阿托品在近视防控中不同作用机制的研究进展
Research Progress on the Different Mechanisms of Athropine in Myopia Prevention and Control
DOI: 10.12677/hjo.2024.134016, PDF, HTML, XML,   
作者: 左正波*:大理大学临床医学院,云南 大理;董开业:大理大学第一附属医院眼科,云南 大理;邱 东:大理眼视光医院眼科,云南 大理;李才锐#:大理州人民医院眼科,云南 大理
关键词: 近视阿托品机制Myopia Atropine Mechanism
摘要: 近年来近视发病率在全世界范围内不断攀升,尽管在政府及医院监管下,部分地区近视发病率较之前稍有下降,但因人群基数大,高度近视、病理性近视占比不断升高,现仍给社会、家庭及个人带来巨大负担。在近视防控过程中,常见的方法包括行为干预、光学及药物干预;其中阿托品已广泛应用在近视防控过程中,并取得了疗效。然而,尽管科学家们做了大量研究,阿托品的具体作用机制尚未完全明确,甚至不同研究得出的结论却都截然不同。本综述收集了不同的临床及动物实验,希望从不同的组织结构及分子生物的变化过程中进一步探索阿托品在近视防控过程中的作用机制,并为后续研究提供一些新思路。
Abstract: In recent years, the incidence of myopia has been rising around the world. Although in some areas under the supervision of the government and hospitals, the incidence rate of myopia has dropped slightly than before, due to the large population base, the increasing proportion of high myopia and pathological myopia brings a huge burden to families and individuals. In the process of myopia prevention and control, common methods include behavioral intervention, optical, and drug intervention; among them, atropine has been widely used in the prevention and control of myopia and has achieved good results. However, despite extensive research by scientists, the specific mechanism of action of the product is not yet completely clear, and different studies have even reached completely different conclusions. This review collects different clinical and animal experiments that aim to summarize the role of atropine in the prevention and control of myopia from the changes in different tissue cells and molecular organisms and provide some new ideas for subsequent research.
文章引用:左正波, 董开业, 邱东, 李才锐. 阿托品在近视防控中不同作用机制的研究进展[J]. 眼科学, 2024, 13(4): 119-127. https://doi.org/10.12677/hjo.2024.134016

1. 研究现状

现如今近视在多个国家广泛流行。在世界的某些地区,12至13岁的年轻人近视患病率高达70%至90% [1]-[6]。一些预测表明,到2050年,世界上将有近50%的人口是近视,其中10%左右是高度近视[7]。在中国,近年来,儿童青少年近视率同样高居不下;2022年中国儿童青少年总体近视率高达51.9%,其中,小学36.7%,初中71.4%,高中81.2% [8];流行病学调查显示,幼儿园6岁儿童中有1.5%为高度近视,高三学生高度近视率更是高达20% [9]-[11]

需要注意的是,高度近视可引起严重的病理后果,包括近视黄斑病变和近视相关的视神经病变等,这些是最常见不可逆失明的原因[12]。因此,有必要采取措施以降低近视的患病率和减缓高度近视的进展。现阶段可采取的减少近视发生发展的措施包括公共卫生干预,局部使用低浓度阿托品眼液,光学干预,如多焦眼镜、角膜塑形镜(OK镜)等。其中以阿托品应用最为广泛。[13]

阿托品已被证明在减缓近视进展方面持续有效[14];早在上世纪,有学者对使用1%的阿托品滴眼液的近视患者进行长达5年的随访调查,发现阿托品可有效延缓近视进展程度[15]。然而随着深入研究,发现该浓度下的阿托品滴眼液具有较高的不良反应发生率,副作用反应限制了其作用;Gong等[16]的综合分析显示,高、中、低浓度阿托品畏光的发生率分别为43.1%、17.8%和6.3%,阿托品畏光的发生与浓度呈正相关。但是,随着对阿托品近视防控研究的深入,低浓度阿托品已经越来越广泛应用在近视防控中。在2006年,Chua和他的同事对使用阿托品儿童进行了一项为期2年的研究(ATOM-1) [17],研究发现1%阿托品组的近视平均进展速度要显著低于接受安慰剂组。但停止用药一年后,实验组近视进展较对照组增快。为探寻既对近视防控有效且副作用及反弹效果低的阿托品浓度,Chua等人再次进行研究,在2012年发布的ATOM-2研究显示,低浓度的阿托品滴眼液,如0.5%、0.1%和0.01%,都能显著抑制近视进展,且呈浓度依赖性,但在停药后,0.01%阿托品滴眼液的反弹效应明显小于其余两个浓度的阿托品滴眼液[18]。因此,基于ATOM-2研究,0.01%阿托品滴眼液已被广泛用于临床。在Low-Concentration Atropine of Myopia Progression (LAMP)研究中同样证实了低浓度阿托品对近视控制的有效性及安全性[19]

阿托品是茄科植物中的一种天然生物碱,主要从颠茄中提取,是抗毒蕈碱药物,作为一种竞争性拮抗剂,能阻断毒蕈碱受体受神经递质乙酰胆碱的刺激。并且,抗胆碱能药物不与乙酰胆碱发生任何化学反应,也不影响乙酰胆碱的释放或水解速率[20]。此外,阿托品抑制作用还是非选择性的,这意味着它不能区分M1-M5受体。阿托品主要在肠道中被吸收,并广泛分布在体内,在肝脏中代谢后并在尿液中排泄。另外阿托品还有抑制分泌物、放松平滑肌、增加心率、提升呼吸频率和深度等作用[21]

阿托品作为目前抑制儿童近视最常用的药物,被认为是“预防近视的重要一步”。然而,尽管进行了大量的研究工作,但对其抑制近视的机制仍不完全了解。起初学者发现在使用阿托品后因为睫状肌的麻痹而产生了远视漂移[22]-[24],由此推测阿托品可能是通过引起调节麻痹达到延缓近视进展。然而有学者发现阿托品在没有调节力的动物(如小鸡)中也能抑制近视进展,说明可能存在非调节机制参与此过程[19]。本文总结了阿托品控制近视进展的不同动物及临床实验,旨在探索阿托品在近视防控中的作用机制,探索新途径。

2. 作用机制

2.1. 对巩膜的作用

巩膜是一种特殊的纤维结缔组织,是眼睛的保护层。眼睛过度的伸长会导致屈光不正和近视的发展,这些可归因于巩膜结构重塑从而导致的巩膜变薄,在这一重塑过程中,某些分子和生物事件发生在巩膜中[25]。在分子生物学方面有证据表明,在对阿托品处理近视小鼠中,实时荧光定量PCR显示,巩膜M1,M3和M4受体在阿托品治疗后上调,但M2和M5变化不大[26]

我们知道M受体在中枢神经系统(CNS)的神经元和胶质细胞以及各种外周组织中均有表达[27]-[30]。M受体在CNS中调节大量重要的中枢功能。在对非神经细胞中M受体的研究表明,它们还参与调节眼睛生长过程中的细胞增殖[31] [32]、泪液产生和晶状体细胞信号传导等过程[33] [34]。另外有研究表明在巩膜中阿托品降低了小鼠巩膜成纤维细胞(Scleral Fibroblasts, SFs)的增殖,导致巩膜组织重塑而控制近视[35];此外还发现表皮生长因子(EGF)和转化生长因子-β1 (TGF-β1)也可能参与了阿托品控制近视的生物学机制,EGF、TGF-β1在细胞修复、增殖、调节细胞分化和细胞外基质(Extracellular Matrix, ECM)生成中具有重要作用[36]。EGF通过表皮生长因子受体(EFG-R)发挥作用,该受体是酪氨酸激酶的ErbB家族成员[37]。酪氨酸磷酸化EGF-R导致ERK/MAPK通路的激活[38]。EGF-R的功能是传递细胞内信号,从而调节细胞生长。EGF-R功能调控的改变和受体或配体的过度表达导致细胞增殖。因此Voldborg等人认为阿托品的抗近视作用可能通过毒蕈碱受体直接介导,也可能通过EGF、TGF-β等生长因子间接介导,进而调控SF细胞增殖。

继续对巩膜成纤维细胞进行研究,发现SF有分泌胶原纤维的功能,后者是巩膜细胞外基质(ECM)的主要成分[39]。ECM产生和降解失衡是引起巩膜细胞外基质重塑、引起近视发生的重要原因[40]-[42];在对近视大鼠巩膜组织的研究发现,巩膜细胞外基质成分如光蛋白聚糖(Lumican)以及基质金属蛋白酶(MMP)、MMP抑制剂(TIMP)与正常巩膜组织相比呈现不同表达。其中MMP-2的主要作用是降解ECM,而TIMP-2则对MMP-2有抑制作用,MMP-14可以直接降解ECM,还能通过激活MMP-2酶原参与ECM降解。因此,MMPs/TIMPs的含量平衡是维持CEM合成与降解动态平衡的重要因素[43] [44]。近视大鼠模型中巩膜Lumican及其TIMP-2的表达上调,而MMP-2和MMP-14的表达下调,呈保护性抑制作用。此外还发现,与此同时近视组大鼠巩膜细胞增殖能力降低,而细胞凋亡率增加。当抑制Lumican的表达时,对细胞的增殖和凋亡影响不大,但可促进MMP-2和MMP-14的表达,而降低TIMP-2的表达。在培养的正常巩膜成纤维细胞中,Lumican过表达时,TIMP-2、MMP-2和MMP-14的表达也随之变化;提示这些成分的互相变化是近视发生的重要原因[42]。因此研究者发现在用阿托品处理巩膜成纤维细胞后,与正常组相比,阿托品组巩膜成纤维细胞活力均增强,光蛋白聚糖、TIMP-2表达升高,MMP-2、MMP-14表达降低;因此阿托品有可能是通过增加细胞增殖能力,并减少可引起巩膜细胞外基质融解分子的表达而控制近视[39]

2.2. 对视网膜与脉络膜的作用

对视网膜和脉络膜的研究中发现,阿托品同样能引起复杂的组织生物学改变。在利用光学相干断层扫描血管造影术(OCTA)对视网膜及脉络膜血管进行成像时,使用低浓度阿托品的近视青少年患者较正常眼对照组黄斑中心凹下脉络膜厚度(SFCT)、浅层血管复合体(SVC)、深层血管复合体(DVC)及脉络膜毛细血管(CC)血流密度(RT)均得到增厚[45]。对其细胞进行分析,发现正常组的神经节细胞排列整齐,形态饱满丰富,结构清晰,细胞器功能及结构健全;而近视模型组中视网膜神经节细胞层、内核层、外核层的细胞数量均减少、层次排列紊乱、稀疏,视网膜各层均变薄,表明模型组视网膜形态学发生病理变化;经阿托品处理后,近视视网膜层次结构明显改善;因此有研究者推测阿托品眼药水通过增加视网膜细胞修复,降低其凋亡率来控制近视进展,但具体机制有待进一步研究[46]

在对脉络膜的研究中,Xu等人对200多名使用阿托品的近视儿童进行随访,并测量其总脉络膜面积(TCA)、管腔面积(LA)、间质面积(SA)和脉络膜血管密度指数(CVI)等值,在半年的随访后发现,使用浓度高(1%)的儿童,LA和SA和TCA较用药前显著升高,低浓度组(0.01%) LA、SA和TCA的变化不明显,趋于一稳定水平。然而将高浓度组继续用低阿托品治疗后发现,LA、SA及TCA均较前下降。证明阿托品可能通过改变脉络膜厚度控制近视进展,但控制效果同样呈浓度依赖性;还有研究发现在近视眼的脉络膜厚度(ChT)、TCA、LA、SA、CVI和脉络膜毛细血管血流灌注比正常眼均有下降,这些参数与近视的严重程度同样相关,表明脉络膜血管的干扰是近视过程中不可忽略的一部分[47]。在此之前,已有研究发现脉络膜的改变可能是近视发生的原因。动物实验也显示,脉膜变薄与近视之间存在相关性。研究发现脉膜变薄可能在眼轴增长和等效球镜(SE)增加前就已出现[48] [49]。已有相关实验表明,眼睛使用视觉反馈系统来引导眼球生长,最终实现正视化。在正视中,眼轴与前面的光学系统匹配,从而使图像聚焦在视网膜上[50]。当一个信号源于视网膜,困难涉及RPE和脉络膜,最终导致巩膜细胞外基质生物合成的变化,从而决定了眼睛的大小。针对雏鸡的实验发现脉络膜在正视化过程中起着积极的作用,它能在视网膜离焦时改变厚度,在近视时增厚,使视觉向成像平面向前移,在远视离焦时变薄,使视觉成像向后移。因此,在巩膜生长速度改变眼球长度之前,脉络膜可以引起一种暂时性聚焦机制[51]

在其他的一些研究中还发现阿托品与脉络膜及视网膜新生血管的生成及抑制有关,Ji等人在对小鼠的实验中也发现使用阿托品后,视网膜多巴胺受体(DRD1)和血管内皮生长因子A(VEGFA)表达显著降低。药物治疗组诱导的CNV面积明显小于对照组,且浓度越高,抑制作用越显著。阿托品滴眼液可通过上调DRD2水平、下调DRD1水平间接降低VEGFA水平,抑制高度近视CNV [52]。在动物模型中,研究人员同样发现,DRD1活性是血管生成的重要调控点:激活DRD1可促进血管生成,而抑制DRD1可减少血管生成[53]。然而阿托品对脉络膜的调控机制及因果关系尚未得到完全证实,或许还存在更为复杂的机制。此外,关于近视复现期间脉络膜改变的证据仍然缺乏。因此,脉络膜成分的确切变化需要更多的细节来深入挖掘这些反应背后的可能机制。

2.3. 一些其他参与阿托品控制近视过程中的重要分子

NO被认为是一种“光适应”信号分子,已知它在视网膜中介导一些光适应变化,它的合成和释放在强光或间歇光照下增加[54]-[57];据报道,增加环境照明可以预防动物[58] [59]和儿童[60] [61]的近视,而且有报道称,一氧化氮合酶抑制剂可以阻止阿托品对近视的预防。因此NO在近视发生发展过程中起着不可缺少的作用。研究发现阿托品预防近视需要产生一氧化氮(NO);Carr等人对周龄雏鸡进行试验,在对戴护目镜诱导的形觉剥夺性近视(FDM)眼中加入NO来源制剂后可抑制FDM的进展;在阿托品组中加入NO来源制剂可提高阿托品的近视控制效果;为证明NO是阿托品控制近视必要条件,研究者向阿托品组中加入NO合酶抑制剂,结果显示可明显抑制阿托品效应。此外阿托品和NO来源以剂量依赖的方式抑制FDM;该作者对阿托品诱导视网膜中NO合成的途径和机制进行推测。其一,通过直接途径:如果阿托品确实通过mAChR起作用,其靶点可能是M2/M4,阿托品的毒蕈碱拮抗作用可以通过阻断mAChR靶点的抑制活性而引起细胞兴奋和去极化。由此产生的细胞兴奋会反过来增加细胞内钙的浓度,从而通过刺激驱动NO的合成。其二,通过间接途径:如果阿托品通过mAChR亚型M1/M3/M5发挥作用,它可能通过破坏视网膜内部的抑制回路间接增加NO浓度[62]。另外,该作者提出了一个令人信服的假设,即阿托品与mAChR本身的相互作用不是导致生长抑制的原因,而是与非mAChR受体的相互作用,或阿托品诱导的视网膜信号分子释放。Thomson等人就发现与胆碱能拮抗剂一样,服用毒蕈碱类和烟碱类激动剂也能抑制小鸡实验性近视的发展。这表明胆碱能亢进并不是近视的基础,同时也支持了一种假设,即阿托品实际上可能通过非胆碱能途径抑制近视的发展[63]。具体是什么信号分子作者认为可能与多巴胺的释放有关。Schwahn等人已经证明眼球内注射较高浓度的阿托品会导致视网膜多巴胺释放的增加[64]。与此一致,免疫反应性小鸡M4受体普遍通过视网膜多巴胺能表达。众所周知,视网膜多巴胺的合成和释放具有强烈的近视抑制作用。但多巴胺是否是阿托品控制近视的关键因子,有待进一步研究。

多巴胺(DA)作为视网膜中一种重要的神经递质,调节包括发育、视觉传导和眼球发育在内的多种功能。在哺乳动物和非哺乳动物近视模型中,广泛研究了DA对近视的药理作用,支持DA在调节近视发展中的关键作用。然而,DA对近视发展的药理学研究由于其部分特异性而受到限制,这可能导致在近视研究中使用的这些不同种类的药理学差异。此外,由于DA受体在不同的细胞类型和不同的视觉通路中表达,这些不同部位的DA受体可能对近视的发展产生不同的影响。

视网膜DA是由非分泌型和间丛型细胞的亚型合成和释放的[65]。合成多巴胺分为两步:(1) l-酪氨酸经酪氨酸羟化酶(TH)转化为3,4-二羟基-l-苯丙氨酸(L-DOPA);(2) 通过多巴脱羧酶将L-DOPA转化为DA。酪氨酸羟基化反应是DA合成过程中限速和高度调控的步骤。当多巴胺合成释放后又会被重新传送回DA神经元[66]。在细胞内,它可能被重新包装在突触囊泡中,或被单胺氧化酶代谢形成3,4-二羟基苯乙酸(DOPAC),这是DA在视网膜中的主要代谢物[67]。在大多数情况下,视网膜和玻璃体中DOPAC水平的变化被认为反映了DA的释放和转换[68]。不同的是,Thomson等人发现在动物模型中,阿托品抑制眼球生长并不需要多巴胺水平的变化。基于阿托品可能通过多巴胺能系统发挥作用这一观点,起初人们认为儿童服用阿托品的效果可能会受到户外活动时间的影响。然而实验却发现只有大约360 nmol剂量的阿托品才能显著提高FDM的多巴胺能活动。但低剂量的阿托品近视眼玻璃体内的多巴胺和DOPAC水平几乎不受影响。这表明,在这些较低剂量下,阿托品不会通过调节多巴胺能活性来抑制近视。在临床中,常见的阿托品浓度,包括0.01%、0.05%、0.1%和1%等,但结合浓度及渗透率,这些剂量比Thomson等人研究中调节多巴胺水平所需的剂量(360 nmol)至少低100倍[63]。因此阿托品对户外活动时间较长的儿童可能效果较差这一说法不一定不正确。Lee等人认为,人群中,视网膜上的多巴胺水平会因阳光照射时间较长而升高。所以,这可能会降低阿托品的效果[69]。然而,Thomson的研究结果表明,阿托品并不需要多巴胺能系统来抑制眼球生长。因此,将户外活动时间与使用阿托品结合起来,可能会产生叠加效应。可见,无论是对NO还是多巴胺的研究都并未达成统一共识。

3. 总结

一直以来科学家们都在努力探索近视的发病机制,从而对近视做到更精准的治疗;然而近视的发生发展从来不能以单一的理论来概括。阿托品作为当前近视防控中最主要的控制手段,已有大量的科学家对其进行研究,但阿托品在近视控制中的机制同样复杂且难以解释。无论是巩膜、脉络膜、视网膜等不同眼组织都有不同结构及生物学机制,具体机制仍众说纷纭,难以得到统一的结论。因此后续还需要更多的研究去进一步探索及完善阿托品在近视防控过程中的机制。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Dolgin, E. (2015) The Myopia Boom. Nature, 519, 276-278.
https://doi.org/10.1038/519276a
[2] Morgan, I. and Rose, K. (2005) How Genetic Is School Myopia? Progress in Retinal and Eye Research, 24, 1-38.
https://doi.org/10.1016/j.preteyeres.2004.06.004
[3] Morgan, I.G., French, A.N., Ashby, R.S., Guo, X., Ding, X., He, M., et al. (2018) The Epidemics of Myopia: Aetiology and Prevention. Progress in Retinal and Eye Research, 62, 134-149.
https://doi.org/10.1016/j.preteyeres.2017.09.004
[4] Morgan, I.G., He, M. and Rose, K.A. (2017) Epidemic of Pathologic Myopia: What Can Laboratory Studies and Epidemiology Tell Us? Retina, 37, 989-997.
https://doi.org/10.1097/iae.0000000000001272
[5] Morgan, I.G., Ohno-Matsui, K. and Saw, S. (2012) Myopia. The Lancet, 379, 1739-1748.
https://doi.org/10.1016/s0140-6736(12)60272-4
[6] Pan, C., Ramamurthy, D. and Saw, S. (2011) Worldwide Prevalence and Risk Factors for Myopia. Ophthalmic and Physiological Optics, 32, 3-16.
https://doi.org/10.1111/j.1475-1313.2011.00884.x
[7] Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042.
https://doi.org/10.1016/j.ophtha.2016.01.006
[8] Stevens, G.A., White, R.A., Flaxman, S.R., Price, H., Jonas, J.B., Keeffe, J., et al. (2013) Global Prevalence of Vision Impairment and Blindness: Magnitude and Temporal Trends, 1990-2010. Ophthalmology, 120, 2377-2384.
https://doi.org/10.1016/j.ophtha.2013.05.025
[9] 井云, 李清波, 吴仲英. 《高度近视防控专家共识(2023)》解读(上) [J]. 中国眼镜科技杂志, 2023(11): 108-111.
[10] Xu, L., Zhuang, Y., Zhang, G., Ma, Y., Yuan, J., Tu, C., et al. (2021) Design, Methodology, and Baseline of Whole City-Million Scale Children and Adolescents Myopia Survey (CAMS) in Wenzhou, China. Eye and Vision, 8, Article No. 31.
https://doi.org/10.1186/s40662-021-00255-1
[11] 李遥, 周希瑗. 青少年近视影响因素及防控方法进展[J]. 临床医学进展, 2023, 13(5): 7325-7334.
[12] Morgan, I.G., Wu, P., Ostrin, L.A., Tideman, J.W.L., Yam, J.C., Lan, W., et al. (2021) IMI Risk Factors for Myopia. Investigative Opthalmology & Visual Science, 62, Article 3.
https://doi.org/10.1167/iovs.62.5.3
[13] Jonas, J.B., Ang, M., Cho, P., Guggenheim, J.A., He, M.G., Jong, M., et al. (2021) IMI Prevention of Myopia and Its Progression. Investigative Opthalmology & Visual Science, 62, Article 6.
https://doi.org/10.1167/iovs.62.5.6
[14] Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., et al. (2016) Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-Analysis. Ophthalmology, 123, 697-708.
https://doi.org/10.1016/j.ophtha.2015.11.010
[15] Brodstein, R.S., Brodstein, D.E., Olson, R.J., Hunt, S.C. and Williams, R.R. (1984) The Treatment of Myopia with Atropine and Bifocals. A Long-Term Prospective Study. Ophthalmology, 91, 1373-1378.
https://doi.org/10.1016/s0161-6420(84)34138-0
[16] Gong, Q., Janowski, M., Luo, M., Wei, H., Chen, B., Yang, G., et al. (2017) Efficacy and Adverse Effects of Atropine in Childhood Myopia: A Meta-Analysis. JAMA Ophthalmology, 135, 624-630.
https://doi.org/10.1001/jamaophthalmol.2017.1091
[17] Chua, W., Balakrishnan, V., Chan, Y., Tong, L., Ling, Y., Quah, B., et al. (2006) Atropine for the Treatment of Childhood Myopia. Ophthalmology, 113, 2285-2291.
https://doi.org/10.1016/j.ophtha.2006.05.062
[18] Chia, A., Chua, W., Cheung, Y., Wong, W., Lingham, A., Fong, A., et al. (2012) Atropine for the Treatment of Childhood Myopia: Safety and Efficacy of 0.5%, 0.1%, and 0.01% Doses (Atropine for the Treatment of Myopia 2). Ophthalmology, 119, 347-354.
https://doi.org/10.1016/j.ophtha.2011.07.031
[19] Yam, J.C., Jiang, Y., Tang, S.M., et al. (2019) Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology, 126, 113-124.
[20] Ambache, N. (1955) The Use and Limitations of Atropine for Pharmacological Studies on Autonomic Effectors. Pharmacological Reviews, 7, 467-494.
[21] Kaiti, R. (2022) Role of Atropine in the Control of Myopia Progression—A Review. Beyoglu Eye Journal, 7, 157-166.
https://doi.org/10.14744/bej.2022.07742
[22] Fang, P., Chung, M., Yu, H. and Wu, P. (2010) Prevention of Myopia Onset with 0.025% Atropine in Premyopic Children. Journal of Ocular Pharmacology and Therapeutics, 26, 341-345.
https://doi.org/10.1089/jop.2009.0135
[23] Kumaran, A., Htoon, H.M., Tan, D. and Chia, A. (2015) Analysis of Changes in Refraction and Biometry of Atropine-and Placebo-Treated Eyes. Investigative Opthalmology & Visual Science, 56, 5650-5655.
https://doi.org/10.1167/iovs.14-14716
[24] McBrien, N.A., Arumugam, B., Gentle, A., Chow, A. and Sahebjada, S. (2011) The M4 Muscarinic Antagonist MT‐3 Inhibits Myopia in Chick: Evidence for Site of Action. Ophthalmic and Physiological Optics, 31, 529-539.
https://doi.org/10.1111/j.1475-1313.2011.00841.x
[25] Upadhyay, A. and Beuerman, R.W. (2020) Biological Mechanisms of Atropine Control of Myopia. Eye & Contact Lens: Science & Clinical Practice, 46, 129-135.
https://doi.org/10.1097/icl.0000000000000677
[26] Barathi, V.A. and Beuerman, R.W. (2011) Molecular Mechanisms of Muscarinic Receptors in Mouse Scleral Fibroblasts: Prior to and after Induction of Experimental Myopia with Atropine Treatment. Molecular Vision, 17, 680-692.
[27] Wess, J. (1996) Molecular Biology of Muscarinic Acetylcholine Receptors. Critical Reviews™ in Neurobiology, 10, 69-99.
https://doi.org/10.1615/critrevneurobiol.v10.i1.40
[28] Caulfield, M.P. and Birdsall, N.J. (1998) International Union of Pharmacology. XVII. Classification of Muscarinic Acetyl-Choline Receptors. Pharmacological Reviews, 50, 279-290.
[29] Volpicelli, L.A. and Levey, A.I. (2004) Muscarinic Acetylcholine Receptor Subtypes in Cerebral Cortex and Hippocampus. Progress in Brain Research, 145, 59-66.
https://doi.org/10.1016/s0079-6123(03)45003-6
[30] Abrams, P., Andersson, K., Buccafusco, J.J., Chapple, C., de Groat, W.C., Fryer, A.D., et al. (2006) Muscarinic Receptors: Their Distribution and Function in Body Systems, and the Implications for Treating Overactive Bladder. British Journal of Pharmacology, 148, 565-578.
https://doi.org/10.1038/sj.bjp.0706780
[31] Gimbel, H.V. (1973) The Control of Myopia with Atropine. Canadian Journal of Ophthalmology, 8, 527-532.
[32] Lind, G.J., Chew, S.J., Marzani, D., et al. (1998) Muscarinic Acetylcholine Receptor Antagonists Inhibit Chick Scleral Chondrocytes. Investigative Ophthalmology & Visual Science, 39, 2217-2231.
[33] Dartt, D.A. (2001) Regulation of Lacrimal Gland Secretion by Neurotransmitters and the EGF Family of Growth Factors. Experimental Eye Research, 73, 741-752.
https://doi.org/10.1006/exer.2001.1076
[34] Collison, D.J., Coleman, R.A., James, R.S., et al. (2000) Characterization of Muscarinic Receptors in Human Lens Cells by Pharmacologic and Molecular Techniques. Investigative Ophthalmology & Visual Science, 41, 2633-2641.
[35] Barathi, V.A., Weon, S.R. and Beuerman, R.W. (2009) Expression of Muscarinic Receptors in Human and Mouse Sclera and Their Role in the Regulation of Scleral Fibroblasts Proliferation. Molecular Vision, 15, 1277-1293.
[36] Yue, J. and Mulder, K.M. (2001) Transforming Growth Factor-Β Signal Transduction in Epithelial Cells. Pharmacology & Therapeutics, 91, 1-34.
https://doi.org/10.1016/s0163-7258(01)00143-7
[37] Hackel, P.O., Zwick, E., Prenzel, N. and Ullrich, A. (1999) Epidermal Growth Factor Receptors: Critical Mediators of Multiple Receptor Pathways. Current Opinion in Cell Biology, 11, 184-189.
https://doi.org/10.1016/s0955-0674(99)80024-6
[38] Rude Voldborg, B., Damstrup, L., Spang-Thomsen, M. and Skovgaard Poulsen, H. (1997) Epidermal Growth Factor Receptor (EGFR) and EGFR Mutations, Function and Possible Role in Clinical Trials. Annals of Oncology, 8, 1197-1206.
https://doi.org/10.1023/a:1008209720526
[39] 吴劲松, 李姝蓉, 熊伟伟. 阿托品对大鼠巩膜成纤维细胞增殖和凋亡的影响及其机制[J]. 眼科新进展, 2023, 43(4): 266-269.
[40] 余嘉珍, 莫亚. 近视小鼠巩膜成纤维细胞的基因表达谱:基于单细胞RNA测序的生物信息学分析[J]. 南方医科大学学报, 2021, 41(7): 1087-1092.
[41] Yang, Q., Lv, S., Zhu, H., Zhang, L., Li, H. and Song, S. (2022) A Potential Research Target for Scleral Remodeling: Effect of Mir-29a on Scleral Fibroblasts. Ophthalmic Research, 65, 566-574.
https://doi.org/10.1159/000525189
[42] Wu, J., Zhao, Y., Fu, Y., Li, S. and Zhang, X. (2021) Effects of Lumican Expression on the Apoptosis of Scleral Fibroblasts: in Vivo and in Vitro Experiments. Experimental and Therapeutic Medicine, 21, Article No. 495.
https://doi.org/10.3892/etm.2021.9926
[43] Zhao, F., Zhou, Q., Reinach, P.S., Yang, J., Ma, L., Wang, X., et al. (2018) Cause and Effect Relationship between Changes in Scleral Matrix Metallopeptidase-2 Expression and Myopia Development in Mice. The American Journal of Pathology, 188, 1754-1767.
https://doi.org/10.1016/j.ajpath.2018.04.011
[44] Liu, H., Kenning, M.S., Jobling, A.I., McBrien, N.A. and Gentle, A. (2017) Reduced Scleral TIMP-2 Expression Is Associated with Myopia Development: TIMP-2 Supplementation Stabilizes Scleral Biomarkers of Myopia and Limits Myopia Development. Investigative Opthalmology & Visual Science, 58, 1971-1981.
https://doi.org/10.1167/iovs.16-21181
[45] 郑卓涛, 张凌月, 封炎, 等. 低浓度阿托品滴眼液对近视儿童青少年视网膜与脉络膜厚度及微循环的影响[J]. 眼科新进展, 2023, 43(11): 887-892.
[46] 刘素江, 韩惠芳, 韩爱军, 等. 阿托品眼药水对中度近视豚鼠视网膜功能的作用研究[J]. 中国临床药理学杂志, 2019, 35(15): 1606-1608.
[47] Xu, H., Ye, L., Peng, Y., Yu, T., Li, S., Weng, S., et al. (2023) Potential Choroidal Mechanisms Underlying Atropine’s Antimyopic and Rebound Effects: A Mediation Analysis in a Randomized Clinical Trial. Investigative Opthalmology & Visual Science, 64, Article 13.
https://doi.org/10.1167/iovs.64.4.13
[48] Xiong, S., He, X., Zhang, B., Deng, J., Wang, J., Lv, M., et al. (2020) Changes in Choroidal Thickness Varied by Age and Refraction in Children and Adolescents: A 1-Year Longitudinal Study. American Journal of Ophthalmology, 213, 46-56.
https://doi.org/10.1016/j.ajo.2020.01.003
[49] Jin, P., Zou, H., Xu, X., Chang, T.C., Zhu, J., Deng, J., et al. (2019) Longitudinal Changes in Choroidal and Retinal Thicknesses in Children with Myopic Shift. Retina, 39, 1091-1099.
https://doi.org/10.1097/iae.0000000000002090
[50] Wallman, J. and Winawer, J. (2004) Homeostasis of Eye Growth and the Question of Myopia. Neuron, 43, 447-468.
https://doi.org/10.1016/j.neuron.2004.08.008
[51] Nickla, D.L., Zhu, X. and Wallman, J. (2013) Effects of Muscarinic Agents on Chick Choroids in Intact Eyes and Eyecups: Evidence for a Muscarinic Mechanism in Choroidal Thinning. Ophthalmic and Physiological Optics, 33, 245-256.
https://doi.org/10.1111/opo.12054
[52] Ji, Y., Kang, Y. and Chen, S. (2023) Effects of Endogenous Dopamine Induced by Low Concentration Atropine Eye Drops on Choroidal Neovascularization in High Myopia Mice. International Journal of Ophthalmology, 16, 1034-1040.
https://doi.org/10.18240/ijo.2023.07.05
[53] Chakroborty, D., Sarkar, C., Lu, K., Bhat, M., Dasgupta, P.S. and Basu, S. (2016) Activation of Dopamine D1 Receptors in Dermal Fibroblasts Restores Vascular Endothelial Growth Factor-A Production by These Cells and Subsequent Angiogenesis in Diabetic Cutaneous Wound Tissues. The American Journal of Pathology, 186, 2262-2270.
https://doi.org/10.1016/j.ajpath.2016.05.008
[54] Nöll, G.N., Billek, M., Pietruck, C. and Schmidt, K. (1994) Inhibition of Nitric Oxide Synthase Alters Light Responses and Dark Voltage of Amphibian Photoreceptors. Neuropharmacology, 33, 1407-1412.
https://doi.org/10.1016/0028-3908(94)90042-6
[55] Tsuyama, Y., Nöll, G.N. and Schmidt, K. (1993) L-Arginine and Nicotinamide Adenine Dinucleotide Phosphate Alter Dark Voltage and Accelerate Light Response Recovery in Isolated Retinal Rods of the Frog (Rana temporaria). Neuroscience Letters, 149, 95-98.
https://doi.org/10.1016/0304-3940(93)90356-p
[56] Shiells, R. and Falk, G. (1992) Retinal On-Bipolar Cells Contain a Nitric Oxide-Sensitive Guanylate Cyclase. NeuroReport, 3, 845-848.
https://doi.org/10.1097/00001756-199210000-00006
[57] Sato, M., Ohtsuka, T. and Stell, W.K. (2011) Endogenous Nitric Oxide Enhances the Light-Response of Cones during Light-Adaptation in the Rat Retina. Vision Research, 51, 131-137.
https://doi.org/10.1016/j.visres.2010.10.011
[58] Ashby, R., Ohlendorf, A. and Schaeffel, F. (2009) The Effect of Ambient Illuminance on the Development of Deprivation Myopia in Chicks. Investigative Opthalmology & Visual Science, 50, 5348-5354.
https://doi.org/10.1167/iovs.09-3419
[59] Wang, Y., Ding, H., Stell, W.K., Liu, L., Li, S., Liu, H., et al. (2015) Exposure to Sunlight Reduces the Risk of Myopia in Rhesus Monkeys. PLOS ONE, 10, e0127863.
https://doi.org/10.1371/journal.pone.0127863
[60] Rose, K.A., Morgan, I.G., Ip, J., Kifley, A., Huynh, S., Smith, W., et al. (2008) Outdoor Activity Reduces the Prevalence of Myopia in Children. Ophthalmology, 115, 1279-1285.
https://doi.org/10.1016/j.ophtha.2007.12.019
[61] French, A.N., Ashby, R.S., Morgan, I.G. and Rose, K.A. (2013) Time Outdoors and the Prevention of Myopia. Experimental Eye Research, 114, 58-68.
https://doi.org/10.1016/j.exer.2013.04.018
[62] Carr, B.J. and Stell, W.K. (2016) Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks. Scientific Reports, 6, Article No. 9.
https://doi.org/10.1038/s41598-016-0002-7
[63] Thomson, K., Kelly, T., Karouta, C., Morgan, I. and Ashby, R. (2021) Insights into the Mechanism by Which Atropine Inhibits Myopia: Evidence against Cholinergic Hyperactivity and Modulation of Dopamine Release. British Journal of Pharmacology, 178, 4501-4517.
https://doi.org/10.1111/bph.15629
[64] Schwahn, H.N., Kaymak, H. and Schaeffel, F. (2000) Effects of Atropine on Refractive Development, Dopamine Release, and Slow Retinal Potentials in the Chick. Visual Neuroscience, 17, 165-176.
https://doi.org/10.1017/s0952523800171184
[65] Dowling, J.E. and Ehinger, B. (1978) The Interplexiform Cell System. I. Synapses of the Dopaminergic Neurons of the Goldfish Retina. Proceedings of the Royal Society B: Biological Sciences, 201, 7-26.
[66] Mitsuma, T., Rhue, H., Hirooka, Y., et al. (1998) Distribution of Dopamine Transporter in the Rat: An Immunohistochemical Study. Endocrine Regulations, 32, 71-75.
[67] Cohen, J., Hadjiconstantinou, M. and Neff, N.H. (1983) Activation of Dopamine-Containing Amacrine Cells of Retina: Light-Induced Increase of Acidic Dopamine Metabolites. Brain Research, 260, 125-127.
https://doi.org/10.1016/0006-8993(83)90771-0
[68] Megaw, P., Morgan, I. and Boelen, M. (2001) Vitreal Dihydroxyphenylacetic Acid (DOPAC) as an Index of Retinal Dopamine Release. Journal of Neurochemistry, 76, 1636-1644.
https://doi.org/10.1046/j.1471-4159.2001.00145.x
[69] Lee, S.S.Y., Mackey, D.A., Lingham, G., Crewe, J.M., Richards, M.D., Chen, F.K., et al. (2020) Western Australia Atropine for the Treatment of Myopia (WA‐ATOM) Study: Rationale, Methodology and Participant Baseline Characteristics. Clinical & Experimental Ophthalmology, 48, 569-579.
https://doi.org/10.1111/ceo.13736