[1]
|
Yang, L., Xing, G., Wang, L., Wu, Y., Li, S., Xu, G., et al. (2015) Acute Kidney Injury in China: A Cross-Sectional Survey. The Lancet, 386, 1465-1471. https://doi.org/10.1016/s0140-6736(15)00344-x
|
[2]
|
Hoste, E.A.J., Kellum, J.A., Selby, N.M., Zarbock, A., Palevsky, P.M., Bagshaw, S.M., et al. (2018) Global Epidemiology and Outcomes of Acute Kidney Injury. Nature Reviews Nephrology, 14, 607-625. https://doi.org/10.1038/s41581-018-0052-0
|
[3]
|
Middleton Jr., E, Kandaswami, C. and Theoharides, T.C. (2000) The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. Pharmacological Reviews, 52, 673-751.
|
[4]
|
Mas-Font, S., Ros-Martinez, J., Pérez-Calvo, C., Villa-Díaz, P., Aldunate-Calvo, S. and Moreno-Clari, E. (2017) Prevention of Acute Kidney Injury in Intensive Care Units. Medicina Intensiva, 41, 116-126. https://doi.org/10.1016/j.medin.2016.12.004
|
[5]
|
Hasson, D., Goldstein, S.L. and Standage, S.W. (2020) The Application of Omic Technologies to Research in Sepsis-Associated Acute Kidney Injury. Pediatric Nephrology, 36, 1075-1086. https://doi.org/10.1007/s00467-020-04557-9
|
[6]
|
Fani, F., Regolisti, G., Delsante, M., Cantaluppi, V., Castellano, G., Gesualdo, L., et al. (2017) Recent Advances in the Pathogenetic Mechanisms of Sepsis-Associated Acute Kidney Injury. Journal of Nephrology, 31, 351-359. https://doi.org/10.1007/s40620-017-0452-4
|
[7]
|
Angus, D.C. and van Der Poll, T. (2013) Severe Sepsis and Septic Shock. The New England Journal of Medicine, 369, 840-851.
|
[8]
|
Liao, C., Lei, C. and Shu, H. (2020) PCBP1 Modulates the Innate Immune Response by Facilitating the Binding of cGAS to DNA. Cellular & Molecular Immunology, 18, 2334-2343. https://doi.org/10.1038/s41423-020-0462-3
|
[9]
|
Liu, D., Huang, S., Sun, J., Zhang, H., Cai, Q., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56. https://doi.org/10.1186/s40779-022-00422-y
|
[10]
|
Wang, T., Huang, Y., Zhang, X., Zhang, Y. and Zhang, X. (2024) Advances in Metabolic Reprogramming of Renal Tubular Epithelial Cells in Sepsis-Associated Acute Kidney Injury. Frontiers in Physiology, 15, Article 1329644. https://doi.org/10.3389/fphys.2024.1329644
|
[11]
|
Shi, M., Maique, J., Shepard, S., Li, P., Seli, O., Moe, O.W., et al. (2022) In Vivo Evidence for Therapeutic Applications of Beclin 1 to Promote Recovery and Inhibit Fibrosis after Acute Kidney Injury. Kidney International, 101, 63-78. https://doi.org/10.1016/j.kint.2021.09.030
|
[12]
|
Piletič, K. and Kunej, T. (2016) Microrna Epigenetic Signatures in Human Disease. Archives of Toxicology, 90, 2405-2419. https://doi.org/10.1007/s00204-016-1815-7
|
[13]
|
Carthew, R.W. and Sontheimer, E.J. (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell, 136, 642-655. https://doi.org/10.1016/j.cell.2009.01.035
|
[14]
|
Wei, Q., Bhatt, K., He, H., Mi, Q., Haase, V.H. and Dong, Z. (2010) Targeted Deletion of Dicer from Proximal Tubules Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology, 21, 756-761. https://doi.org/10.1681/asn.2009070718
|
[15]
|
Liu, D., Zhang, J., Liu, F., Wang, X., Pan, S., Jiang, D., et al. (2019) Silencing of Long Noncoding RNA PVT1 Inhibits Podocyte Damage and Apoptosis in Diabetic Nephropathy by Upregulating Foxa1. Experimental & Molecular Medicine, 51, 1-15. https://doi.org/10.1038/s12276-019-0259-6
|
[16]
|
Rauter, A.P., Ennis, M., Hellwich, K., Herold, B.J., Horton, D., Moss, G.P., et al. (2018) Nomenclature of Flavonoids (IUPAC Recommendations 2017). Pure and Applied Chemistry, 90, 1429-1486. https://doi.org/10.1515/pac-2013-0919
|
[17]
|
Mulvihill, E.E. and Huff, M.W. (2010) Antiatherogenic Properties of Flavonoids: Implications for Cardiovascular Health. Canadian Journal of Cardiology, 26, 17A-21A. https://doi.org/10.1016/s0828-282x(10)71056-4
|
[18]
|
Yonekura-Sakakibara, K., Higashi, Y. and Nakabayashi, R. (2019) The Origin and Evolution of Plant Flavonoid Metabolism. Frontiers in Plant Science, 10, Article 943. https://doi.org/10.3389/fpls.2019.00943
|
[19]
|
Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J. and Ye, X. (2013) Phytochemical Profile and Antioxidant Activity of Physiological Drop of Citrus Fruits. Journal of Food Science, 78, C37-C42. https://doi.org/10.1111/j.1750-3841.2012.03002.x
|
[20]
|
Althunibat, O.Y., Al Hroob, A.M., Abukhalil, M.H., Germoush, M.O., Bin-Jumah, M. and Mahmoud, A.M. (2019) Fisetin Ameliorates Oxidative Stress, Inflammation and Apoptosis in Diabetic Cardiomyopathy. Life Sciences, 221, 83-92. https://doi.org/10.1016/j.lfs.2019.02.017
|
[21]
|
Jia, Q., Yang, R., Liu, X., Ma, S. and Wang, L. (2018) Genistein Attenuates Renal Fibrosis in Streptozotocininduced Diabetic Rats. Molecular Medicine Reports, 19, 423-431. https://doi.org/10.3892/mmr.2018.9635
|
[22]
|
Zhang, L., Guo, Z., Wang, Y., Geng, J. and Han, S. (2019) The Protective Effect of Kaempferol on Heart via the Regulation of Nrf2, NF‐κB, and PI3K/Akt/GSK‐3β Signaling Pathways in Isoproterenol‐induced Heart Failure in Diabetic Rats. Drug Development Research, 80, 294-309. https://doi.org/10.1002/ddr.21495
|
[23]
|
Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004) Polyphenols: Food Sources and Bioavailability. The American Journal of Clinical Nutrition, 79, 727-747. https://doi.org/10.1093/ajcn/79.5.727
|
[24]
|
Panche, A.N., Diwan, A.D. and Chandra, S.R. (2016) Flavonoids: An Overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
|
[25]
|
Xin, S., Yan, H., Ma, J., Sun, Q. and Shen, L. (2016) Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice. Medical Science Monitor, 22, 5173-5180. https://doi.org/10.12659/msm.898177
|
[26]
|
Liu, T., Gao, H., Zhang, Y., Wang, S., Lu, M., Dai, X., et al. (2022) Apigenin Ameliorates Hyperuricemia and Renal Injury through Regulation of Uric Acid Metabolism and JAK2/STAT3 Signaling Pathway. Pharmaceuticals, 15, Article 1442. https://doi.org/10.3390/ph15111442
|
[27]
|
He, X., Wen, Y., Wang, Q., Wang, Y., Zhang, G., Wu, J., et al. (2021) Apigenin Nanoparticle Attenuates Renal Ischemia/reperfusion Inflammatory Injury by Regulation of miR-140-5p/CXCL12/NF-κB Signaling Pathway. Journal of Biomedical Nanotechnology, 17, 64-77. https://doi.org/10.1166/jbn.2021.3010
|
[28]
|
Chirumbolo, S. (2014) Dietary Assumption of Plant Polyphenols and Prevention of Allergy. Current Pharmaceutical Design, 20, 811-839. https://doi.org/10.2174/13816128113199990042
|
[29]
|
Falcone Ferreyra, M.L., Rius, S.P. and Casati, P. (2012) Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications. Frontiers in Plant Science, 3, Article 222. https://doi.org/10.3389/fpls.2012.00222
|
[30]
|
Andor, B., Danciu, C., Alexa, E., Zupko, I., Hogea, E., Cioca, A., et al. (2016) Germinated and Ungerminated Seeds Extract from Two Lupinus Species: Biological Compounds Characterization and in Vitro and in Vivo Evaluations. Evidence-Based Complementary and Alternative Medicine, 2016, Article ID: 7638542. https://doi.org/10.1155/2016/7638542
|
[31]
|
Ko, K. (2014) Isoflavones: Chemistry, Analysis, Functions and Effects on Health and Cancer. Asian Pacific Journal of Cancer Prevention, 15, 7001-7010. https://doi.org/10.7314/apjcp.2014.15.17.7001
|
[32]
|
Danciu, C., Avram, S., Pavel, I.Z., Ghiulai, R., Dehelean, C.A., Ersilia, A., et al. (2018) Main Isoflavones Found in Dietary Sources as Natural Anti-Inflammatory Agents. Current Drug Targets, 19, 841-853. https://doi.org/10.2174/1389450118666171109150731
|
[33]
|
Rietjens, I.M.C.M., Louisse, J. and Beekmann, K. (2016) The Potential Health Effects of Dietary Phytoestrogens. British Journal of Pharmacology, 174, 1263-1280. https://doi.org/10.1111/bph.13622
|
[34]
|
Michael McClain, R., Wolz, E., Davidovich, A., Pfannkuch, F., Edwards, J.A. and Bausch, J. (2006) Acute, Subchronic and Chronic Safety Studies with Genistein in Rats. Food and Chemical Toxicology, 44, 56-80. https://doi.org/10.1016/j.fct.2005.05.021
|
[35]
|
Banerjee, S., Li, Y., Wang, Z. and Sarkar, F.H. (2008) Multi-targeted Therapy of Cancer by Genistein. Cancer Letters, 269, 226-242. https://doi.org/10.1016/j.canlet.2008.03.052
|
[36]
|
Gholampour, F., Mohammadi, Z., Karimi, Z. and Owji, S.M. (2020) Protective Effect of Genistein in a Rat Model of Ischemic Acute Kidney Injury. Gene, 753, Article ID: 144789. https://doi.org/10.1016/j.gene.2020.144789
|
[37]
|
Iwashina, T. (2013) Flavonoid Properties of five Families newly Incorporated into the Order Caryophyllales (Review). Bulletin of the National Museum of Nature and Science, Series B, 39, 25-51.
|
[38]
|
Xu, M., Pirtskhalava, T., Farr, J.N., Weigand, B.M., Palmer, A.K., Weivoda, M.M., et al. (2018) Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nature Medicine, 24, 1246-1256. https://doi.org/10.1038/s41591-018-0092-9
|
[39]
|
Gomes, I.B.S., Porto, M.L., Santos, M.C.L.F.S., Campagnaro, B.P., Gava, A.L., Meyrelles, S.S., et al. (2015) The Protective Effects of Oral Low-Dose Quercetin on Diabetic Nephropathy in Hypercholesterolemic Mice. Frontiers in Physiology, 6, Article 247. https://doi.org/10.3389/fphys.2015.00247
|
[40]
|
Lesjak, M., Hoque, R., Balesaria, S., Skinner, V., Debnam, E.S., Srai, S.K.S., et al. (2014) Quercetin Inhibits Intestinal Iron Absorption and Ferroportin Transporter Expression in Vivo and in Vitro. PLOS ONE, 9, e102900. https://doi.org/10.1371/journal.pone.0102900
|
[41]
|
Cheng, I.F. and Breen, K. (2000) On the Ability of Four Flavonoids, Baicilein, Luteolin, Naringenin, and Quercetin, to Suppress the Fenton Reaction of the Iron-ATP Complex. BioMetals, 13, 77-83. https://doi.org/10.1023/a:1009229429250
|
[42]
|
Wang, Y., Quan, F., Cao, Q., Lin, Y., Yue, C., Bi, R., et al. (2021) Quercetin Alleviates Acute Kidney Injury by Inhibiting Ferroptosis. Journal of Advanced Research, 28, 231-243. https://doi.org/10.1016/j.jare.2020.07.007
|
[43]
|
Shi, M., Mobet, Y. and Shen, H. (2024) Quercetin Attenuates Acute Kidney Injury Caused by Cisplatin by Inhibiting Ferroptosis and Cuproptosis. Cell Biochemistry and Biophysics, 82, 2687-2699. https://doi.org/10.1007/s12013-024-01379-6
|
[44]
|
Liu, B., Tan, X., Liang, J., Wu, S., Liu, J., Zhang, Q., et al. (2014) A Reduction in Reactive Oxygen Species Contributes to Dihydromyricetin-Induced Apoptosis in Human Hepatocellular Carcinoma Cells. Scientific Reports, 4, Article No. 7041. https://doi.org/10.1038/srep07041
|
[45]
|
Xiao, X., Wang, F., Yuan, Y., Liu, J., Liu, Y. and Yi, X. (2019) Antibacterial Activity and Mode of Action of Dihydromyricetin from Ampelopsis Grossedentata Leaves against Food-Borne Bacteria. Molecules, 24, Article 2831. https://doi.org/10.3390/molecules24152831
|
[46]
|
Chen, J., Wang, X., Xia, T., Bi, Y., Liu, B., Fu, J., et al. (2021) Molecular Mechanisms and Therapeutic Implications of Dihydromyricetin in Liver Disease. Biomedicine & Pharmacotherapy, 142, Article ID: 111927. https://doi.org/10.1016/j.biopha.2021.111927
|
[47]
|
Chen, S., Lv, K., Sharda, A., Deng, J., Zeng, W., Zhang, C., et al. (2021) Anti-Thrombotic Effects Mediated by Dihydromyricetin Involve Both Platelet Inhibition and Endothelial Protection. Pharmacological Research, 167, Article ID: 105540. https://doi.org/10.1016/j.phrs.2021.105540
|
[48]
|
Guo, T., Wang, X., Zhang, G., Xia, T., Zhu, R. and Tou, J. (2023) Dihydromyricetin Functions as a Tumor Suppressor in Hepatoblastoma by Regulating SOD1/ROS Pathway. Frontiers in Oncology, 13, Article 1160548. https://doi.org/10.3389/fonc.2023.1160548
|
[49]
|
Dong, C., Wu, G., Li, H., Qiao, Y. and Gao, S. (2020) Ampelopsin Inhibits High Glucose‐Induced Extracellular Matrix Accumulation and Oxidative Stress in Mesangial Cells through Activating the Nrf2/HO‐1 Pathway. Phytotherapy Research, 34, 2044-2052. https://doi.org/10.1002/ptr.6668
|
[50]
|
Guo, L., Tan, K., Luo, Q. and Bai, X. (2019) Dihydromyricetin Promotes Autophagy and Attenuates Renal Interstitial Fibrosis by Regulating miR-155-5p/PTEN Signaling in Diabetic Nephropathy. Bosnian Journal of Basic Medical Sciences, 20, 372-380. https://doi.org/10.17305/bjbms.2019.4410
|
[51]
|
Feng, L., Que, D., Li, Z., Zhong, X., Yan, J., Wei, J., et al. (2021) Dihydromyricetin Ameliorates Vascular Calcification in Chronic Kidney Disease by Targeting AKT Signaling. Clinical Science, 135, 2483-2502. https://doi.org/10.1042/cs20210259
|
[52]
|
Xu, Z., Zhang, M., Wang, W., Zhou, S., Yu, M., Qiu, X., et al. (2023) Dihydromyricetin Attenuates Cisplatin-Induced Acute Kidney Injury by Reducing Oxidative Stress, Inflammation and Ferroptosis. Toxicology and Applied Pharmacology, 473, Article ID: 116595. https://doi.org/10.1016/j.taap.2023.116595
|
[53]
|
Xie, C., Liu, L., Wang, Z., Xie, H., Feng, Y., Suo, J., et al. (2018) Icariin Improves Sepsis-Induced Mortality and Acute Kidney Injury. Pharmacology, 102, 196-205. https://doi.org/10.1159/000487955
|
[54]
|
Mo, J., Choi, D., Han, Y., Kim, N. and Jeong, H. (2019) Morin Has Protective Potential against ER Stress Induced Apoptosis in Renal Proximal Tubular HK-2 Cells. Biomedicine & Pharmacotherapy, 112, Article ID: 108659. https://doi.org/10.1016/j.biopha.2019.108659
|
[55]
|
Fan, Z., Qi, X., Yang, W., Xia, L. and Wu, Y. (2020) Melatonin Ameliorates Renal Fibrosis through the Inhibition of NF-κB and TGF-β1/Smad3 Pathways in Db/Db Diabetic Mice. Archives of Medical Research, 51, 524-534. https://doi.org/10.1016/j.arcmed.2020.05.008
|
[56]
|
Zhang, B., Chen, Z., Jiang, Z., Huang, S., Liu, X. and Wang, L. (2023) Nephroprotective Effects of Cardamonin on Renal Ischemia Reperfusion Injury/UUO-Induced Renal Fibrosis. Journal of Agricultural and Food Chemistry, 71, 13284-13303. https://doi.org/10.1021/acs.jafc.3c01880
|
[57]
|
Bastin, A., Sadeghi, A., Nematollahi, M.H., Abolhassani, M., Mohammadi, A. and Akbari, H. (2020) The Effects of Malvidin on Oxidative Stress Parameters and Inflammatory Cytokines in LPS‐induced Human THP‐1 Cells. Journal of Cellular Physiology, 236, 2790-2799. https://doi.org/10.1002/jcp.30049
|
[58]
|
Ma, Y., Li, Y., Zhang, H., Wang, Y., Wu, C. and Huang, W. (2020) Malvidin Induces Hepatic Stellate Cell Apoptosis via the Endoplasmic Reticulum Stress Pathway and Mitochondrial Pathway. Food Science & Nutrition, 8, 5095-5106. https://doi.org/10.1002/fsn3.1810
|
[59]
|
Fan, H., Cui, J., Liu, F., Zhang, W., Yang, H., He, N., et al. (2022) Malvidin Protects against Lipopolysaccharide-Induced Acute Liver Injury in Mice via Regulating Nrf2 and NLRP3 Pathways and Suppressing Apoptosis and Autophagy. European Journal of Pharmacology, 933, Article ID: 175252. https://doi.org/10.1016/j.ejphar.2022.175252
|
[60]
|
Fan, H., Sun, Y., Zhang, X., Xu, Y., Ming, Y., Zhang, L., et al. (2024) Malvidin Promotes PGC-1α/Nrf2 Signaling to Attenuate the Inflammatory Response and Restore Mitochondrial Activity in Septic Acute Kidney Injury. Chemico-Biological Interactions, 388, Article ID: 110850. https://doi.org/10.1016/j.cbi.2023.110850
|
[61]
|
Iwashina, T. (2013) Flavonoid Properties of Five Families Newly Incorporated into the Order Caryophyllales (Review). Bulletin of the National Museum of Nature & Science, 10, 1103-1114.
|
[62]
|
Amini, N., Sarkaki, A., Dianat, M., Mard, S.A., Ahangarpour, A. and Badavi, M. (2019) Protective Effects of Naringin and Trimetazidine on Remote Effect of Acute Renal Injury on Oxidative Stress and Myocardial Injury through Nrf-2 Regulation. Pharmacological Reports, 71, 1059-1066. https://doi.org/10.1016/j.pharep.2019.06.007
|
[63]
|
Huang, Y., Li, W., Su, Z. and Kong, A.T. (2015) The Complexity of the Nrf2 Pathway: Beyond the Antioxidant Response. The Journal of Nutritional Biochemistry, 26, 1401-1413. https://doi.org/10.1016/j.jnutbio.2015.08.001
|
[64]
|
Wang, N., Zhou, Y., Jiang, L., Li, D., Yang, J., Zhang, C., et al. (2012) Urinary Microrna-10a and Microrna-30d Serve as Novel, Sensitive and Specific Biomarkers for Kidney Injury. PLOS ONE, 7, e51140. https://doi.org/10.1371/journal.pone.0051140
|
[65]
|
Chen, X., Wei, W., Li, Y., Huang, J. and Ci, X. (2019) Hesperetin Relieves Cisplatin-Induced Acute Kidney Injury by Mitigating Oxidative Stress, Inflammation and Apoptosis. Chemico-Biological Interactions, 308, 269-278. https://doi.org/10.1016/j.cbi.2019.05.040
|
[66]
|
Huang, K., Wu, C., Chang, Y., Ho, F., Chiang, C. and Liu, S. (2022) Therapeutic Effect of Quercetin Polymeric Nanoparticles on Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice. Biochemical and Biophysical Research Communications, 608, 122-127. https://doi.org/10.1016/j.bbrc.2022.03.159
|
[67]
|
Huang, Y., Zhou, L., Yan, L., Ren, J., Zhou, D. and Li, S. (2015) Alpinetin Inhibits Lipopolysaccharide-Induced Acute Kidney Injury in Mice. International Immunopharmacology, 28, 1003-1008. https://doi.org/10.1016/j.intimp.2015.08.002
|
[68]
|
Wang, F., Tan, H., Hu, J., Duan, X., Bai, W., Wang, X., et al. (2023) Inhibitory Interaction of Flavonoids with Organic Anion Transporter 3 and Their Structure-Activity Relationships for Predicting Nephroprotective Effects. Journal of Asian Natural Products Research, 26, 353-371. https://doi.org/10.1080/10286020.2023.2240722
|