类黄酮化合物对急性肾损伤的研究进展
Research Progress of Flavonoid Compounds on Acute Kidney Injury
DOI: 10.12677/acm.2024.14123175, PDF, HTML, XML,   
作者: 周子慧:山东大学齐鲁医学院公共卫生学院营养与食品卫生学系,山东 济南
关键词: 急性肾损伤类黄酮化合物机制Acute Kidney Injury Flavonoid Compounds Mechanisms
摘要: 急性肾损伤(acute kidney injury, AKI)是一种以肾功能急剧下降为主要特征的复杂临床综合征,因其高发病率和高致死率而成为重要的公共卫生问题。尽管目前已经知晓AKI的多种发病机制,如炎症反应、氧化应激、线粒体功能障碍及多种细胞死亡途径等,迄今仍缺乏针对AKI的有效干预手段。类黄酮化合物是一个重要的植物化学物家族。动物和细胞水平的研究表明,类黄酮化合物能够通过抑制炎症反应、降低氧化应激水平、调节线粒体功能、抑制细胞凋亡与自噬异常等多种机制减轻AKI。这些发现提示类黄酮化合物可能成为临床AKI的潜在干预手段。本文介绍了AKI的发病机制,并重点综述了不同类黄酮化合物对AKI模型的干预效果和作用机制,旨在为类黄酮化合物在AKI防治中的应用提供参考。
Abstract: Acute kidney injury (AKI) is a complex clinical syndrome characterized primarily by a rapid decline in kidney function, which has become a significant public health concern due to its high incidence and mortality rates. Although various pathogenic mechanisms of AKI have been identified, including inflammatory responses, oxidative stress, mitochondrial dysfunction, and multiple cell death pathways, effective therapeutic interventions for AKI remain limited. Flavonoid compounds constitute an important family of phytochemicals, and studies in both animal and cellular models have shown that these compounds can mitigate AKI through various mechanisms, such as inhibiting inflammatory responses, reducing oxidative stress levels, regulating mitochondrial function, and modulating apoptosis and abnormal autophagy. These findings suggest that flavonoid compounds may represent potential therapeutic options for clinical AKI. This review presents an overview of the pathogenesis of AKI, with a focus on summarizing the effects and mechanisms of various flavonoid compounds in AKI models, aiming to provide insights into the potential application of flavonoids in AKI prevention and treatment.
文章引用:周子慧. 类黄酮化合物对急性肾损伤的研究进展[J]. 临床医学进展, 2024, 14(12): 975-985. https://doi.org/10.12677/acm.2024.14123175

1. 前言

急性肾损伤(acute kidney injury, AKI)是以肾功能迅速衰减为临床特点的综合征,致病因素多,发病机制复杂,发病率高,国内研究数据显示:住院患者AKI的发生率波动为6.9%~11.6% [1]。AKI发生是患者预后不良的独立危险因子,可进一步进展为水电解质紊乱、细胞因子风暴、多器官功能障碍综合征,甚至危及生命[2]。AKI目前尚无特效药物或标准的治疗方案,寻求有效的防治药物是目前研究的热点问题。类黄酮化合物是具有苯基铬烷结构的植物化合物家族,涵盖了多种亚类,包括黄酮醇、黄酮、儿茶素、花青素、异黄酮、二氢黄酮和查耳酮等[3],它们已被证明具有广泛的药理作用且安全可靠。在本文中,我们将总结AKI的发病机制,并综述不同类黄酮化合物对AKI的干预效果和作用机制,以期为AKI的防治提供新的思路和手段。

2. 急性肾损伤的发病机制

2.1. 线粒体功能障碍和氧化应激

正常情况下,肾脏血流量占人体总血流量的约25%,以保证充足的氧气供给[4]。肾小管上皮细胞作为肾脏内代谢活性最高的细胞,需要大量ATP以维持其主动运输功能[5],然而,这些细胞对低灌注和缺氧极其敏感。在感染和脓毒症的状态下,线粒体结构和功能显著变化,代谢生成的过氧亚硝酸盐导致氧化应激水平增加,最终损害线粒体通透性转换孔,进而影响ATP生成和电子传递链的功能,促发AKI [5] [6],此外,受损的线粒体还可能向细胞外环境释放一些警报性物质(如线粒体DNA、甲酰肽),这些物质可进一步激活炎症信号通路,诱导炎症细胞的浸润和炎症因子的释放,进一步加重肾损伤[7]

2.2. 炎症反应与免疫细胞代谢重编程

在脓毒症相关的AKI (SA-AKI)中,过度激活的特异性和非特异性免疫反应常导致免疫功能紊乱。非特异性免疫信号的激活引发了促炎细胞因子、干扰素等下游效应物的释放,进一步激活特异性免疫反应[8]。在SA-AKI的情况下,肾小管的Toll样受体TLR-2和TLR-4被损伤相关分子模式和病原体相关分子模式激活,导致白细胞介素1α、白细胞介素6等促炎细胞因子的释放,并触发炎症级联反应[8]。此外,脓毒症患者的免疫细胞代谢发生重编程,即从氧化磷酸化转向糖酵解。这种代谢适应最初有助于提供快速能量支持并减少急性细胞损伤。然而,随着脓毒症的进展,这种依赖糖酵解的状态逐渐增加细胞应激反应,导致代谢废物的积累,最终加重了肾损伤。这一过程表明,代谢重编程在SA-AKI的早期可能具有保护作用,但在病程后期则可能成为肾脏功能障碍的加速因素[9] [10]

2.3. 细胞死亡和自噬失常

多种病理状态下的细胞死亡形式对AKI病程均有显著影响,主要包括细胞凋亡、焦亡和铁死亡。细胞凋亡是一种由caspase级联反应介导的程序性死亡,表现为促凋亡蛋白(如Fas和caspase)上调,抗凋亡蛋白(如Bcl-X)下调,与肾功能障碍密切相关。焦亡则是一种炎症型细胞死亡,可通过caspase-1依赖的典型途径和caspase-4/5/11依赖的非典型途径激活,并伴随坏死性死亡和炎症因子的释放,如IL-1B和IL-18;在脓毒症中,PERK/ATF4/CHOP通路激活可引发NLRP3/caspase-1介导的焦亡,进一步加剧肾损伤。铁死亡则与脂质过氧化和谷胱甘肽代谢失调相关,过度铁死亡可引起肾损伤。自噬是维持细胞内稳态的重要过程,主要指细胞将受损、变性或老化的蛋白质和细胞器转运到溶酶体中进行降解,以延缓细胞凋亡的发生。AKI的发病机制中可能与自噬失常有关,自噬调节因子Beclin 1活性在不同的AKI模型(缺血再灌注型、顺铂诱导型和单侧输尿管梗阻型的动物模型)中都显著降低,导致肾小管损伤加重,肾功能快速恶化[11]

2.4. 其它

随着高通量测序技术的发展,研究发现非编码RNA (non-coding RNA, ncRNA)在多种疾病中存在异常表达,包括微小RNA (microRNA, miRNA)、长链非编码RNA (long non-coding RNA, lncRNA)和环状RNA (circular RNA, circRNA)。ncRNA已被证明能够调控基因表达,并在多个层面干扰细胞功能。

miRNA是一类长度为19到25个核苷酸的小分子ncRNA,通过靶向特定的信使RNA (mRNA)的3’非翻译区,从而调控数百个基因的表达[12] [13]。Dicer是一种机体合成miRNA的关键酶,使用loxp-cre系统编辑缺乏Dicer的小鼠。该小鼠肾脏近端小管中超过80%的miRNAs被特异性耗尽[14],在正常情况下,这些小鼠的肾功能和组织结构保持正常,但在诱导肾损伤的病理状态下,缺失Dicer的小鼠肾脏对损伤因子的耐受性显著增强,表明miRNA在AKI的发病机制中具有重要作用。

lncRNA通过影响mRNA的稳定性、转录因子活性或miRNA的表达来调控基因表达。lncRNA人浆细胞瘤变体易位1 (lncRNA-plasmacytoma variant translocation 1, lncRNA-PVT1)是首个被报道与肾脏疾病相关的lncRNA。糖尿病肾病患者血清中的lncRNA-PVT1上调,同样,糖尿病肾病小鼠足细胞中也检测到lncRNA-PVT1表达显著增加,且lncRNA-PVT1募集Zeste基因增强子同源物2,以促进H3K27me3募集到FOXA1启动子区域,沉默lncRNA-PVT1或过表达FOXA1可减轻糖尿病肾病的足细胞损伤,抑制足细胞凋亡,表现为synaptopodin和podocin表达上调、Bcl-2表达上调、Bax和cleaved caspase-3表达下调[15]

circRNA是一种新近发现的ncRNA分子,其结构稳定性使其在细胞损伤中的作用引起关注。在AKI中,circRNA可能通过抑制miR-7、miR-21等而激活PI3K/AKT、MAPK等信号通路,进而影响细胞增殖、凋亡和再生等过程,显示出作为AKI潜在生物标志物和治疗靶点的前景。

3. 类黄酮化合物在急性肾损伤中的研究进展

类黄酮化合物是多样化程度最高的植物化学物家族之一,已发现其包含9000多种不同化合物。根据IUPAC建议(2017),“类黄酮”这一术语用于指具有苯取代丙烯结构的化合物,通常具备C15骨架、C16骨架或与黄酮木脂素和C6~C3木酚素前体相似的基本结构[16]。类黄酮化合物可分为六大亚类,包括异黄酮、黄酮、黄烷醇、黄酮醇、黄烷酮和花青素,它们在植物中含量丰富,其代谢途径已通过生化及分子方法被深入探究[17] [18]。许多植物富含类黄酮化合物,如柚子、蓝莓、洛神花、橙子、葡萄柚、柠檬和酸橙[19]

研究表明,类黄酮化合物在抗炎、抗氧化和调节细胞信号通路等方面具有一定的生物活性,并在实验中展现出对多种疾病的潜在改善作用,如糖尿病、癌症、肥胖症和心血管疾病。这些天然植物化合物具有显著的药用潜力和生物活性,包括抗氧化、抗炎、抗纤维化和抗凋亡等作用[20]-[22]。现将类黄酮化合物改善AKI的作用和机制综述如下:

3.1. 黄酮

黄酮是类黄酮化合物家族中的重要亚类,通常以糖苷形式存在于芹菜、欧芹、红辣椒、薄荷和银杏叶等植物中。该类黄酮化合物包括木犀草素、芹菜素和橘子素[23]。其结构特点是在主C环的第2位和第3位之间含有双键,第4位具有酮基。大多数蔬菜和水果中的黄酮在A环的第5位带有羟基,而其他羟基位点的分布则随植物种类不同而变化,最常见的为A环第7位或B环第3’和4’ [24]

木犀草素是最常见的黄酮之一,存在于各种蔬菜、水果和草药中,如苹果、卷心菜、胡萝卜、茶和芹菜。Xin等先前的一项研究利用LPS诱导的小鼠AKI模型表明,40 mg/kg剂量的木犀草素预处理可通过改善肾氧化状态、减少NF-κB活化以及炎症和细胞凋亡因子,然后干扰细胞凋亡相关蛋白的表达来改善LPS介导的肾毒性[25]

此外,芹菜素作为一种天然黄酮化合物,也已被证实在缺血/再灌注(Ischemia/Reperfusion, I/R)损伤过程中具有肾保护作用[26]。另一项研究报道,芹菜素通过抑制NF-κB通路的活化、上调miR-140-5p和下调CXCL12的表达,可在体内外模型中有效预防I/R诱导的肾细胞炎症损伤[27]

3.2. 异黄酮

异黄酮是一类具有3-苯基铬-4-酮骨架的植物化合物,属于植物的次生代谢产物,因其广泛的药理作用而受到关注。异黄酮的功效涵盖抗氧化、化学预防、抗炎、抗过敏、抗菌和心脏保护等多个方面[28] [29]。异黄酮主要富集于植物的根和种子中,其他含量丰富的药用植物还包括红三叶草、染工扫帚、苜蓿和亚麻。此外,除大豆外,羽扇豆、葛根、大麦和蚕豆等豆类植物也富含异黄酮[30] [31]。异黄酮的代表性成分包括染料木黄酮、大豆苷元、黄豆素、福尔蒙酮、生物素A和雌马酚[32]

染料木黄酮是一种天然存在于大豆中的植物雌激素[33]。研究表明,染料木黄酮可作为雌激素β受体的激动剂,其与雌激素受体的结合亲和力比雌二醇低100至1000倍[34],但仍显示出显著的抗氧化及抗癌作用[35]。Firouzeh Gholampour等人的研究进一步证实,染料木黄酮通过降低TLR4和TNF-α的基因表达水平,并增强肾组织中的抗氧化系统(包括降低丙二醛水平,增加超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶的活性),对I/R诱导的肾损伤具有显著的治疗潜力[36]。因此,染料木黄酮可能是改善I/R诱导的肾损伤的理想候选药物。

3.3. 黄酮醇

带有酮基的类黄酮化合物被称为黄酮醇。主要存在于水果和蔬菜中。山奈酚、槲皮素、杨梅素和非瑟酮是研究最广泛的黄酮醇之一,广泛存在于日常饮食中,包括洋葱、羽衣甘蓝、生菜、苹果和各种浆果中。食用黄酮醇已被证明对健康具有多方面的益处,如强大的抗氧化作用和降低心血管疾病风险。黄酮醇与黄酮不同,在其C环的第3位带有一个羟基,并且可以发生糖基化。黄酮醇在水果和蔬菜中分布广泛,且种类繁多,主要以多种甲基化和羟基化形式存在,是最普遍的类黄酮化合物亚类之一[37]

槲皮素(QCT)是一种天然黄酮醇,研究显示它可以选择性清除衰老细胞,进而延长老年小鼠的寿命[38]。QCT还具有显著的肾保护作用,对糖尿病肾病有益[39],并表现出铁螯合能力[40] [41]。研究表明,槲皮素可以通过降低丙二醛和脂质ROS水平,同时提高谷胱甘肽水平,来阻断肾近端小管上皮细胞的铁死亡过程。进而改善I/R或顺铂诱导的AKI [42] [43]

二氢杨梅素(DHM),又称白蔹素,是一种来源于植物的黄酮醇,具有抗菌、抗炎、抗氧化和抗血栓形成特性,对健康细胞、组织和器官无显著毒性[44]-[48]。据报道,DHM可减轻系膜细胞中的氧化应激[49],改善糖尿病肾病中的肾纤维化[50],并缓解慢性肾病中的血管钙化[51]。此外,DHM可能通过调节 Nrf2/HO-1、MAPK和NF-κB信号通路抑制顺铂诱导的氧化应激、炎症和铁死亡[52]

最近,Xie等人证实,黄酮醇淫羊藿苷可以通过降低NF-κB、裂解的caspase-3和Bax的表达,但增强了Bcl-2的表达,抑制氧化损伤、炎症反应、细胞凋亡和血管通透性来降低CLP诱导的死亡率并改善AKI [53]。此外,研究表明黄酮醇桑色素对肾近端小管HK-2细胞中因内质网应激引发的细胞凋亡具有显著保护作用[54]

另有研究证实,汉黄芩素是一种来源于黄芩的黄酮醇类化合物,通过抑制糖尿病肾病小鼠肾脏NF-κB和TGF-β1/Smad3信号通路改善肾脏的炎症反应及纤维化[55]

3.4. 豆蔻明

豆蔻明是一种从Alpiniae katsumadai中分离的查耳酮,具有显著的抗炎和抗肿瘤活性。研究表明,豆蔻明能够减轻肾损伤、改善肾功能,并降低肾组织中的纤维化标志物,从而发挥肾保护作用。在I/R和尿路梗阻模型的实验中,豆蔻明通过降低氧化应激的生成并减轻炎症因子的表达,通过激活抗氧化酶并阻碍丝裂原激活蛋白激酶/核因子-κB (MAPK/NF-κB)信号转导通路有效缓解了肾脏损伤[56]

3.5. 锦葵素

锦葵素是一种常见的花青素,存在于葡萄、蓝莓和黑醋栗等蓝色、紫色和红色的天然食物中。作为天然色素,锦葵素不仅具有抗氧化特性,还表现出多种药理作用,包括抗炎和抗氧化活性[57]-[59]。据报道,锦葵素可以减轻由脂多糖诱导的脓毒症性AKI,改善线粒体功能和生物发生,并通过PGC-1α/Nrf2信号通路抑制NLRP3炎性小体的激活[60]

3.6. 黄烷酮

黄烷酮是柑橘类水果中发现的另一种重要化合物,主要存在于橙子、柠檬和葡萄等果实中。该类黄酮化合物包括橙皮苷、柚皮素和艾瑞草酚,因其清除自由基的特性而与多种健康益处相关[24]。柑橘果汁和果皮中富含黄烷酮,赋予其苦味。柑橘类黄酮化合物具有多种药理作用,包括抗氧化、抗炎、降血糖和降胆固醇活性。黄烷酮的C环在第2和第3位之间为饱和双键,因此它们又被称为二氢黄酮醇,从而与黄酮类化合物区分开来[61]

柚皮苷是一种主要存在于柑橘类水果中的黄烷酮糖苷,据报道,据报道,柚皮苷预处理能够显著恢复肾脏I/R模型中的抗氧化剂水平,抑制丙二醛的生成[62]。此外,在分子水平研究中发现,柚皮苷可通过激活Nrf2信号通路来阻止细胞凋亡信号传导,并抑制自噬过程[63]。在AKI模型中,柚皮苷通过调节肾组织中的miRNA-10a发挥肾保护作用[64]

橙皮素是另一种主要存在于柑橘类水果中的黄烷酮,具有抗氧化和抗炎作用,已在动物模型中显示出对AKI的保护作用,特别是在减少氧化应激和炎症损伤方面有效。在体外研究中,橙皮素通过显著降低顺铂处理的HK-2细胞中的ROS水平,从而减弱氧化应激诱导的细胞凋亡。同时,橙皮素能够激活Nrf2信号通路,并调控其下游基因,包括NQO1和HO-1的表达。在体内实验中,橙皮素显著减轻了顺铂诱导的肾毒性,并降低了血尿素氮和血清肌酐水平。此外,橙皮素通过降低丙二醛和髓过氧化物酶水平,以及提高超氧化物歧化酶和谷胱甘肽水平,进一步减弱了顺铂诱导的氧化应激反应[65]

4. 类黄酮化合物在AKI治疗中的未来展望

AKI是一种常见且严重的临床病症,特征是肾脏细胞损伤和功能障碍,通常伴随氧化应激、炎症及细胞凋亡等多种病理机制。由于类黄酮化合物具有显著的抗氧化、抗炎和抗凋亡特性,因此备受关注,可能有助于减缓AKI的发生和进展。尽管部分临床前研究初步证实了类黄酮化合物在AKI模型中的疗效,但其在AKI治疗中的实际临床作用尚未得到充分验证。因此,未来的研究应特别关注类黄酮化合物的分子靶点,例如线粒体氧化应激生成途径等,以实现针对性治疗AKI的效果。此外,考虑到类黄酮化合物在肾脏内的吸收、代谢以及潜在副作用,优化其药代动力学特性以提高治疗效果、降低毒性,将是类黄酮化合物应用于AKI治疗中的关键方向。因此,未来研究的重点应是评估类黄酮化合物是否能够有效缓解AKI患者的氧化应激和炎症反应,并进一步探索其与现有治疗策略的联合应用,以期提升疗效、改善患者预后。

目前,关于这一主题的临床试验缺乏可能出于几个原因。首先,由于获取人类肾脏样本具有侵入性,样本采集较为困难。然而,基于先前类黄酮化合物在AKI实验模型中的良好疗效,评估其在脓毒症诱导的AKI患者中的应用前景仍具有重要意义。类黄酮化合物可被视为预防脓毒症患者AKI的有效工具,或作为与现有治疗方案联合使用以降低AKI的发病率和死亡率的潜在策略。尽管目前关于类黄酮化合物在AKI治疗中的临床试验相对较少,但已有一些研究正在开展。例如,一项随机双盲对照试验正在评估槲皮素对脓毒症相关AKI患者的疗效,其主要研究终点包括血清肌酐水平的变化和炎症因子的动态变化。另一项开放标签试验则重点检测染料木黄酮在高危术后患者中的预防作用,该试验采用多剂量递增设计,观察药物的耐受性及生物标志物的变化。未来,通过优化临床试验设计,并结合精准医学和多组学分析等先进技术,有望进一步推动类黄酮化合物的临床转化。这不仅有助于明确其治疗效果和安全性,还将为AKI患者提供更多的治疗选择。

类黄酮化合物的纳米治疗疗法为其在疾病治疗中的应用提供了新的视角。纳米技术可有效提高类黄酮化合物的溶解性、生物利用度和靶向性,从而增强其药效。通过将类黄酮化合物封装在纳米颗粒、脂质体或聚合物载体中,不仅可以保护类黄酮化合物免受体内代谢降解,还能实现靶向传递到特定的病变部位,从而提高治疗的精确性并减少副作用。例如,在AKI的治疗中,纳米载体可将类黄酮化合物有效传递到受损肾组织,从而抑制线粒体氧化应激和炎症反应[66]。此外,纳米载体能够穿透细胞膜并作用于亚细胞水平(如线粒体),这对需要细胞器靶向的治疗尤其重要。尽管纳米类黄酮化合物在实验研究中表现出显著的优势,但仍需进一步研究其长期安全性和有效性。未来的研究应专注于优化类黄酮化合物纳米载体的设计和制备工艺,以促进其在临床中的应用并提升其在AKI中的疗效。不同类型的纳米载体具有各自的特点和应用场景,其选择需根据目标疾病和治疗需求进行优化。脂质体是一种成熟的纳米载体,因其高生物相容性和较低的免疫原性而被广泛应用。脂质体载体可以有效包裹类黄酮化合物,提高其在肾脏组织中的分布浓度,并减少全身毒性。然而,脂质体的药物载荷能力有限,且其制备工艺对稳定性要求较高。相较之下,聚合物纳米颗粒以其优异的结构可控性和药物释放可调性在精准给药方面显示出更大潜力。这类载体能够通过表面功能化增强靶向性能,例如在其表面修饰肾小管上皮细胞相关配体,提高药物的组织特异性分布。此外,无机纳米颗粒(如二氧化硅或金纳米颗粒)以其高稳定性和优异的光学或磁学特性,为类黄酮化合物提供了独特的成像及治疗一体化平台,但其长期生物相容性和潜在毒性仍需进一步评估。在优化纳米载体的设计和制备方法方面,先进技术的引入显得尤为重要。例如,通过微流控技术可以精确控制纳米颗粒的尺寸和形状,从而优化药物释放性能。表面功能化修饰(如聚乙二醇化)不仅能延长纳米颗粒在血液循环中的半衰期,还可降低其被单核吞噬系统清除的概率,从而提高药物的靶向效率。药物释放性能方面,近年来发展出的pH响应性和氧化还原响应性纳米载体,能够在AKI微环境中实现药物的精确释放,进一步增强治疗效果。总体而言,纳米载体在提高类黄酮化合物的靶向效率、药物释放性能和生物相容性方面表现出巨大的应用潜力。然而,针对不同纳米载体的优缺点以及其在急性肾损伤治疗中的具体适用性,仍需通过系统性研究进行深入评估,以推动其在临床中的转化应用。未来,纳米技术与类黄酮化合物的协同创新有望为AKI患者提供更加精准、高效的治疗选择。

新类黄酮化合物的发现是推动药物研发和拓宽疾病治疗手段的重要领域。近年来,通过天然产物提取、化学合成和生物工程等手段,研究人员发现了许多具有独特结构和活性的类黄酮化合物。这些新型类黄酮化合物展示了多样化的生物活性,包括抗氧化、抗炎、抗肿瘤和抗病毒等作用。例如,一些新型类黄酮化合物显示出强效的抗炎活性,如山姜素可通过激活Nrf2和抑制TLR4表达发挥作用[67]。此外,一些新发现的类黄酮化合物能够特异性靶向特定的分子靶点,例如有机阴离子转运蛋白3 (Organic Anion Transporter 3, OAT3)是一种重要的肾摄取转运蛋白,与药物诱导的AKI有关。筛选和鉴定天然产物(尤其是类黄酮化合物)中毒性小的强效OAT3抑制剂在减少OAT3介导的AKI方面具有重要价值。97种黄酮类化合物中5种最强的OAT3抑制剂显著降低了马兜铃酸I诱导的细胞毒性,减轻了甲氨蝶呤诱导的肾毒性[68]

同时,计算生物学和虚拟筛选技术的应用也加速了新类黄酮化合物的发现过程。通过计算机模拟分析大量天然产物库中的分子结构,研究人员可以预测并筛选出潜在的新型类黄酮化合物[68]。此外,合成生物学的发展使得从天然产物中提取新类黄酮化合物的过程变得更加高效,甚至可以通过基因工程微生物生产稀有或全新结构的类黄酮化合物。未来,研究应继续深入探索新类黄酮化合物的生物活性机制和药代动力学特性,以便进一步推动这些化合物的临床应用。

5. 总结

AKI是一种常见的临床并发症,尽管现有的治疗方法众多,但仍面临高发病率和死亡率的挑战。氧化应激、炎症反应、细胞死亡和自噬失衡等病理机制在AKI的发展中起重要作用,而类黄酮化合物因其多重生物活性受到关注。作为一类具有苯基铬烷结构的天然植物化合物,类黄酮化合物通过抗氧化、抗炎和抗凋亡等作用对AKI有显著改善效果。具体而言,类黄酮化合物可通过抑制NF-κB信号通路、减少ROS水平、调控细胞凋亡相关蛋白,甚至影响细胞代谢编程,从而减轻肾脏损伤。谷胱甘肽研究发现,黄酮、异黄酮、黄酮醇、黄烷酮等多种类黄酮化合物亚类在不同AKI模型中展现出有效的保护作用。

近年来,研究者通过植物筛选、化学合成、计算模拟等手段,发现了新型类黄酮化合物,这些新化合物具有独特的结构和多样的生物活性。通过高通量筛选和虚拟筛选技术,研究人员进一步加快了类黄酮化合物的发现速度。同时,纳米技术的引入显著提高了类黄酮化合物的生物利用度与靶向性,为其在AKI治疗中的应用提供了新思路。尽管实验数据初步验证了类黄酮化合物的治疗潜力,但仍缺乏临床试验支持其在AKI中的有效性。未来的研究应深入探索类黄酮化合物的分子靶点与药代动力学特性,进一步提升其治疗效果并降低毒副作用,使类黄酮化合物在AKI治疗中发挥更大作用。

参考文献

[1] Yang, L., Xing, G., Wang, L., Wu, Y., Li, S., Xu, G., et al. (2015) Acute Kidney Injury in China: A Cross-Sectional Survey. The Lancet, 386, 1465-1471.
https://doi.org/10.1016/s0140-6736(15)00344-x
[2] Hoste, E.A.J., Kellum, J.A., Selby, N.M., Zarbock, A., Palevsky, P.M., Bagshaw, S.M., et al. (2018) Global Epidemiology and Outcomes of Acute Kidney Injury. Nature Reviews Nephrology, 14, 607-625.
https://doi.org/10.1038/s41581-018-0052-0
[3] Middleton Jr., E, Kandaswami, C. and Theoharides, T.C. (2000) The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. Pharmacological Reviews, 52, 673-751.
[4] Mas-Font, S., Ros-Martinez, J., Pérez-Calvo, C., Villa-Díaz, P., Aldunate-Calvo, S. and Moreno-Clari, E. (2017) Prevention of Acute Kidney Injury in Intensive Care Units. Medicina Intensiva, 41, 116-126.
https://doi.org/10.1016/j.medin.2016.12.004
[5] Hasson, D., Goldstein, S.L. and Standage, S.W. (2020) The Application of Omic Technologies to Research in Sepsis-Associated Acute Kidney Injury. Pediatric Nephrology, 36, 1075-1086.
https://doi.org/10.1007/s00467-020-04557-9
[6] Fani, F., Regolisti, G., Delsante, M., Cantaluppi, V., Castellano, G., Gesualdo, L., et al. (2017) Recent Advances in the Pathogenetic Mechanisms of Sepsis-Associated Acute Kidney Injury. Journal of Nephrology, 31, 351-359.
https://doi.org/10.1007/s40620-017-0452-4
[7] Angus, D.C. and van Der Poll, T. (2013) Severe Sepsis and Septic Shock. The New England Journal of Medicine, 369, 840-851.
[8] Liao, C., Lei, C. and Shu, H. (2020) PCBP1 Modulates the Innate Immune Response by Facilitating the Binding of cGAS to DNA. Cellular & Molecular Immunology, 18, 2334-2343.
https://doi.org/10.1038/s41423-020-0462-3
[9] Liu, D., Huang, S., Sun, J., Zhang, H., Cai, Q., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56.
https://doi.org/10.1186/s40779-022-00422-y
[10] Wang, T., Huang, Y., Zhang, X., Zhang, Y. and Zhang, X. (2024) Advances in Metabolic Reprogramming of Renal Tubular Epithelial Cells in Sepsis-Associated Acute Kidney Injury. Frontiers in Physiology, 15, Article 1329644.
https://doi.org/10.3389/fphys.2024.1329644
[11] Shi, M., Maique, J., Shepard, S., Li, P., Seli, O., Moe, O.W., et al. (2022) In Vivo Evidence for Therapeutic Applications of Beclin 1 to Promote Recovery and Inhibit Fibrosis after Acute Kidney Injury. Kidney International, 101, 63-78.
https://doi.org/10.1016/j.kint.2021.09.030
[12] Piletič, K. and Kunej, T. (2016) Microrna Epigenetic Signatures in Human Disease. Archives of Toxicology, 90, 2405-2419.
https://doi.org/10.1007/s00204-016-1815-7
[13] Carthew, R.W. and Sontheimer, E.J. (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell, 136, 642-655.
https://doi.org/10.1016/j.cell.2009.01.035
[14] Wei, Q., Bhatt, K., He, H., Mi, Q., Haase, V.H. and Dong, Z. (2010) Targeted Deletion of Dicer from Proximal Tubules Protects against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology, 21, 756-761.
https://doi.org/10.1681/asn.2009070718
[15] Liu, D., Zhang, J., Liu, F., Wang, X., Pan, S., Jiang, D., et al. (2019) Silencing of Long Noncoding RNA PVT1 Inhibits Podocyte Damage and Apoptosis in Diabetic Nephropathy by Upregulating Foxa1. Experimental & Molecular Medicine, 51, 1-15.
https://doi.org/10.1038/s12276-019-0259-6
[16] Rauter, A.P., Ennis, M., Hellwich, K., Herold, B.J., Horton, D., Moss, G.P., et al. (2018) Nomenclature of Flavonoids (IUPAC Recommendations 2017). Pure and Applied Chemistry, 90, 1429-1486.
https://doi.org/10.1515/pac-2013-0919
[17] Mulvihill, E.E. and Huff, M.W. (2010) Antiatherogenic Properties of Flavonoids: Implications for Cardiovascular Health. Canadian Journal of Cardiology, 26, 17A-21A.
https://doi.org/10.1016/s0828-282x(10)71056-4
[18] Yonekura-Sakakibara, K., Higashi, Y. and Nakabayashi, R. (2019) The Origin and Evolution of Plant Flavonoid Metabolism. Frontiers in Plant Science, 10, Article 943.
https://doi.org/10.3389/fpls.2019.00943
[19] Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J. and Ye, X. (2013) Phytochemical Profile and Antioxidant Activity of Physiological Drop of Citrus Fruits. Journal of Food Science, 78, C37-C42.
https://doi.org/10.1111/j.1750-3841.2012.03002.x
[20] Althunibat, O.Y., Al Hroob, A.M., Abukhalil, M.H., Germoush, M.O., Bin-Jumah, M. and Mahmoud, A.M. (2019) Fisetin Ameliorates Oxidative Stress, Inflammation and Apoptosis in Diabetic Cardiomyopathy. Life Sciences, 221, 83-92.
https://doi.org/10.1016/j.lfs.2019.02.017
[21] Jia, Q., Yang, R., Liu, X., Ma, S. and Wang, L. (2018) Genistein Attenuates Renal Fibrosis in Streptozotocininduced Diabetic Rats. Molecular Medicine Reports, 19, 423-431.
https://doi.org/10.3892/mmr.2018.9635
[22] Zhang, L., Guo, Z., Wang, Y., Geng, J. and Han, S. (2019) The Protective Effect of Kaempferol on Heart via the Regulation of Nrf2, NF‐κB, and PI3K/Akt/GSK‐3β Signaling Pathways in Isoproterenol‐induced Heart Failure in Diabetic Rats. Drug Development Research, 80, 294-309.
https://doi.org/10.1002/ddr.21495
[23] Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004) Polyphenols: Food Sources and Bioavailability. The American Journal of Clinical Nutrition, 79, 727-747.
https://doi.org/10.1093/ajcn/79.5.727
[24] Panche, A.N., Diwan, A.D. and Chandra, S.R. (2016) Flavonoids: An Overview. Journal of Nutritional Science, 5, e47.
https://doi.org/10.1017/jns.2016.41
[25] Xin, S., Yan, H., Ma, J., Sun, Q. and Shen, L. (2016) Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice. Medical Science Monitor, 22, 5173-5180.
https://doi.org/10.12659/msm.898177
[26] Liu, T., Gao, H., Zhang, Y., Wang, S., Lu, M., Dai, X., et al. (2022) Apigenin Ameliorates Hyperuricemia and Renal Injury through Regulation of Uric Acid Metabolism and JAK2/STAT3 Signaling Pathway. Pharmaceuticals, 15, Article 1442.
https://doi.org/10.3390/ph15111442
[27] He, X., Wen, Y., Wang, Q., Wang, Y., Zhang, G., Wu, J., et al. (2021) Apigenin Nanoparticle Attenuates Renal Ischemia/reperfusion Inflammatory Injury by Regulation of miR-140-5p/CXCL12/NF-κB Signaling Pathway. Journal of Biomedical Nanotechnology, 17, 64-77.
https://doi.org/10.1166/jbn.2021.3010
[28] Chirumbolo, S. (2014) Dietary Assumption of Plant Polyphenols and Prevention of Allergy. Current Pharmaceutical Design, 20, 811-839.
https://doi.org/10.2174/13816128113199990042
[29] Falcone Ferreyra, M.L., Rius, S.P. and Casati, P. (2012) Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications. Frontiers in Plant Science, 3, Article 222.
https://doi.org/10.3389/fpls.2012.00222
[30] Andor, B., Danciu, C., Alexa, E., Zupko, I., Hogea, E., Cioca, A., et al. (2016) Germinated and Ungerminated Seeds Extract from Two Lupinus Species: Biological Compounds Characterization and in Vitro and in Vivo Evaluations. Evidence-Based Complementary and Alternative Medicine, 2016, Article ID: 7638542.
https://doi.org/10.1155/2016/7638542
[31] Ko, K. (2014) Isoflavones: Chemistry, Analysis, Functions and Effects on Health and Cancer. Asian Pacific Journal of Cancer Prevention, 15, 7001-7010.
https://doi.org/10.7314/apjcp.2014.15.17.7001
[32] Danciu, C., Avram, S., Pavel, I.Z., Ghiulai, R., Dehelean, C.A., Ersilia, A., et al. (2018) Main Isoflavones Found in Dietary Sources as Natural Anti-Inflammatory Agents. Current Drug Targets, 19, 841-853.
https://doi.org/10.2174/1389450118666171109150731
[33] Rietjens, I.M.C.M., Louisse, J. and Beekmann, K. (2016) The Potential Health Effects of Dietary Phytoestrogens. British Journal of Pharmacology, 174, 1263-1280.
https://doi.org/10.1111/bph.13622
[34] Michael McClain, R., Wolz, E., Davidovich, A., Pfannkuch, F., Edwards, J.A. and Bausch, J. (2006) Acute, Subchronic and Chronic Safety Studies with Genistein in Rats. Food and Chemical Toxicology, 44, 56-80.
https://doi.org/10.1016/j.fct.2005.05.021
[35] Banerjee, S., Li, Y., Wang, Z. and Sarkar, F.H. (2008) Multi-targeted Therapy of Cancer by Genistein. Cancer Letters, 269, 226-242.
https://doi.org/10.1016/j.canlet.2008.03.052
[36] Gholampour, F., Mohammadi, Z., Karimi, Z. and Owji, S.M. (2020) Protective Effect of Genistein in a Rat Model of Ischemic Acute Kidney Injury. Gene, 753, Article ID: 144789.
https://doi.org/10.1016/j.gene.2020.144789
[37] Iwashina, T. (2013) Flavonoid Properties of five Families newly Incorporated into the Order Caryophyllales (Review). Bulletin of the National Museum of Nature and Science, Series B, 39, 25-51.
[38] Xu, M., Pirtskhalava, T., Farr, J.N., Weigand, B.M., Palmer, A.K., Weivoda, M.M., et al. (2018) Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nature Medicine, 24, 1246-1256.
https://doi.org/10.1038/s41591-018-0092-9
[39] Gomes, I.B.S., Porto, M.L., Santos, M.C.L.F.S., Campagnaro, B.P., Gava, A.L., Meyrelles, S.S., et al. (2015) The Protective Effects of Oral Low-Dose Quercetin on Diabetic Nephropathy in Hypercholesterolemic Mice. Frontiers in Physiology, 6, Article 247.
https://doi.org/10.3389/fphys.2015.00247
[40] Lesjak, M., Hoque, R., Balesaria, S., Skinner, V., Debnam, E.S., Srai, S.K.S., et al. (2014) Quercetin Inhibits Intestinal Iron Absorption and Ferroportin Transporter Expression in Vivo and in Vitro. PLOS ONE, 9, e102900.
https://doi.org/10.1371/journal.pone.0102900
[41] Cheng, I.F. and Breen, K. (2000) On the Ability of Four Flavonoids, Baicilein, Luteolin, Naringenin, and Quercetin, to Suppress the Fenton Reaction of the Iron-ATP Complex. BioMetals, 13, 77-83.
https://doi.org/10.1023/a:1009229429250
[42] Wang, Y., Quan, F., Cao, Q., Lin, Y., Yue, C., Bi, R., et al. (2021) Quercetin Alleviates Acute Kidney Injury by Inhibiting Ferroptosis. Journal of Advanced Research, 28, 231-243.
https://doi.org/10.1016/j.jare.2020.07.007
[43] Shi, M., Mobet, Y. and Shen, H. (2024) Quercetin Attenuates Acute Kidney Injury Caused by Cisplatin by Inhibiting Ferroptosis and Cuproptosis. Cell Biochemistry and Biophysics, 82, 2687-2699.
https://doi.org/10.1007/s12013-024-01379-6
[44] Liu, B., Tan, X., Liang, J., Wu, S., Liu, J., Zhang, Q., et al. (2014) A Reduction in Reactive Oxygen Species Contributes to Dihydromyricetin-Induced Apoptosis in Human Hepatocellular Carcinoma Cells. Scientific Reports, 4, Article No. 7041.
https://doi.org/10.1038/srep07041
[45] Xiao, X., Wang, F., Yuan, Y., Liu, J., Liu, Y. and Yi, X. (2019) Antibacterial Activity and Mode of Action of Dihydromyricetin from Ampelopsis Grossedentata Leaves against Food-Borne Bacteria. Molecules, 24, Article 2831.
https://doi.org/10.3390/molecules24152831
[46] Chen, J., Wang, X., Xia, T., Bi, Y., Liu, B., Fu, J., et al. (2021) Molecular Mechanisms and Therapeutic Implications of Dihydromyricetin in Liver Disease. Biomedicine & Pharmacotherapy, 142, Article ID: 111927.
https://doi.org/10.1016/j.biopha.2021.111927
[47] Chen, S., Lv, K., Sharda, A., Deng, J., Zeng, W., Zhang, C., et al. (2021) Anti-Thrombotic Effects Mediated by Dihydromyricetin Involve Both Platelet Inhibition and Endothelial Protection. Pharmacological Research, 167, Article ID: 105540.
https://doi.org/10.1016/j.phrs.2021.105540
[48] Guo, T., Wang, X., Zhang, G., Xia, T., Zhu, R. and Tou, J. (2023) Dihydromyricetin Functions as a Tumor Suppressor in Hepatoblastoma by Regulating SOD1/ROS Pathway. Frontiers in Oncology, 13, Article 1160548.
https://doi.org/10.3389/fonc.2023.1160548
[49] Dong, C., Wu, G., Li, H., Qiao, Y. and Gao, S. (2020) Ampelopsin Inhibits High Glucose‐Induced Extracellular Matrix Accumulation and Oxidative Stress in Mesangial Cells through Activating the Nrf2/HO‐1 Pathway. Phytotherapy Research, 34, 2044-2052.
https://doi.org/10.1002/ptr.6668
[50] Guo, L., Tan, K., Luo, Q. and Bai, X. (2019) Dihydromyricetin Promotes Autophagy and Attenuates Renal Interstitial Fibrosis by Regulating miR-155-5p/PTEN Signaling in Diabetic Nephropathy. Bosnian Journal of Basic Medical Sciences, 20, 372-380.
https://doi.org/10.17305/bjbms.2019.4410
[51] Feng, L., Que, D., Li, Z., Zhong, X., Yan, J., Wei, J., et al. (2021) Dihydromyricetin Ameliorates Vascular Calcification in Chronic Kidney Disease by Targeting AKT Signaling. Clinical Science, 135, 2483-2502.
https://doi.org/10.1042/cs20210259
[52] Xu, Z., Zhang, M., Wang, W., Zhou, S., Yu, M., Qiu, X., et al. (2023) Dihydromyricetin Attenuates Cisplatin-Induced Acute Kidney Injury by Reducing Oxidative Stress, Inflammation and Ferroptosis. Toxicology and Applied Pharmacology, 473, Article ID: 116595.
https://doi.org/10.1016/j.taap.2023.116595
[53] Xie, C., Liu, L., Wang, Z., Xie, H., Feng, Y., Suo, J., et al. (2018) Icariin Improves Sepsis-Induced Mortality and Acute Kidney Injury. Pharmacology, 102, 196-205.
https://doi.org/10.1159/000487955
[54] Mo, J., Choi, D., Han, Y., Kim, N. and Jeong, H. (2019) Morin Has Protective Potential against ER Stress Induced Apoptosis in Renal Proximal Tubular HK-2 Cells. Biomedicine & Pharmacotherapy, 112, Article ID: 108659.
https://doi.org/10.1016/j.biopha.2019.108659
[55] Fan, Z., Qi, X., Yang, W., Xia, L. and Wu, Y. (2020) Melatonin Ameliorates Renal Fibrosis through the Inhibition of NF-κB and TGF-β1/Smad3 Pathways in Db/Db Diabetic Mice. Archives of Medical Research, 51, 524-534.
https://doi.org/10.1016/j.arcmed.2020.05.008
[56] Zhang, B., Chen, Z., Jiang, Z., Huang, S., Liu, X. and Wang, L. (2023) Nephroprotective Effects of Cardamonin on Renal Ischemia Reperfusion Injury/UUO-Induced Renal Fibrosis. Journal of Agricultural and Food Chemistry, 71, 13284-13303.
https://doi.org/10.1021/acs.jafc.3c01880
[57] Bastin, A., Sadeghi, A., Nematollahi, M.H., Abolhassani, M., Mohammadi, A. and Akbari, H. (2020) The Effects of Malvidin on Oxidative Stress Parameters and Inflammatory Cytokines in LPS‐induced Human THP‐1 Cells. Journal of Cellular Physiology, 236, 2790-2799.
https://doi.org/10.1002/jcp.30049
[58] Ma, Y., Li, Y., Zhang, H., Wang, Y., Wu, C. and Huang, W. (2020) Malvidin Induces Hepatic Stellate Cell Apoptosis via the Endoplasmic Reticulum Stress Pathway and Mitochondrial Pathway. Food Science & Nutrition, 8, 5095-5106.
https://doi.org/10.1002/fsn3.1810
[59] Fan, H., Cui, J., Liu, F., Zhang, W., Yang, H., He, N., et al. (2022) Malvidin Protects against Lipopolysaccharide-Induced Acute Liver Injury in Mice via Regulating Nrf2 and NLRP3 Pathways and Suppressing Apoptosis and Autophagy. European Journal of Pharmacology, 933, Article ID: 175252.
https://doi.org/10.1016/j.ejphar.2022.175252
[60] Fan, H., Sun, Y., Zhang, X., Xu, Y., Ming, Y., Zhang, L., et al. (2024) Malvidin Promotes PGC-1α/Nrf2 Signaling to Attenuate the Inflammatory Response and Restore Mitochondrial Activity in Septic Acute Kidney Injury. Chemico-Biological Interactions, 388, Article ID: 110850.
https://doi.org/10.1016/j.cbi.2023.110850
[61] Iwashina, T. (2013) Flavonoid Properties of Five Families Newly Incorporated into the Order Caryophyllales (Review). Bulletin of the National Museum of Nature & Science, 10, 1103-1114.
[62] Amini, N., Sarkaki, A., Dianat, M., Mard, S.A., Ahangarpour, A. and Badavi, M. (2019) Protective Effects of Naringin and Trimetazidine on Remote Effect of Acute Renal Injury on Oxidative Stress and Myocardial Injury through Nrf-2 Regulation. Pharmacological Reports, 71, 1059-1066.
https://doi.org/10.1016/j.pharep.2019.06.007
[63] Huang, Y., Li, W., Su, Z. and Kong, A.T. (2015) The Complexity of the Nrf2 Pathway: Beyond the Antioxidant Response. The Journal of Nutritional Biochemistry, 26, 1401-1413.
https://doi.org/10.1016/j.jnutbio.2015.08.001
[64] Wang, N., Zhou, Y., Jiang, L., Li, D., Yang, J., Zhang, C., et al. (2012) Urinary Microrna-10a and Microrna-30d Serve as Novel, Sensitive and Specific Biomarkers for Kidney Injury. PLOS ONE, 7, e51140.
https://doi.org/10.1371/journal.pone.0051140
[65] Chen, X., Wei, W., Li, Y., Huang, J. and Ci, X. (2019) Hesperetin Relieves Cisplatin-Induced Acute Kidney Injury by Mitigating Oxidative Stress, Inflammation and Apoptosis. Chemico-Biological Interactions, 308, 269-278.
https://doi.org/10.1016/j.cbi.2019.05.040
[66] Huang, K., Wu, C., Chang, Y., Ho, F., Chiang, C. and Liu, S. (2022) Therapeutic Effect of Quercetin Polymeric Nanoparticles on Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice. Biochemical and Biophysical Research Communications, 608, 122-127.
https://doi.org/10.1016/j.bbrc.2022.03.159
[67] Huang, Y., Zhou, L., Yan, L., Ren, J., Zhou, D. and Li, S. (2015) Alpinetin Inhibits Lipopolysaccharide-Induced Acute Kidney Injury in Mice. International Immunopharmacology, 28, 1003-1008.
https://doi.org/10.1016/j.intimp.2015.08.002
[68] Wang, F., Tan, H., Hu, J., Duan, X., Bai, W., Wang, X., et al. (2023) Inhibitory Interaction of Flavonoids with Organic Anion Transporter 3 and Their Structure-Activity Relationships for Predicting Nephroprotective Effects. Journal of Asian Natural Products Research, 26, 353-371.
https://doi.org/10.1080/10286020.2023.2240722