压力诱导性进食的神经和生理机制
The Neural and Physiological Mechanisms of Stress-Induced Eating
摘要: 压力被视为进食障碍发展的重要风险因素,常表现为过度进食或暴饮暴食,属于情绪性进食。压力诱导性进食的神经和生理机制涉及多个理论模型,其中包括个体差异模型和基于奖赏的压力进食模型,揭示了压力对不同人群饮食行为的差异化影响。常见的实验诱导方法如特里尔社会压力测试和冷压测试,能够有效诱发压力反应,并通过测量生理和心理效应评估进食行为的变化。压力通过改变奖赏系统和执行功能,影响进食中的自我控制和决策能力,尤其在面对高热量食物时,这种影响更加显著。进一步的研究有助于揭示压力、激素与大脑功能的相互作用,为制定更有效的干预措施提供重要理论支持。
Abstract: Stress is considered a significant risk factor in the development of eating disorders, often manifesting as overeating or binge eating, which falls under the category of emotional eating. The neural and physiological mechanisms underlying stress-induced eating involve several theoretical models, including the individual-difference model and the reward-based stress-eating model, which elucidate the differential effects of stress on eating behaviors across various populations. Common experimental paradigms, such as the Trier Social Stress Test and the Cold Pressor Test, effectively induce stress responses and allow for the assessment of changes in eating behavior through physiological and psychological measurements. Stress alters reward systems and executive functions, impacting self-control and decision-making during eating, particularly when high-calorie foods are involved. Further research is necessary to explore the interactions between stress, hormones, and brain function, providing critical theoretical foundations for the development of more effective interventions.
文章引用:郑爽. 压力诱导性进食的神经和生理机制[J]. 社会科学前沿, 2024, 13(12): 396-406. https://doi.org/10.12677/ass.2024.13121119

1. 引言

压力已被确定为进食障碍发展的潜在风险因素,进食障碍患者在发作前往往经历严重的生活事件或慢性应激[1]。压力引起交感神经系统的唤醒,并且引起促肾上腺皮质激素释放激素(CRH)的厌食作用,这两者均会导致进食减少。应对负面情绪或压力的进食倾向是一种非典型的应激反应。由压力、焦虑等负性情绪诱发的进食行为是压力诱导性进食(stress-induced eating),个体往往出现过度进食或暴饮暴食,属于情绪性进食[2]。对压力做出反应的进食可能会成为对暴露在负面情绪中的习惯性反应,并进一步发展成为进食障碍(如暴食症、神经性厌食症等)。这既有深刻的社会影响,也给公共医疗体系带来了巨大的负担[3]。因此,全面深入解析压力诱导性进食的心理与神经机制,能为制定合理有效的干预和预防措施提供重要的理论参考。

2. 压力诱导性进食的理论模型

2.1. 个体差异模型

个体差异模型(Individual-Difference Model)假设习得史(learning history)、态度或生物学上的个体差异决定了压力对进食行为的影响[4]。该模型预测,不同群体承受压力时会在饮食行为上有所不同[5]。体重正常的个体在压力下减少进食,而肥胖个体的进食不受压力的影响;限制性进食者在压力下增加进食量,而非限制性进食者不会受到压力的影响[6];最后,女性比男性更有可能在压力下进食特定食物[5]

通过对以往研究的归纳与总结,个体差异模型提出:受到实验室压力影响的限制性进食女性比没有受到实验室压力影响的进食更多[6]。此外,体重正常的个体一般不会受到压力的影响。但在某些情况下,如个体感到饥饿或食物诱人,有压力的正常体重被试比无压力的正常体重被试吃得更少;肥胖个体没有比体重正常个体更容易受到压力诱导性进食的影响[7]。有研究表明,在实验室中,节食可以预测压力诱导性进食,而体重类别则不能[8]。该模型还通过对不同性别被试的分析,发现女性可能比男性更容易受到压力诱导性进食的影响[5],这可能是由于限制性进食的盛行。此外,很大一部分抑郁症患者在抑郁时体重会增加。超重或与体重相关的认知,如限制性进食,可能会预测抑郁时体重变化的方向,超重个体和限制性进食个体在抑郁时更有可能增加体重。

2.2. 基于奖赏的压力性进食理论模型

基于奖赏的压力性进食理论模型(Theoretical Model of Reward Based Stress Eating)表明,与威胁相关的压力会导致更多的皮质醇暴露,皮质醇会明显激活奖赏系统[9]。此外,间歇性获取食物会激活奖赏系统,并且可以单独增强压力的影响。在人类中,高水平的自发饮食限制可能与大鼠模型中的食物限制具有相似的效果,限制性进食会加强压力对奖赏系统的影响,这种限制可能仅是对与可口食物高度敏感相关的奖赏系统的反应。

首先,皮质醇对奖赏系统的影响可能部分是通过增加胰岛素、NPY和瘦素来调节的。胰岛素具有抑制奖赏系统的急性作用[10],但长期暴露于循环胰岛素可能会刺激奖赏系统。胰岛素被认为在一定程度上通过改变食物的奖赏价值来减少食物的摄入量[11] [12]。这些神经肽和激素对大脑奖赏系统的影响可能会导致享乐退缩状态,进一步诱发随后的驱动力来缓解这种消极状态。先前已证明,摄入高度可口的食物可以做到这一点。高度可口食物的自然奖赏功效可以直接或间接地降低HPA轴的活性[13],这被认为是食物的“自我治疗”[13] [14]。在压力下进食会导致神经内分泌平衡(高皮质醇和胰岛素)发生变化,这可能会使大脑的奖赏系统更加敏感,从而导致正反馈回路驱动并维持可口食物对奖赏系统的刺激。因此,压力诱导性进食是一个前反馈过程。最后,考虑到皮质醇和进食会刺激胰岛素的分泌,压力和高度可口的食物摄入的结合为内脏脂肪储存创造了强有力的条件。

3. 压力诱导性进食的诱导范式、测量及行为指标

3.1. 压力诱导性进食的诱导范式

在自然环境中对压力的测量通常是计算生活事件的数量[15],但这难以对压力引起的心理效应进行量化评估。同一类型的事件在具体特征上可能会有很大差异,并且人们对同一事件会有不同的感知。此外,自然环境中往往考察的是慢性应激,相对于急性应激,慢性应激更容易通过代谢变化诱导体重增加,而不依赖于饮食[16]。急性应激可能会引起食欲的减少或增加,因此压力诱导性进食的研究往往使用实验室诱导范式。实验室压力源的优点是每个被试都可以经历相同的诱导方式。常见的实验室压力诱导方式包括社会反馈,如对表演任务的错误反馈,或面临公开演讲的威胁,常使用特里尔社会压力测试;生理应激源,比如手部浸入非常冷的水中;他人的情绪展示,包括电影节选或音乐片段;引导性情绪诱导,包括自传式回忆情绪事件[17]

3.1.1. 特里尔社会压力测试诱导法(Trier Social Stress Test, TSST)

特里尔社会压力测试(Trier Social Stress Test, TSST)是在实验室中最常用的急性应激诱导方法之一,包括公开演讲和心算任务,可以在大多数被试中产生适度的压力[17],并已被证明可以有效地增加HPA轴的激活。它最早是由特里尔大学的研究人员于90年代初设计的[17]。经典的特里尔社会压力测试程序如下:被试进入实验室后休息一段时间,这有助于建立明确的基线[18]。接着被试需要准备一篇演讲,最常见的是想象自己申请了理想的工作,并说服评审团他们是这份工作的最佳候选人。评审团通常被介绍为行为分析和识别压力的非语言迹象方面的专家。在演讲过程中,如果被试提前停止发言,会被提醒继续发言。在演讲任务之后,被试需要进行一项心算任务,他们必须从一个四位数字中连续减去一个两位数字(例如,2023减17),并大声报告出来。如果计算错误,他们会被要求重新开始。应激程序结束后,被试进行休息并采取应激后措施。

使用TSST的研究需要一个尽可能地类似于经典的TSST但非压力诱导的对照组,其目的是检验压力本身的影响,而不是群体之间压力反应的差异[19]。被试需要谈论一部电影、一部小说或最近的旅行,这是在没有录音和评估的情况下进行的,之后进行纸牌游戏。与TSST实验组相比,对照组的负面情绪、唾液皮质醇、唾液淀粉酶、心率和血压水平均更低[20]

为了满足研究需要,许多研究对经典的TSST进行了修改,出现了一些TSST的改编版本,如虚拟现实TSST [21]。被试在虚拟现实头盔产生的环境中执行演讲任务,在虚拟现实环境外执行数学任务。虚拟现实版本的优势是让专家小组的回答更加恒定[22]

3.1.2. 冷压测试诱导法(Cold Pressor Test, CPT)

Kelly和Cooper在1998年提出了冷压测试(Cold Pressor Test, CPT),现已被广泛用作压力诱发的方式之一,并在暴食症群体中产生更强的皮质醇反应[23]。在Kelly和Cooper的研究中,被试将一只手浸入一桶温度为4℃冷水中,水面到手腕处,时间持续两分钟。冷压测试结束后10分钟,用视觉模拟量表来评估被试在冷压过程中的感受。CPT会导致血浆皮质醇和促肾上腺皮质激素水平升高,但升高水平不及TSST [24]。在一些研究中,CPT提高了心率和肾上腺素水平[25]。与TSST相比,CPT的优点是暴露在应激源中的时间较短,并且只需要一名研究人员在场。然而,由于CPT既是一种应激源,也是一种诱发疼痛的方法,因此在研究中应该考虑此方法是否会混淆两者的影响。

CPT在不同的研究中根据需要会有一些变化,具体表现在手部浸入水中的时间、浸入水中的次数、水温等。在一项研究中,被试需要两次将手浸入3.5℃的冷水中。当忍受不了时,被试可以自行把手拿出来,最长浸入水中4分钟。两个试次之间有3分钟的休息时间[26]

社会评价的冷压任务(The Socially Evaluated Cold Pressor Task)在传统CPT的基础上,通过拍摄被试,告诉他们这段视频将被分析,并让实验人员在冷压任务期间观察被试,从而增加了心理社会因素[27]。研究发现,社会评价的冷压任务比传统CPT诱导了更大的皮质醇反应。

马斯特里赫特急性压力测试(The Maastricht Acute Stress Test)是结合了多种压力诱导方式的范式,包括TSST和社会评价的冷压任务[28]。首先是基线阶段,然后将手浸入冷水中,结束后可结合心算任务。马斯特里赫特急性压力测试被证明比经典的CPT任务诱发了更高的皮质醇反应。

3.1.3. 自传式回忆诱导法

研究表明,相对于电影片段,自传式回忆能产生更强烈的情感[29]。重要的是,自传式回忆避免了因个体差异而对电影内容做出不同的反应,进而影响情绪诱发的效果。在诱导负性情绪的研究中,常使用Litt等人(1990)制定的程序或音乐与自传式回忆相结合的方法来诱导负性及中性情绪。

Litt,Cooney,Kadden和Gaupp (1990)制定的程序主要包括生成记忆和诱导情绪两部分[30]。在诱导焦虑组中,被试需要描述过去一年中让他们感到焦虑的事件。对于中性情绪诱导,被试被要求回忆参与了一项没有引起负性情绪的日常家务(例如,洗碗)。他们需要用自己的话描述每个事件,说明事件的起因、过程、结果以及他们对事件的感受。描述内容由实验人员简要记录下来。在产生记忆后,被试对自己回忆的事件进行1~10分的李克特评分,表明这件事让他们感受到的情绪程度和记忆的生动程度。接下来是情绪诱导阶段,被试需要再次回忆和体验他们刚刚提供的情绪片段。在情绪诱导之前和之后,被试对情绪状态进行10点李克特评分。在情绪诱导过程中没有表现出至少4分增加的被试被排除,因为对情绪诱导没有反应。为了确保被试不会在痛苦的状态下结束实验,在结束时负性情绪得分没有恢复到基线的被试在离开实验室之前需要接受积极的情绪诱导。

3.1.4. 电影片段诱导

在实验研究中,电影片段被广泛用来诱导情绪[31]。研究者通常会选取一个电影片段,其中包含能够诱发焦虑情绪的画面。电影片段诱导法已被证明是一种有效地改变个体情绪状态的方法[32]。先前的研究已经证明,即使是时长2~5分钟的非常短的电影片段,也会在健康人群和精神障碍患者中引起强烈的悲伤、愤怒、恐惧和快乐等情绪[33]

在一项探究限制进食倾向与暴食倾向对情绪诱导性进食的影响的研究中,被试需要在20分钟内观看一个消极、积极或中性的电影片段,以此来诱导情绪状态[34]。其中消极情绪的诱导使用的是电影《闪灵》(Warner Home Video, 1980)中最精彩的片段。电影《闪灵》被广泛用于诱导负性情绪(尤其是压力和焦虑)的研究中。有的研究会设计一些问题来检验电影片段诱导情绪的效度,比如,在观看影片后询问被试之前是否看过刚刚看的电影片段(如果看过,看了多少次)、他们在观看时对电影片段的关注程度,以及他们对电影片段的情绪反应[35]

3.2. 压力诱导性进食的测量和行为指标

3.2.1. 压力诱导性进食倾向的测量

压力诱导性进食通常通过问卷进行评估,例如荷兰进食行为问卷(DEBQ) [36],它在进食行为的背景下评估认知限制、外部进食和情绪。此外还有三因素进食问卷(TFEQ) [37]。与体重相关进食问卷(WREQ)结合了DEBQ和TFEQ中的项目,以衡量与减肥相关的常规和补偿性限制性进食、外部进食和情绪性进食[38]。这些问卷中的情绪性进食项目评估了对负面情绪做出反应的进食倾向。其他项目评估情绪水平、食物摄入的频率和数量[39],或进食欲望的强烈程度[40]

3.2.2. 食物渴求

一项基于智能手机的生态瞬时评估法的研究模拟了瞬时压力对瞬时食物渴求和随后感知的食物摄入量的影响,发现与低特质压力性进食的同龄人相比,特质压力性进食得分较高的个体在食物渴求上表现出相对的增加。值得注意的是,压力性进食对压力和感知到的食物摄入量之间的调节作用只在一天内显著,而在不同天数之间不显著[41]。这一结果与部分研究的结果出现了不一致[42]。作为压力诱导性进食的一种功能,短暂的压力与短暂的食物渴求有关。这可能表明,尽管当前的压力可以转化为当前的食物渴求,但随后并没有转化为实际的食物摄入量,这一点得到了其他研究的支持。研究表明,食物渴求并不总是导致食物的摄入。

3.2.3. 进食量

在实验室中,进食量的评估方式通常采用自由进食,研究者在实验结束后计算被试摄入的总热量。研究表明,当经历慢性压力时,大约40%~70%的人增加了食物的摄入量,而30%~60%的人减少了食物的摄入量[43]

3.2.4. 进食偏好

有研究表明,慢性压力会影响膳食模式和特定的食物偏好,特别是与主餐和零食有关的饮食。甜味、咸味零食和含咖啡因饮料的摄入量增加,水果和蔬菜的摄入量减少。当研究压力严重程度的影响时,发现“高度压力”组的人比“中等压力”组的人对食物的欲望更低。这一结果反映在饮食模式的变化上,因为“高压力”组早餐和午餐以及零食的摄入量减少得更多,尤其是水果和蔬菜。和“高压力”组一样,“中等压力”组早餐和午餐的次数也有所减少,但减少的程度较小。此外,与“高度压力”相比,“中度压力”的被试更多地表现出夜间用餐的增加和餐后零食增多的趋势[44]

4. 压力诱导性进食的心理生理机制

4.1. 认知负荷增高

认知负荷被认为是压力对进食影响的中介因素。当工作记忆资源被占用时,就会出现高认知负荷,从而损害心理任务的表[45]。一般认为,应激源通过减少工作记忆资源的可获得性来导致更高的认知负荷,而认知负荷被认为是通过减少食物渴求和不良进食行为所必需的认知资源来影响进食[46]。有研究发现高认知负荷的个体在自我报告的情绪性进食、限制性进食和外部进食上得分更高。此外,与低认知负荷的个体相比,高认知负荷的个体在自我报告的计划、选择和搭配健康饮食方面的得分较低[46]

4.2. 注意偏向

有研究采用食物Stroop范式来探索情绪诱导下被试的进食行为以及消极压迫感在其中的作用,被试完成了一系列的任务包括经典的Stroop任务、食物Stroop任务、邀请进食任务及问卷调查。食物Stroop任务中被试要对带有颜色的情绪食物词汇(例如巧克力等)和中性的动物词汇进行颜色判断。结果发现,消极情绪启动后被试的消极情绪唤醒与食物注意偏向无关,情绪唤醒和效价不会增加被试对食物的注意偏向。

4.3. HPA轴活动的改变

介导应激反应的两个主要生理系统是交感神经系统(SNS)和下丘脑–垂体–肾上腺(HPA)轴[47]。交感神经系统属于自主神经系统,释放肾上腺素和去甲肾上腺素以及对目标组织进行直接神经支配,可以在几秒内进行短期适应。HPA轴是相对更慢的系统,通过释放促肾上腺皮质激素释放激素(CRH)、促肾上腺皮质激素(ACTH)和糖皮质激素(GC)来协调交感神经系统,在人体内主要是皮质醇[48]。皮质醇渗透血脑屏障,激活中枢皮质类固醇受体,从而调节自身的释放[49]。关于HPA轴的指标通常有两个:正常状态下的基础HPA轴活性和对急性应激源的HPA轴反应性。前者常通过皮质醇觉醒反应(CAR)进行反映,在醒来后的前30~45分钟内,皮质醇水平上升50%~100%,随后在一天中稳步下降,在前半晚降至最低点[50]。对急性应激源的HPA轴反应性后者通常表现为急性皮质醇增加。压力可以通过与中枢神经系统和能量平衡机制的相互作用来影响食物摄入量。

有的研究使用特里尔社会应激测试(TSST)来探究进食障碍患者和健康个体之间生理和心理应激反应的差异。神经性暴食症和暴食障碍的患者表现出对TSST的皮质醇应激反应减弱[51]。在神经性厌食症患者中,结果出现了不一致。部分研究表明,神经性厌食症患者对TSST的皮质醇应激反应减弱[52]。但也有研究发现神经性厌食症患者对TSST的皮质醇应激反应是增强的[53]

在个体的特质皮质醇反应性方面,皮质醇反应性迟钝、情绪性进食得分高、皮质醇反应性迟钝的女性在压力诱导任务后摄入更多热量[54]。HPA轴对压力的高反应性与暴饮暴食障碍、神经性暴食症和肥胖之间存在关联,这些临床人群在应激源后表现出更高的皮质醇水平。

但目前还不清楚压力下进食是通过钝化HPA轴的激活来减轻压力,还是通过刺激多巴胺能奖赏系统,或者两者都有。此外,肠道和大脑之间存在双向关系,包括通过微生物群、细胞因子和激素的内源性交流,以及通过交感、副交感和肠道神经系统、迷走神经和背根神经节的神经交流[55]。这说明了胃肠道和大脑之间有复杂的相互作用。以上这些结果突出了神经和神经内分泌之间可能的相互作用,这可能会影响情绪处理,因此需要在压力性进食中进行考虑。

5. 压力诱导性进食的脑基础

5.1. 压力下奖赏系统改变

食物摄入量的调节基于两个主要的相互作用系统:稳态系统和享乐系统,摄取食物的愉悦导致过度沉迷于高热量食物[56]。稳态进食主要由胃肠激素和下丘脑整合调节;而享乐进食被认为与奖赏相关的皮层和皮层下系统有关,主要包括腹侧纹状体、腹侧被盖区和眶额叶皮质。

对饮食行为的调节是在饥饿感和饱腹感之间取得平衡的结果,受稳态和非稳态因素的控制,比如食物线索、认知和情绪状态以及个人的文化信仰。非稳态因素可以通过奖赏和认知过程间接影响食物摄入量的动态平衡。这些过程主要发生在皮质边缘结构,独立于生理需要[57]。非稳态环路涉及杏仁核,主要与行为增强和压力反应有关;海马,在进食行为的记忆和学习中发挥作用;以及背外侧前额叶皮层(dlPFC),其在目标导向的行为中发挥作用[58]。此外,脑岛在内感受、内稳态以及各种感觉信号的整合中发挥作用,而眶额叶皮质被认为是次级味觉皮质[59]。脑岛向眶额叶皮质进行投射,参与感知到的味觉愉悦体验[60]。腹内侧前额叶(vmPFC)在评估过程中也发挥着重要作用,因此在食物决策以及条件性的进食动机中也发挥着关键作用。眶额叶皮质和腹内侧前额叶都参与了对食物刺激的奖赏价值的分配[58]。纹状体在遇到食物线索时被激活,纹状体各个亚区有不同的功能:伏隔核参与奖赏预测,尾状核参与反馈处理,壳核参与习惯性行为的调节[58]。此外,腹侧被盖区(VTA)是多巴胺能神经元投射到奖赏系统并激活奖赏系统的起点。总的来说,食物感知和进食行为共享涉及感知、认知控制、奖赏,尤其是情绪处理的大脑区域。

5.2. 压力下执行功能改变

有研究调查了急性应激对自我控制和决策的影响,发现当个体选择更美味的食物时,vmPFC、杏仁核和纹状体之间的功能连接与唾液皮质醇水平呈正相关[61]。而当个体必须在健康食物和美味食物之间做出选择时,感觉到的压力越大,dlPFC和vmPFC之间的连接性降低越多[61]。这一结果表明,要么是压力降低了dlPFC-vmPFC的连接性,要么是dlPFC-vmPFC连接性降低的个体更容易受到压力的影响,自我控制能力较差。进而可以假设情绪调节受损可能会导致个体选择更可口的食物。

决策和情绪调节的大脑网络在前额叶区域有所重叠,包括vlPFC、内侧PFC (即内侧OFC、额极、rostral ACC和subgenual PFC)、dmPFC和dlPFC [62]。情绪调节可能会通过奖赏和决策网络来影响饮食决定。在健康个体中,对食物图片的评估导致食物渴求降低后,dlPFC活性降低;而食物渴望增加后vmPFC活性升高[63]。此外,后顶叶皮质和vlPFC在调节过程中表现出与vmPFC更强的连接。这表明这些脑区参与了认知调节过程中决策回路的变化。此外,在决策过程中对食物渴求的认知调节与参与评估和决策过程的前额脑区域的不同活动有关[63]

5.3. 激素和脑的交互

先前关于压力进食的动物研究发现,喂食蔗糖的大鼠在急性压力后分泌的皮质酮较少[64]。双侧基底外侧杏仁核受损的蔗糖喂养大鼠对压力反应的皮质酮水平是正常的,而非蔗糖喂养的大鼠在这个边缘区域表现出结构可塑性增加(与结构可塑性相关的基因表达增加),因此基底外侧杏仁核在缓解压力中起到重要作用[65]。这些结果表明,压力可以部分通过奖赏系统进行缓解,间接促进突触重构[65] [66]

在压力状态下,个体会增加或减少食物的摄入量。有一些研究在实验室诱导急性应激,同时测量个体的皮质醇水平,并将情绪性进食和压力的生物标志物与功能磁共振结合起来。在一项研究中,超重组青少年的唾液皮质醇水平与中边缘脑区的功能连接性呈正相关,外侧下丘脑与伏隔核、外侧下丘脑与中脑之间的连接性呈正相关。同样只在超重组,情绪性进食得分和外侧下丘脑与中脑网络的连接性之间也呈正相关[67]。下丘脑是控制进食行为动态平衡的核心区域,并且外侧下丘脑与参与情绪处理的几个脑区有双向连接,比如杏仁核、腹侧被盖区和伏隔核[68]。另一项研究发现,与非情绪性进食者相比,情绪性进食者在急性应激后表现出焦虑和血清皮质醇水平升高。情绪性进食者在奖赏预期阶段,中脑边缘奖赏区域(尾状核、伏隔核、壳核)的激活程度降低[69]

综上所述,这些结果表明,压力可能会影响超重个体或情绪性进食者的特定大脑网络。但压力如何影响个体的进食行为,包括各种激素和食欲肽如何与脑区相互作用仍有待进一步探究。值得注意的是,实验研究在评估个体实验后的进食状况时,使用的都是自由进食,然后计算摄入的热量,得到的结果均不显著[70] [71]。这可能是由于被试受到社会赞许效应的影响,在他人在场或陌生环境中进食行为受到社会规范的潜在影响,个体会有意识地控制自己的进食量,不会表现出暴饮暴食的现象。

参考文献

[1] Jacobi, C., Hayward, C., de Zwaan, M., Kraemer, H.C. and Agras, W.S. (2004) Coming to Terms with Risk Factors for Eating Disorders: Application of Risk Terminology and Suggestions for a General Taxonomy. Psychological Bulletin, 130, 19-65.
https://doi.org/10.1037/0033-2909.130.1.19
[2] Gold, P.W. and Chrousos, G.P. (2002) Organization of the Stress System and Its Dysregulation in Melancholic and Atypical Depression: High vs Low CRH/NE States. Molecular Psychiatry, 7, 254-275.
https://doi.org/10.1038/sj.mp.4001032
[3] Keski-Rahkonen, A. and Mustelin, L. (2016) Epidemiology of Eating Disorders in Europe: Prevalence, Incidence, Comorbidity, Course, Consequences, and Risk Factors. Current Opinion in Psychiatry, 29, 340-345.
https://doi.org/10.1097/yco.0000000000000278
[4] Greeno, C.G. and Wing, R.R. (1994) Stress-Induced Eating. Psychological Bulletin, 115, 444-464.
https://doi.org/10.1037/0033-2909.115.3.444
[5] Grunberg, N.E. and Straub, R.O. (1992) The Role of Gender and Taste Class in the Effects of Stress on Eating. Health Psychology, 11, 97-100.
https://doi.org/10.1037/0278-6133.11.2.97
[6] Herman, C.P. and Polivy, J. (1975) Anxiety, Restraint, and Eating Behavior. Journal of Abnormal Psychology, 84, 666-672.
https://doi.org/10.1037//0021-843x.84.6.666
[7] Schachter, S., Goldman, R. and Gordon, A. (1968) Effects of Fear, Food Deprivation, and Obesity on Eating. Journal of Personality and Social Psychology, 10, 91-97.
https://doi.org/10.1037/h0026284
[8] Baucom, D.H. and Aiken, P.A. (1981) Effect of Depressed Mood on Eating among Obese and Nonobese Dieting and Nondieting Persons. Journal of Personality and Social Psychology, 41, 577-585.
https://doi.org/10.1037/0022-3514.41.3.577
[9] Adam, T.C. and Epel, E.S. (2007) Stress, Eating and the Reward System. Physiology & Behavior, 91, 449-458.
https://doi.org/10.1016/j.physbeh.2007.04.011
[10] Figlewicz, D.P. (2003) Adiposity Signals and Food Reward: Expanding the CNS Roles of Insulin and Leptin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284, R882-R892.
https://doi.org/10.1152/ajpregu.00602.2002
[11] Fulton, S., Woodside, B. and Shizgal, P. (2000) Modulation of Brain Reward Circuitry by Leptin. Science, 287, 125-128.
https://doi.org/10.1126/science.287.5450.125
[12] Figlewicz, D.P. and Woods, S.C. (2000) Adiposity Signals and Brain Reward Mechanisms. Trends in Pharmacological Sciences, 21, 235-236.
https://doi.org/10.1016/s0165-6147(00)01488-7
[13] Dallman, M.F., Akana, S.F., Laugero, K.D., Gomez, F., Manalo, S., Bell, M.E., et al. (2003) A Spoonful of Sugar: Feedback Signals of Energy Stores and Corticosterone Regulate Responses to Chronic Stress. Physiology & Behavior, 79, 3-12.
https://doi.org/10.1016/s0031-9384(03)00100-8
[14] Pecoraro, N., Reyes, F., Gomez, F., Bhargava, A. and Dallman, M.F. (2004) Chronic Stress Promotes Palatable Feeding, Which Reduces Signs of Stress: Feedforward and Feedback Effects of Chronic Stress. Endocrinology, 145, 3754-3762.
https://doi.org/10.1210/en.2004-0305
[15] Dohrenwend, B.S. (1973) Social Status and Stressful Life Events. Journal of Personality and Social Psychology, 28, 225-235.
https://doi.org/10.1037/h0035718
[16] Rabasa, C. and Dickson, S.L. (2016) Impact of Stress on Metabolism and Energy Balance. Current Opinion in Behavioral Sciences, 9, 71-77.
https://doi.org/10.1016/j.cobeha.2016.01.011
[17] Kirschbaum, C., Pirke, K. and Hellhammer, D.H. (1993) The ‘Trier Social Stress Test’—A Tool for Investigating Psychobiological Stress Responses in a Laboratory Setting. Neuropsychobiology, 28, 76-81.
https://doi.org/10.1159/000119004
[18] Balodis, I.M., Wynne-Edwards, K.E. and Olmstead, M.C. (2010) The Other Side of the Curve: Examining the Relationship between Pre-Stressor Physiological Responses and Stress Reactivity. Psychoneuroendocrinology, 35, 1363-1373.
https://doi.org/10.1016/j.psyneuen.2010.03.011
[19] Het, S., Rohleder, N., Schoofs, D., Kirschbaum, C. and Wolf, O.T. (2009) Neuroendocrine and Psychometric Evaluation of a Placebo Version of the ‘Trier Social Stress Test’. Psychoneuroendocrinology, 34, 1075-1086.
https://doi.org/10.1016/j.psyneuen.2009.02.008
[20] Childs, E., O’Connor, S. and de Wit, H. (2011) Bidirectional Interactions between Acute Psychosocial Stress and Acute Intravenous Alcohol in Healthy Men. Alcoholism: Clinical and Experimental Research, 35, 1794-1803.
https://doi.org/10.1111/j.1530-0277.2011.01522.x
[21] Jönsson, P., Wallergård, M., Österberg, K., Hansen, Å.M., Johansson, G. and Karlson, B. (2010) Cardiovascular and Cortisol Reactivity and Habituation to a Virtual Reality Version of the Trier Social Stress Test: A Pilot Study. Psychoneuroendocrinology, 35, 1397-1403.
https://doi.org/10.1016/j.psyneuen.2010.04.003
[22] Westenberg, P.M., Bokhorst, C.L., Miers, A.C., Sumter, S.R., Kallen, V.L., van Pelt, J., et al. (2009) A Prepared Speech in Front of a Pre-Recorded Audience: Subjective, Physiological, and Neuroendocrine Responses to the Leiden Public Speaking Task. Biological Psychology, 82, 116-124.
https://doi.org/10.1016/j.biopsycho.2009.06.005
[23] Gluck, M.E., Yahav, E., Hashim, S.A. and Geliebter, A. (2014) Ghrelin Levels after a Cold Pressor Stress Test in Obese Women with Binge Eating Disorder. Psychosomatic Medicine, 76, 74-79.
https://doi.org/10.1097/psy.0000000000000018
[24] McRae, A.L., Saladin, M.E., Brady, K.T., Upadhyaya, H., Back, S.E. and Timmerman, M.A. (2006) Stress Reactivity: Biological and Subjective Responses to the Cold Pressor and Trier Social Stressors. Human Psychopharmacology: Clinical and Experimental, 21, 377-385.
https://doi.org/10.1002/hup.778
[25] Kotlyar, M., Donahue, C., Thuras, P., Kushner, M.G., O'Gorman, N., Smith, E.A., et al. (2008) Physiological Response to a Speech Stressor Presented in a Virtual Reality Environment. Psychophysiology, 45, 1034-1037.
https://doi.org/10.1111/j.1469-8986.2008.00690.x
[26] Lyu, Z. and Jackson, T. (2016) Acute Stressors Reduce Neural Inhibition to Food Cues and Increase Eating among Binge Eating Disorder Symptomatic Women. Frontiers in Behavioral Neuroscience, 10, Article 188.
https://doi.org/10.3389/fnbeh.2016.00188
[27] Schwabe, L., Haddad, L. and Schachinger, H. (2008) HPA Axis Activation by a Socially Evaluated Cold-Pressor Test. Psychoneuroendocrinology, 33, 890-895.
https://doi.org/10.1016/j.psyneuen.2008.03.001
[28] Smeets, T., Cornelisse, S., Quaedflieg, C.W.E.M., Meyer, T., Jelicic, M. and Merckelbach, H. (2012) Introducing the Maastricht Acute Stress Test (MAST): A Quick and Non-Invasive Approach to Elicit Robust Autonomic and Glucocorticoid Stress Responses. Psychoneuroendocrinology, 37, 1998-2008.
https://doi.org/10.1016/j.psyneuen.2012.04.012
[29] Lane, R.D., Reiman, E.M., Axelrod, B., Yun, L., Holmes, A. and Schwartz, G.E. (1998) Neural Correlates of Levels of Emotional Awareness: Evidence of an Interaction between Emotion and Attention in the Anterior Cingulate Cortex. Journal of Cognitive Neuroscience, 10, 525-535.
https://doi.org/10.1162/089892998562924
[30] Litt, M.D., Cooney, N.L., Kadden, R.M. and Gaupp, L. (1990) Reactivity to Alcohol Cues and Induced Moods in Alcoholics. Addictive Behaviors, 15, 137-146.
https://doi.org/10.1016/0306-4603(90)90017-r
[31] Gross, J.J. and Levenson, R.W. (1995) Emotion Elicitation Using Films. Cognition & Emotion, 9, 87-108.
https://doi.org/10.1080/02699939508408966
[32] Evers, C., de Ridder, D.T.D. and Adriaanse, M.A. (2009) Assessing Yourself as an Emotional Eater: Mission Impossible? Health Psychology, 28, 717-725.
https://doi.org/10.1037/a0016700
[33] Tull, M.T. and Roemer, L. (2007) Emotion Regulation Difficulties Associated with the Experience of Uncued Panic Attacks: Evidence of Experiential Avoidance, Emotional Nonacceptance, and Decreased Emotional Clarity. Behavior Therapy, 38, 378-391.
https://doi.org/10.1016/j.beth.2006.10.006
[34] Yeomans, M.R. and Coughlan, E. (2009) Mood-Induced Eating. Interactive Effects of Restraint and Tendency to Overeat. Appetite, 52, 290-298.
https://doi.org/10.1016/j.appet.2008.10.006
[35] Wildes, J.E., Marcus, M.D., Bright, A.C., Dapelo, M.M. and Psychol, M.C. (2012) Emotion and Eating Disorder Symptoms in Patients with Anorexia Nervosa: An Experimental Study. International Journal of Eating Disorders, 45, 876-882.
https://doi.org/10.1002/eat.22020
[36] van Strien, T., Frijters, J.E.R., Bergers, G.P.A. and Defares, P.B. (1986) The Dutch Eating Behavior Questionnaire (DEBQ) for Assessment of Restrained, Emotional, and External Eating Behavior. International Journal of Eating Disorders, 5, 295-315.
https://doi.org/10.1002/1098-108x(198602)5:2<295::aid-eat2260050209>3.0.co;2-t
[37] Karlsson, J., Persson, L., Sjöström, L. and Sullivan, M. (2000) Psychometric Properties and Factor Structure of the Three-Factor Eating Questionnaire (TFEQ) in Obese Men and Women. Results from the Swedish Obese Subjects (SOS) Study. International Journal of Obesity, 24, 1715-1725.
https://doi.org/10.1038/sj.ijo.0801442
[38] Schembre, S., Greene, G. and Melanson, K. (2009) Development and Validation of a Weight-Related Eating Questionnaire. Eating Behaviors, 10, 119-124.
https://doi.org/10.1016/j.eatbeh.2009.03.006
[39] Masheb, R.M. and Grilo, C.M. (2006) Eating Patterns and Breakfast Consumption in Obese Patients with Binge Eating Disorder. Behaviour Research and Therapy, 44, 1545-1553.
https://doi.org/10.1016/j.brat.2005.10.013
[40] Arnow, B., Kenardy, J. and Agras, W.S. (1995) The Emotional Eating Scale: The Development of a Measure to Assess Coping with Negative Affect by Eating. International Journal of Eating Disorders, 18, 79-90.
https://doi.org/10.1002/1098-108x(199507)18:1<79::aid-eat2260180109>3.0.co;2-v
[41] Reichenberger, J., Pannicke, B., Arend, A., Petrowski, K. and Blechert, J. (2020) Does Stress Eat Away at You or Make You Eat? EMA Measures of Stress Predict Day to Day Food Craving and Perceived Food Intake as a Function of Trait Stress-eating. Psychology & Health, 36, 129-147.
https://doi.org/10.1080/08870446.2020.1781122
[42] Reichenberger, J., Kuppens, P., Liedlgruber, M., Wilhelm, F.H., Tiefengrabner, M., Ginzinger, S., et al. (2018) No Haste, More Taste: An EMA Study of the Effects of Stress, Negative and Positive Emotions on Eating Behavior. Biological Psychology, 131, 54-62.
https://doi.org/10.1016/j.biopsycho.2016.09.002
[43] Tomiyama, A.J. (2019) Stress and Obesity. Annual Review of Psychology, 70, 703-718.
https://doi.org/10.1146/annurev-psych-010418-102936
[44] Hyldelund, N.B., Byrne, D.V., Chan, R.C.K. and Andersen, B.V. (2022) The Relationship between Social Anhedonia and Perceived Pleasure from Food—An Exploratory Investigation on a Consumer Segment with Depression and Anxiety. Foods, 11, Article 3659.
https://doi.org/10.3390/foods11223659
[45] Paas, F., Renkl, A. and Sweller, J. (2004) Cognitive Load Theory: Instructional Implications of the Interaction between Information Structures and Cognitive Architecture. Instructional Science, 32, 1-8.
https://doi.org/10.1023/b:truc.0000021806.17516.d0
[46] Byrd-Bredbenner, C., Quick, V., Koenings, M., Martin-Biggers, J. and Kattelmann, K.K. (2016) Relationships of Cognitive Load on Eating and Weight-Related Behaviors of Young Adults. Eating Behaviors, 21, 89-94.
https://doi.org/10.1016/j.eatbeh.2016.01.002
[47] Sapolsky, R.M., Romero, L.M. and Munck, A.U. (2000) How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. Endocrine Reviews, 21, 55-89.
https://doi.org/10.1210/edrv.21.1.0389
[48] Ulrich-Lai, Y.M. and Herman, J.P. (2009) Neural Regulation of Endocrine and Autonomic Stress Responses. Nature Reviews Neuroscience, 10, 397-409.
https://doi.org/10.1038/nrn2647
[49] Joëls, M., Karst, H., DeRijk, R. and de Kloet, E.R. (2008) The Coming Out of the Brain Mineralocorticoid Receptor. Trends in Neurosciences, 31, 1-7.
https://doi.org/10.1016/j.tins.2007.10.005
[50] Pruessner, J.C., Wolf, O.T., Hellhammer, D.H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., et al. (1997) Free Cortisol Levels after Awakening: A Reliable Biological Marker for the Assessment of Adrenocortical Activity. Life Sciences, 61, 2539-2549.
https://doi.org/10.1016/s0024-3205(97)01008-4
[51] Rosenberg, N., Bloch, M., Ben Avi, I., Rouach, V., Schreiber, S., Stern, N., et al. (2013) Cortisol Response and Desire to Binge Following Psychological Stress: Comparison between Obese Subjects with and without Binge Eating Disorder. Psychiatry Research, 208, 156-161.
https://doi.org/10.1016/j.psychres.2012.09.050
[52] Zonnevylle-Bender, M.J.S., van Goozen, S.H.M., Cohen-Kettenis, P.T., Jansen, L.M.C., van Elburg, A. and Engeland, H.V. (2005) Adolescent Anorexia Nervosa Patients Have a Discrepancy between Neurophysiological Responses and Self-Reported Emotional Arousal to Psychosocial Stress. Psychiatry Research, 135, 45-52.
https://doi.org/10.1016/j.psychres.2004.11.006
[53] Monteleone, P., Scognamiglio, P., Canestrelli, B., Serino, I., Monteleone, A.M. and Maj, M. (2011) Asymmetry of Salivary Cortisol and Α-Amylase Responses to Psychosocial Stress in Anorexia Nervosa but Not in Bulimia Nervosa. Psychological Medicine, 41, 1963-1969.
https://doi.org/10.1017/s0033291711000092
[54] van Strien, T., Roelofs, K. and de Weerth, C. (2013) Cortisol Reactivity and Distress-Induced Emotional Eating. Psychoneuroendocrinology, 38, 677-684.
https://doi.org/10.1016/j.psyneuen.2012.08.008
[55] Jenkins, T., Nguyen, J., Polglaze, K. and Bertrand, P. (2016) Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 8, Article 56.
https://doi.org/10.3390/nu8010056
[56] Hollmann, M., Hellrung, L., Pleger, B., Schlögl, H., Kabisch, S., Stumvoll, M., et al. (2011) Neural Correlates of the Volitional Regulation of the Desire for Food. International Journal of Obesity, 36, 648-655.
https://doi.org/10.1038/ijo.2011.125
[57] Berthoud, H. (2011) Metabolic and Hedonic Drives in the Neural Control of Appetite: Who Is the Boss? Current Opinion in Neurobiology, 21, 888-896.
https://doi.org/10.1016/j.conb.2011.09.004
[58] Hollmann, M., Pleger, B., Villringer, A. and Horstmann, A. (2013) Brain Imaging in the Context of Food Perception and Eating. Current Opinion in Lipidology, 24, 18-24.
https://doi.org/10.1097/mol.0b013e32835b61a4
[59] Rolls, E.T. (2006) Brain Mechanisms Underlying Flavour and Appetite. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1123-1136.
https://doi.org/10.1098/rstb.2006.1852
[60] Shin, A.C., Zheng, H. and Berthoud, H. (2009) An Expanded View of Energy Homeostasis: Neural Integration of Metabolic, Cognitive, and Emotional Drives to Eat. Physiology & Behavior, 97, 572-580.
https://doi.org/10.1016/j.physbeh.2009.02.010
[61] Maier, S.U., Makwana, A.B. and Hare, T.A. (2015) Acute Stress Impairs Self-Control in Goal-Directed Choice by Altering Multiple Functional Connections within the Brain’s Decision Circuits. Neuron, 87, 621-631.
https://doi.org/10.1016/j.neuron.2015.07.005
[62] Mitchell, D.G.V. (2011) The Nexus between Decision Making and Emotion Regulation: A Review of Convergent Neurocognitive Substrates. Behavioural Brain Research, 217, 215-231.
https://doi.org/10.1016/j.bbr.2010.10.030
[63] Hutcherson, C.A., Plassmann, H., Gross, J.J. and Rangel, A. (2012) Cognitive Regulation during Decision Making Shifts Behavioral Control between Ventromedial and Dorsolateral Prefrontal Value Systems. The Journal of Neuroscience, 32, 13543-13554.
https://doi.org/10.1523/jneurosci.6387-11.2012
[64] Egan, A.E., Thompson, A.M.K., Buesing, D., Fourman, S.M., Packard, A.E.B., Terefe, T., et al. (2018) Palatable Food Affects HPA Axis Responsivity and Forebrain Neurocircuitry in an Estrous Cycle-Specific Manner in Female Rats. Neuroscience, 384, 224-240.
https://doi.org/10.1016/j.neuroscience.2018.05.030
[65] Ulrich-Lai, Y.M., Christiansen, A.M., Ostrander, M.M., Jones, A.A., Jones, K.R., Choi, D.C., et al. (2010) Pleasurable Behaviors Reduce Stress via Brain Reward Pathways. Proceedings of the National Academy of Sciences of the United States of America, 107, 20529-20534.
https://doi.org/10.1073/pnas.1007740107
[66] Ulrich-Lai, Y.M., Fulton, S., Wilson, M., et al. (2015) Stress Exposure, Food Intake and Emotional State. Stress, 18, 381-399.
[67] Martín-Pérez, C., Contreras-Rodríguez, O., Vilar-López, R. and Verdejo-García, A. (2019) Hypothalamic Networks in Adolescents with Excess Weight: Stress-Related Connectivity and Associations with Emotional Eating. Journal of the American Academy of Child & Adolescent Psychiatry, 58, 211-220.e5.
https://doi.org/10.1016/j.jaac.2018.06.039
[68] Sweeney, P. and Yang, Y. (2017) Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding. Trends in Endocrinology & Metabolism, 28, 437-448.
https://doi.org/10.1016/j.tem.2017.02.006
[69] Chang, R.S., Cerit, H., Hye, T., Durham, E.L., Aizley, H., Boukezzi, S., et al. (2022) Stress-induced Alterations in HPA-Axis Reactivity and Mesolimbic Reward Activation in Individuals with Emotional Eating. Appetite, 168, Article ID: 105707.
https://doi.org/10.1016/j.appet.2021.105707
[70] Jensen, C.D., Zaugg, K.K., Muncy, N.M., Allen, W.D., Blackburn, R., Duraccio, K.M., et al. (2021) Neural Mechanisms That Promote Food Consumption Following Sleep Loss and Social Stress: An fMRI Study in Adolescent Girls with Overweight/Obesity. Sleep, 45, zsab263.
https://doi.org/10.1093/sleep/zsab263
[71] Satterfield, B.C., Raikes, A.C. and Killgore, W.D.S. (2019) Rested-Baseline Responsivity of the Ventral Striatum Is Associated with Caloric and Macronutrient Intake during One Night of Sleep Deprivation. Frontiers in Psychiatry, 9, Article 749.
https://doi.org/10.3389/fpsyt.2018.00749