|
[1]
|
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., et al. (2014) The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506-514. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lambo, M.T., Chang, X. and Liu, D. (2021) The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals, 11, Article 2805. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Su, W., Gong, T., Jiang, Z., Lu, Z. and Wang, Y. (2022) The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets from the Perspective of Intestinal Barriers. Frontiers in Cellular and Infection Microbiology, 12, Article 883107. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pilla, R. and Suchodolski, J.S. (2021) The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Veterinary Clinics of North America: Small Animal Practice, 51, 605-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Grześkowiak, Ł., Endo, A., Beasley, S. and Salminen, S. (2015) Microbiota and Probiotics in Canine and Feline Welfare. Anaerobe, 34, 14-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Schmitz, S., Werling, D. and Allenspach, K. (2015) Effects of ex-vivo and in-vivo Treatment with Probiotics on the Inflammasome in Dogs with Chronic Enteropathy. PLOS ONE, 10, e0120779. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hoffmann, A.R., Proctor, L.M., Surette, M.G. and Suchodolski, J.S. (2015) The Microbiome: The Trillions of Microorganisms That Maintain Health and Cause Disease in Humans and Companion Animals. Veterinary Pathology, 53, 10-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hashimoto-Hill, S. and Alenghat, T. (2021) Inflammation-Associated Microbiota Composition across Domestic Animals. Frontiers in Genetics, 12, Article 649599. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Deng, P. and Swanson, K.S. (2014) Gut Microbiota of Humans, Dogs and Cats: Current Knowledge and Future Opportunities and Challenges. British Journal of Nutrition, 113, S6-S17. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lee, D., Goh, T.W., Kang, M.G., Choi, H.J., Yeo, S.Y., Yang, J., et al. (2022) Perspectives and Advances in Probiotics and the Gut Microbiome in Companion Animals. Journal of Animal Science and Technology, 64, 197-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ziese, A. and Suchodolski, J.S. (2021) Impact of Changes in Gastrointestinal Microbiota in Canine and Feline Digestive Diseases. Veterinary Clinics of North America: Small Animal Practice, 51, 155-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Schmitz, S. and Suchodolski, J. (2016) Understanding the Canine Intestinal Microbiota and Its Modification by Pro‐, Pre‐ and Synbiotics—What Is the Evidence? Veterinary Medicine and Science, 2, 71-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Suchodolski, J.S., Camacho, J. and Steiner, J.M. (2008) Analysis of Bacterial Diversity in the Canine Duodenum, Jejunum, Ileum, and Colon by Comparative 16S rRNA Gene Analysis. FEMS Microbiology Ecology, 66, 567-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kim, S. and Adachi, Y. (2007) Biological and Genetic Classification of Canine Intestinal Lactic Acid Bacteria and Bifidobacteria. Microbiology and Immunology, 51, 919-928. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Alessandri, G., Milani, C., Mancabelli, L., Longhi, G., Anzalone, R., Lugli, G.A., et al. (2020) Deciphering the Bifidobacterial Populations within the Canine and Feline Gut Microbiota. Applied and Environmental Microbiology, 86, e02875-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jha, A.R., Shmalberg, J., Tanprasertsuk, J., Perry, L., Massey, D. and Honaker, R.W. (2020) Characterization of Gut Microbiomes of Household Pets in the United States Using a Direct-to-Consumer Approach. PLOS ONE, 15, e0227289. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Alessandri, G., Argentini, C., Milani, C., Turroni, F., Cristina Ossiprandi, M., van Sinderen, D., et al. (2020) Catching a Glimpse of the Bacterial Gut Community of Companion Animals: A Canine and Feline Perspective. Microbial Biotechnology, 13, 1708-1732. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rhimi, S., Kriaa, A., Mariaule, V., Saidi, A., Drut, A., Jablaoui, A., et al. (2022) The Nexus of Diet, Gut Microbiota and Inflammatory Bowel Diseases in Dogs. Metabolites, 12, Article 1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Huang, Z., Pan, Z., Yang, R., Bi, Y. and Xiong, X. (2020) The Canine Gastrointestinal Microbiota: Early Studies and Research Frontiers. Gut Microbes, 11, 635-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wernimont, S.M., Radosevich, J., Jackson, M.I., Ephraim, E., Badri, D.V., MacLeay, J.M., et al. (2020) The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Frontiers in Microbiology, 11, Article 1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gasaly, N., de Vos, P. and Hermoso, M.A. (2021) Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Frontiers in Immunology, 12, Article 658354. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Suchodolski, J.S., Markel, M.E., Garcia-Mazcorro, J.F., Unterer, S., Heilmann, R.M., Dowd, S.E., et al. (2012) The Fecal Microbiome in Dogs with Acute Diarrhea and Idiopathic Inflammatory Bowel Disease. PLOS ONE, 7, e51907. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hernandez, J., Rhimi, S., Kriaa, A., Mariaule, V., Boudaya, H., Drut, A., et al. (2022) Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms, 10, Article 949. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rudenko, P., Vatnikov, Y., Sachivkina, N., Rudenko, A., Kulikov, E., Lutsay, V., et al. (2021) Search for Promising Strains of Probiotic Microbiota Isolated from Different Biotopes of Healthy Cats for Use in the Control of Surgical Infections. Pathogens, 10, Article 667. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Rossi, G., Pengo, G., Galosi, L., Berardi, S., Tambella, A.M., Attili, A.R., et al. (2020) Effects of the Probiotic Mixture Slab51® (SivoMixx®) as Food Supplement in Healthy Dogs: Evaluation of Fecal Microbiota, Clinical Parameters and Immune Function. Frontiers in Veterinary Science, 7, Article 613. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xu, H., Huang, W., Hou, Q., Kwok, L., Laga, W., Wang, Y., et al. (2019) Oral Administration of Compound Probiotics Improved Canine Feed Intake, Weight Gain, Immunity and Intestinal Microbiota. Frontiers in Immunology, 10, Article 666. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Strompfová, V., Kubašová, I. and Lauková, A. (2017) Health Benefits Observed after Probiotic Lactobacillus fermentum CCM 7421 Application in Dogs. Applied Microbiology and Biotechnology, 101, 6309-6319. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Handl, S., Dowd, S.E., Garcia-Mazcorro, J.F., Steiner, J.M. and Suchodolski, J.S. (2011) Massive Parallel 16S rRNA Gene Pyrosequencing Reveals Highly Diverse Fecal Bacterial and Fungal Communities in Healthy Dogs and Cats. FEMS Microbiology Ecology, 76, 301-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kim, K., Kim, J., Kim, S., Kim, S., Nguyen, T.H. and Kang, C. (2021) Antioxidant and Anti-Inflammatory Effect and Probiotic Properties of Lactic Acid Bacteria Isolated from Canine and Feline Feces. Microorganisms, 9, Article 1971. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kim, J., Jung, M.Y., Kim, D. and Kim, Y. (2020) Genome Analysis of Bacteroides sp. CACC 737 Isolated from Feline for Its Potential Application. Journal of Animal Science and Technology, 62, 952-955. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Gookin, J.L., Strong, S.J., Bruno-Bárcena, J.M., Stauffer, S.H., Williams, S., Wassack, E., et al. (2022) Randomized Placebo-Controlled Trial of Feline-Origin Enterococcus Hirae Probiotic Effects on Preventative Health and Fecal Microbiota Composition of Fostered Shelter Kittens. Frontiers in Veterinary Science, 9, Article 923792. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fusi, E., Rizzi, R., Polli, M., Cannas, S., Giardini, A., Bruni, N., et al. (2019) Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) Supplementation on Healthy Cat Performance. Veterinary Record Open, 6, e000368. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, Y., Ali, I., Lei, Z., Li, Y., Yang, M., Yang, C., et al. (2023) Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites, 13, Article 228. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bybee, S.N., Scorza, A.V. and Lappin, M.R. (2011) Effect of the Probiotic Enterococcus faecium SF68 on Presence of Diarrhea in Cats and Dogs Housed in an Animal Shelter. Journal of Veterinary Internal Medicine, 25, 856-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Marshall-Jones, Z.V., Baillon, M.A., Croft, J.M. and Butterwick, R.F. (2006) Effects of Lactobacillus acidophilus DSM13241 as a Probiotic in Healthy Adult Cats. American Journal of Veterinary Research, 67, 1005-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lee, T., Chao, T., Chang, H., Cheng, Y., Wu, C. and Chang, Y. (2022) The Effects of Bacillus licheniformis—Fermented Products on the Microbiota and Clinical Presentation of Cats with Chronic Diarrhea. Animals, 12, Article 2187. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Rossi, G., Jergens, A., Cerquetella, M., Berardi, S., Di Cicco, E., Bassotti, G., et al. (2018) Effects of a Probiotic (SLAB51™) on Clinical and Histologic Variables and Microbiota of Cats with Chronic Constipation/Megacolon: A Pilot Study. Beneficial Microbes, 9, 101-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Torres-Henderson, C., Summers, S., Suchodolski, J. and Lappin, M.R. (2017) Effect of Enterococcus faecium Strain SF68 on Gastrointestinal Signs and Fecal Microbiome in Cats Administered Amoxicillin-Clavulanate. Topics in Companion Animal Medicine, 32, 104-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sanders, M.E., Merenstein, D.J., Reid, G., Gibson, G.R. and Rastall, R.A. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nature Reviews Gastroenterology & Hepatology, 16, 605-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yan, F. and Polk, D.B. (2020) Probiotics and Probiotic-Derived Functional Factors—Mechanistic Insights into Applications for Intestinal Homeostasis. Frontiers in Immunology, 11, Article 1428. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Snigdha, S., Ha, K., Tsai, P., Dinan, T.G., Bartos, J.D. and Shahid, M. (2022) Probiotics: Potential Novel Therapeutics for Microbiota-Gut-Brain Axis Dysfunction across Gender and Lifespan. Pharmacology & Therapeutics, 231, Article 107978. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Rojo, D., Méndez-García, C., Raczkowska, B.A., Bargiela, R., Moya, A., Ferrer, M., et al. (2017) Exploring the Human Microbiome from Multiple Perspectives: Factors Altering Its Composition and Function. FEMS Microbiology Reviews, 41, 453-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
You, I. and Kim, M.J. (2021) Comparison of Gut Microbiota of 96 Healthy Dogs by Individual Traits: Breed, Age, and Body Condition Score. Animals, 11, Article 2432. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Garrigues, Q., Apper, E., Chastant, S. and Mila, H. (2022) Gut Microbiota Development in the Growing Dog: A Dynamic Process Influenced by Maternal, Environmental and Host Factors. Frontiers in Veterinary Science, 9, Article 964649. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Whittemore, J.C., Stokes, J.E., Price, J.M. and Suchodolski, J.S. (2019) Effects of a Synbiotic on the Fecal Microbiome and Metabolomic Profiles of Healthy Research Cats Administered Clindamycin: A Randomized, Controlled Trial. Gut Microbes, 10, 521-539. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Rochegüe, T., Haenni, M., Mondot, S., Astruc, C., Cazeau, G., Ferry, T., et al. (2021) Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals, 11, Article 3280. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yao, M., Xie, J., Du, H., McClements, D.J., Xiao, H. and Li, L. (2020) Progress in Microencapsulation of Probiotics: A Review. Comprehensive Reviews in Food Science and Food Safety, 19, 857-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Gu, Q., Yin, Y., Yan, X., Liu, X., Liu, F. and McClements, D.J. (2022) Encapsulation of Multiple Probiotics, Synbiotics, or Nutrabiotics for Improved Health Effects: A Review. Advances in Colloid and Interface Science, 309, Article 102781. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Centurion, F., Basit, A.W., Liu, J., Gaisford, S., Rahim, M.A. and Kalantar-Zadeh, K. (2021) Nanoencapsulation for Probiotic Delivery. ACS Nano, 15, 18653-18660. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Xu, C., Ban, Q., Wang, W., Hou, J. and Jiang, Z. (2022) Novel Nano-Encapsulated Probiotic Agents: Encapsulate Materials, Delivery, and Encapsulation Systems. Journal of Controlled Release, 349, 184-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Rodrigues, B.M., Olivo, P.M., Osmari, M.P., Vasconcellos, R.S., Ribeiro, L.B., Bankuti, F.I., et al. (2020) Microencapsulation of Probiotic Strains by Lyophilization Is Efficient in Maintaining the Viability of Microorganisms and Modulation of Fecal Microbiota in Cats. International Journal of Microbiology, 2020, Article 1293481. [Google Scholar] [CrossRef] [PubMed]
|