[1]
|
张江锋, 覃晓. 腹主动脉瘤发病机制的研究[J]. 广西医科大学学报, 2020, 37(2): 309-314.
|
[2]
|
Emmett, M.J. and Lazar, M.A. (2018) Integrative Regulation of Physiology by Histone Deacetylase 3. Nature Reviews Molecular Cell Biology, 20, 102-115. https://doi.org/10.1038/s41580-018-0076-0
|
[3]
|
龙殿飞, 李娜, 薛世珊, 等. 组蛋白去乙酰化酶抑制剂在心血管疾病中的治疗潜力[J]. 心血管病学进展, 2021, 42(10): 933-936.
|
[4]
|
蒋佳文, 李善高. 组蛋白去乙酰化酶与炎症性疾病[J]. 浙江医学, 2024, 46(7): 776-780.
|
[5]
|
吴佳, 王海洋. 腹主动脉瘤的发病机制研究进展[J]. 医学综述, 2019, 25(6): 1110-1116.
|
[6]
|
Krishna, S.M., Dear, A.E., Norman, P.E. and Golledge, J. (2010) Genetic and Epigenetic Mechanisms and Their Possible Role in Abdominal Aortic Aneurysm. Atherosclerosis, 212, 16-29. https://doi.org/10.1016/j.atherosclerosis.2010.02.008
|
[7]
|
Accarino, G., Giordano, A.N., Falcone, M., Celano, A., Vassallo, M.G., Fornino, G., et al. (2023) Abdominal Aortic Aneurysm: Natural History, Pathophysiology and Translational Perspectives. Translational Medicine UniSa, 24, Article 6. https://doi.org/10.37825/2239-9747.1037
|
[8]
|
Branchetti, E., Poggio, P., Sainger, R., Shang, E., Grau, J.B., Jackson, B.M., et al. (2013) Oxidative Stress Modulates Vascular Smooth Muscle Cell Phenotype via CTGF in Thoracic Aortic Aneurysm. Cardiovascular Research, 100, 316-324. https://doi.org/10.1093/cvr/cvt205
|
[9]
|
Petsophonsakul, P., Furmanik, M., Forsythe, R., Dweck, M., Schurink, G.W., Natour, E., et al. (2019) Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 1351-1368. https://doi.org/10.1161/atvbaha.119.312787
|
[10]
|
Okamoto, H., Fujioka, Y., Takahashi, A., Takahashi, T., Taniguchi, T., Ishikawa, Y., et al. (2006) Trichostatin A, an Inhibitor of Histone Deacetylase, Inhibits Smooth Muscle Cell Proliferation via Induction of P21WAF1. Journal of Atherosclerosis and Thrombosis, 13, 183-191. https://doi.org/10.5551/jat.13.183
|
[11]
|
Li, X., Chen, M., Chen, X., He, X., Li, X., Wei, H., et al. (2024) TRAP1 Drives Smooth Muscle Cell Senescence and Promotes Atherosclerosis via HDAC3-Primed Histone H4 Lysine 12 Lactylation. European Heart Journal, 45, 4219-4235. https://doi.org/10.1093/eurheartj/ehae379
|
[12]
|
McDonald, O.G. and Owens, G.K. (2007) Programming Smooth Muscle Plasticity with Chromatin Dynamics. Circulation Research, 100, 1428-1441. https://doi.org/10.1161/01.res.0000266448.30370.a0
|
[13]
|
Zhong, X., Wei, X., Xu, Y., Zhu, X., Huo, B., Guo, X., et al. (2024) The Lysine Methyltransferase SMYD2 Facilitates Neointimal Hyperplasia by Regulating the HDAC3-SRF Axis. Acta Pharmaceutica Sinica B, 14, 712-728. https://doi.org/10.1016/j.apsb.2023.11.012
|
[14]
|
Sun, J., Deng, H., Zhou, Z., Xiong, X. and Gao, L. (2018) Endothelium as a Potential Target for Treatment of Abdominal Aortic Aneurysm. Oxidative Medicine and Cellular Longevity, 2018, Article 6306542. https://doi.org/10.1155/2018/6306542
|
[15]
|
李双月, 刘淇麒, 冯馨锐, 等. 组蛋白去乙酰化酶3与血管内皮细胞的关系[J]. 吉林医药学院学报, 2018, 39(3): 201-203.
|
[16]
|
Zampetaki, A., Zeng, L., Margariti, A., Xiao, Q., Li, H., Zhang, Z., et al. (2010) Histone Deacetylase 3 Is Critical in Endothelial Survival and Atherosclerosis Development in Response to Disturbed Flow. Circulation, 121, 132-142. https://doi.org/10.1161/circulationaha.109.890491
|
[17]
|
Wang, Y., Chen, T., Yan, H., Qi, H., Deng, C., Ye, T., et al. (2013) Role of Histone Deacetylase Inhibitors in the Aging of Human Umbilical Cord Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 114, 2231-2239. https://doi.org/10.1002/jcb.24569
|
[18]
|
Pons, D., de Vries, F.R., van den Elsen, P.J., Heijmans, B.T., Quax, P.H.A. and Jukema, J.W. (2008) Epigenetic Histone Acetylation Modifiers in Vascular Remodelling: New Targets for Therapy in Cardiovascular Disease. European Heart Journal, 30, 266-277. https://doi.org/10.1093/eurheartj/ehn603
|
[19]
|
Márquez-Sánchez, A.C. and Koltsova, E.K. (2022) Immune and Inflammatory Mechanisms of Abdominal Aortic Aneurysm. Frontiers in Immunology, 13, Article 989933. https://doi.org/10.3389/fimmu.2022.989933
|
[20]
|
Li, J., Zhai, Y. and Tang, M. (2024) Integrative Function of Histone Deacetylase 3 in Inflammation. Molecular Biology Reports, 51, Article No. 83. https://doi.org/10.1007/s11033-023-09077-x
|
[21]
|
DiDonato, J.A., Mercurio, F. and Karin, M. (2012) NF‐κB and the Link between Inflammation and Cancer. Immunological Reviews, 246, 379-400. https://doi.org/10.1111/j.1600-065x.2012.01099.x
|
[22]
|
Saito, T., Hasegawa, Y., Ishigaki, Y., Yamada, T., Gao, J., Imai, J., et al. (2012) Importance of Endothelial NF-κB Signalling in Vascular Remodelling and Aortic Aneurysm Formation. Cardiovascular Research, 97, 106-114. https://doi.org/10.1093/cvr/cvs298
|
[23]
|
Leus, N.G., Zwinderman, M.R. and Dekker, F.J. (2016) Histone Deacetylase 3 (HDAC 3) as Emerging Drug Target in NF-κB-Mediated Inflammation. Current Opinion in Chemical Biology, 33, 160-168. https://doi.org/10.1016/j.cbpa.2016.06.019
|
[24]
|
Travers, J.G., Wennersten, S.A., Peña, B., Bagchi, R.A., Smith, H.E., Hirsch, R.A., et al. (2021) HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation, 143, 1874-1890. https://doi.org/10.1161/circulationaha.120.046462
|
[25]
|
Lazaropoulos, M.P. and Elrod, J.W. (2023) Cardiac Fibrosis Mitigated by an Endogenous Negative Regulator of HDAC. Circulation Research, 133, 252-254. https://doi.org/10.1161/circresaha.123.323211
|
[26]
|
Joviliano, E.E., Ribeiro, M.S. and Tenorio, E.J.R. (2017) MicroRNAs and Current Concepts on the Pathogenesis of Abdominal Aortic Aneurysm. Brazilian Journal of Cardiovascular Surgery, 32, 215-224. https://doi.org/10.21470/1678-9741-2016-0050
|
[27]
|
唐红悦, 刘欣, 向紫萍, 等. miR-10b-5p在腹主动脉瘤患者血清的表达及临床意义[J]. 江苏医药, 2024, 50(7): 657-661.
|
[28]
|
Jing, J., Chang, M., Jiang, S., Wang, T., Sun, Q., Yang, J., et al. (2023) Clinical Value of Serum miR-1-3p as a Potential Circulating Biomarker for Abdominal Aortic Aneurysm. Annals of Medicine, 55, Article 2260395. https://doi.org/10.1080/07853890.2023.2260395
|
[29]
|
Boon, R.A. and Dimmeler, S. (2011) Micrornas and Aneurysm Formation. Trends in Cardiovascular Medicine, 21, 172-177. https://doi.org/10.1016/j.tcm.2012.05.005
|
[30]
|
Ji, L., Chen, S., Gu, G., Wang, W., Ren, J., Xu, F., et al. (2021) Discovery of Potential Biomarkers for Human Atherosclerotic Abdominal Aortic Aneurysm through Untargeted Metabolomics and Transcriptomics. Journal of Zhejiang University-SCIENCE B, 22, 733-745. https://doi.org/10.1631/jzus.b2000713
|
[31]
|
Toghill, B.J., Saratzis, A. and Bown, M.J. (2017) Abdominal Aortic Aneurysm—An Independent Disease to Atherosclerosis? Cardiovascular Pathology, 27, 71-75. https://doi.org/10.1016/j.carpath.2017.01.008
|
[32]
|
Jiang, L., Yu, X., Chen, J., Hu, M., Zhang, Y., Lin, H., et al. (2022) Histone Deacetylase 3: A Potential Therapeutic Target for Atherosclerosis. Aging and disease, 13, 773-786. https://doi.org/10.14336/ad.2021.1116
|
[33]
|
Hoeksema, M.A., Gijbels, M.J., Van den Bossche, J., van der Velden, S., Sijm, A., Neele, A.E., et al. (2014) Targeting Macrophage Histone Deacetylase 3 Stabilizes Atherosclerotic Lesions. EMBO Molecular Medicine, 6, 1124-1132. https://doi.org/10.15252/emmm.201404170
|
[34]
|
Yu, X., Deng, W., Chen, J., Xu, X., Liu, X., Chen, L., et al. (2020) LncRNA kcnq1ot1 Promotes Lipid Accumulation and Accelerates Atherosclerosis via Functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 Axis. Cell Death & Disease, 11, Article No. 1043. https://doi.org/10.1038/s41419-020-03263-6
|
[35]
|
Singh, B., Cui, K., Eisa-Beygi, S., Zhu, B., Cowan, D.B., Shi, J., et al. (2024) Elucidating the Crosstalk between Endothelial-to-Mesenchymal Transition (EndoMT) and Endothelial Autophagy in the Pathogenesis of Atherosclerosis. Vascular Pharmacology, 155, Article 107368. https://doi.org/10.1016/j.vph.2024.107368
|
[36]
|
Chen, L., Shang, C., Wang, B., Wang, G., Jin, Z., Yao, F., et al. (2021) HDAC3 Inhibitor Suppresses Endothelial-to-Mesenchymal Transition via Modulating Inflammatory Response in Atherosclerosis. Biochemical Pharmacology, 192, Article 114716. https://doi.org/10.1016/j.bcp.2021.114716
|
[37]
|
Dinarello, C.A., Fossati, G. and Mascagni, P. (2011) Histone Deacetylase Inhibitors for Treating a Spectrum of Diseases Not Related to Cancer. Molecular Medicine, 17, 333-352. https://doi.org/10.2119/molmed.2011.00116
|