolism, 24, 1869-1881.
https://doi.org/10.1111/dom.14776
[63] Gilbert, R.E. and Connelly, K.A. (2019) Reduction in the Incidence of Myocardial Infarction with Sodium-Glucose Linked Cotransporter-2 Inhibitors: Evident and Plausible. Cardiovascular Diabetology, 18, Article No. 6.
https://doi.org/10.1186/s12933-019-0812-6
[64] Gerstein, H.C., Colhoun, H.M., Dagenais, G.R., Diaz, R., Lakshmanan, M., Pais, P., et al. (2019) Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. The Lancet, 394, 121-130.
https://doi.org/10.1016/s0140-6736(19)31149-3
[65] Wilding, J.P.H., Batterham, R.L., Calanna, S., Davies, M., Van Gaal, L.F., Lingvay, I., et al. (2021) Once-Weekly Semaglutide in Adults with Overweight or Obesity. New England Journal of Medicine, 384, 989-1002.
https://doi.org/10.1056/nejmoa2032183
[66] (2022) Tirzepatide Once Weekly for the Treatment of Obesity. New England Journal of Medicine, 387, 1433-1435.
[67] Pitt, B., Filippatos, G., Agarwal, R., Anker, S.D., Bakris, G.L., Rossing, P., et al. (2021) Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. New England Journal of Medicine, 385, 2252-2263.
https://doi.org/10.1056/nejmoa2110956
[68] Filippatos, G., Anker, S.D., Agarwal, R., Pitt, B., Ruilope, L.M., Rossing, P., et al. (2021) Finerenone and Cardiovascular Outcomes in Patients with Chronic Kidney Disease and Type 2 Diabetes. Circulation, 143, 540-552.
https://doi.org/10.1161/circulationaha.120.051898
[69] Patel, R.B., Fonarow, G.C., Greene, S.J., Zhang, S., Alhanti, B., DeVore, A.D., et al. (2021) Kidney Function and Outcomes in Patients Hospitalized with Heart Failure. Journal of the American College of Cardiology, 78, 330-343.
https://doi.org/10.1016/j.jacc.2021.05.002
[70] Zahir, D., Bonde, A., Madelaire, C., Malmborg, M., Butt, J.H., Fosbol, E., et al. (2022) Temporal Trends in Initiation of Mineralocorticoid Receptor Antagonists and Risk of Subsequent Withdrawal in Patients with Heart Failure: A Nationwide Study in Denmark from 2003-2017. European Journal of Heart Failure, 24, 539-547.
https://doi.org/10.1002/ejhf.2418
[71] Agarwal, R., Kolkhof, P., Bakris, G., Bauersachs, J., Haller, H., Wada, T., et al. (2020) Steroidal and Non-Steroidal Mineralocorticoid Receptor Antagonists in Cardiorenal Medicine. European Heart Journal, 42, 152-161.
https://doi.org/10.1093/eurheartj/ehaa736