[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Jiang, X., Wang, J., Deng, X., Xiong, F., Ge, J., Xiang, B., et al. (2019) Role of the Tumor Microenvironment in PD-L1/PD-1-Mediated Tumor Immune Escape. Molecular Cancer, 18, Article No. 10. https://doi.org/10.1186/s12943-018-0928-4
|
[3]
|
张惠秋, 李西阳, 李西川, 等. 免疫检查点抑制剂在小细胞肺癌治疗中的应用与临床试验进展[J]. 中国肺癌杂志, 2021, 24(11): 790-795.
|
[4]
|
Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833. https://doi.org/10.1056/nejmoa1606774
|
[5]
|
Daud, A.I., Wolchok, J.D., Robert, C., Hwu, W., Weber, J.S., Ribas, A., et al. (2016) Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma. Journal of Clinical Oncology, 34, 4102-4109. https://doi.org/10.1200/jco.2016.67.2477
|
[6]
|
Aguilar, E.J., Ricciuti, B., Gainor, J.F., Kehl, K.L., Kravets, S., Dahlberg, S., et al. (2019) Outcomes to First-Line Pembrolizumab in Patients with Non-Small-Cell Lung Cancer and Very High PD-L1 Expression. Annals of Oncology, 30, 1653-1659. https://doi.org/10.1093/annonc/mdz288
|
[7]
|
Verma, N.K., Wong, B.H.S., Poh, Z.S., Udayakumar, A., Verma, R., Goh, R.K.J., et al. (2022) Obstacles for T-Lymphocytes in the Tumour Microenvironment: Therapeutic Challenges, Advances and Opportunities Beyond Immune Checkpoint. eBioMedicine, 83, Article 104216. https://doi.org/10.1016/j.ebiom.2022.104216
|
[8]
|
齐双月(综述), 刘正娟(审校). 固有免疫在EB病毒感染中的作用研究进展[J]. 国际儿科学杂志, 2023, 50(11): 773-776
|
[9]
|
Zuo, W. and Zhao, X. (2021) Natural Killer Cells Play an Important Role in Virus Infection Control: Antiviral Mechanism, Subset Expansion and Clinical Application. Clinical Immunology, 227, Article 108727. https://doi.org/10.1016/j.clim.2021.108727
|
[10]
|
Kronenberg, M. and Engel, I. (2024) NKT Cells in the Antitumor Response: The β Version? Journal of Clinical Investigation, 134, e177663. https://doi.org/10.1172/jci177663
|
[11]
|
Scheper, W., Sebestyen, Z. and Kuball, J. (2014) Cancer Immunotherapy Using γδT Cells: Dealing with Diversity. Frontiers in Immunology, 5, Article 601. https://doi.org/10.3389/fimmu.2014.00601
|
[12]
|
Song, Y., Liu, Y., Teo, H.Y. and Liu, H. (2022) Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Frontiers in Immunology, 13, Article 914839. https://doi.org/10.3389/fimmu.2022.914839
|
[13]
|
Hwang, H.J., Lee, J.J., Kang, S.H., Suh, J.K., Choi, E.S., Jang, S., et al. (2020) The BTLA and PD‐1 Signaling Pathways Independently Regulate the Proliferation and Cytotoxicity of Human Peripheral Blood γδT Cells. Immunity, Inflammation and Disease, 9, 274-287. https://doi.org/10.1002/iid3.390
|
[14]
|
Zhang, D. and Zhao, Y. (2023) Identification of Natural Killer Cell Associated Subtyping and Gene Signature to Predict Prognosis and Drug Sensitivity of Lung Adenocarcinoma. Frontiers in Genetics, 14, Article 1156230. https://doi.org/10.3389/fgene.2023.1156230
|
[15]
|
Nelson, A., Lukacs, J.D. and Johnston, B. (2021) The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers, 13, Article 5174. https://doi.org/10.3390/cancers13205174
|
[16]
|
Ma, L., Feng, Y. and Zhou, Z. (2023) A Close Look at Current γδT-Cell Immunotherapy. Frontiers in Immunology, 14, Article 1140623. https://doi.org/10.3389/fimmu.2023.1140623
|
[17]
|
Legut, M., Cole, D.K. and Sewell, A.K. (2015) The Promise of γδT Cells and the γδT Cell Receptor for Cancer Immunotherapy. Cellular & Molecular Immunology, 12, 656-668. https://doi.org/10.1038/cmi.2015.28
|
[18]
|
Kim, N. and Kim, H.S. (2018) Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. Frontiers in Immunology, 9, Article 2041. https://doi.org/10.3389/fimmu.2018.02041
|
[19]
|
Hsu, J., Hodgins, J.J., Marathe, M., Nicolai, C.J., Bourgeois-Daigneault, M., Trevino, T.N., et al. (2018) Contribution of NK Cells to Immunotherapy Mediated by PD-1/PD-L1 Blockade. Journal of Clinical Investigation, 128, 4654-4668. https://doi.org/10.1172/jci99317
|
[20]
|
Cho, Y., Choi, M.G., Kim, D.H., Choi, Y.J., Kim, S.Y., Sung, K.J., et al. (2020) Natural Killer Cells as a Potential Biomarker for Predicting Immunotherapy Efficacy in Patients with Non-Small Cell Lung Cancer. Targeted Oncology, 15, 241-247. https://doi.org/10.1007/s11523-020-00712-2
|
[21]
|
Kamata, T., Suzuki, A., Mise, N., Ihara, F., Takami, M., Makita, Y., et al. (2016) Blockade of Programmed Death-1/Programmed Death Ligand Pathway Enhances the Antitumor Immunity of Human Invariant Natural Killer T Cells. Cancer Immunology, Immunotherapy, 65, 1477-1489. https://doi.org/10.1007/s00262-016-1901-y
|
[22]
|
Parekh, V.V., Lalani, S., Kim, S., Halder, R., Azuma, M., Yagita, H., et al. (2009) PD-1/PD-L Blockade Prevents Anergy Induction and Enhances the Anti-Tumor Activities of Glycolipid-Activated Invariant NKT Cells. The Journal of Immunology, 182, 2816-2826. https://doi.org/10.4049/jimmunol.0803648
|
[23]
|
Iyoda, T., Ushida, M., Kimura, Y., Minamino, K., Hayuka, A., Yokohata, S., et al. (2010) Invariant NKT Cell Anergy Is Induced by a Strong TCR-Mediated Signal Plus Co-Stimulation. International Immunology, 22, 905-913. https://doi.org/10.1093/intimm/dxq444
|
[24]
|
Wang, M., Zhai, X., Li, J., Guan, J., Xu, S., Li, Y., et al. (2021) The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Frontiers in Immunology, 12, Article 670391. https://doi.org/10.3389/fimmu.2021.670391
|
[25]
|
Hu, G., Wu, P., Cheng, P., Zhang, Z., Wang, Z., Yu, X., et al. (2017) Tumor-Infiltrating CD39+γδTregs Are Novel Immunosuppressive T Cells in Human Colorectal Cancer. OncoImmunology, 6, e1277305. https://doi.org/10.1080/2162402x.2016.1277305
|
[26]
|
Nada, M.H., Wang, H., Hussein, A.J., Tanaka, Y. and Morita, C.T. (2021) PD-1 Checkpoint Blockade Enhances Adoptive Immunotherapy by Human Vγ2Vδ2 T Cells against Human Prostate Cancer. OncoImmunology, 10, Article 1989789. https://doi.org/10.1080/2162402x.2021.1989789
|