肠道菌群对结直肠癌ICB治疗的影响
Influence of Intestinal Flora on ICB Therapy for Colorectal Cancer
DOI: 10.12677/acm.2024.14123181, PDF, HTML, XML,   
作者: 赵 飞*:邯郸市中心医院普外二科,河北 邯郸;李爱静*:任丘市人民医院妇科,河北 任丘;夏雯晴, 张 翼, 高翔鹏#:河北医科大学研究生学院,河北 石家庄
关键词: 结直肠癌肠道菌群ICB治疗益生菌综述Colorectal Cancer Intestinal Flora ICB Therapy Probiotics Review
摘要: 肠道菌群对结直肠癌免疫检查点抑制剂(ICB)治疗的作用日益受到重视,调节肠道菌群成为了优化ICB治疗效果的一个重要研究方向,目前还缺乏既往有关肠道菌群对结直肠癌ICB治疗的研究成果的整合,并且也没有统一的临床治疗指南。本文系统、全面地探讨了肠道菌群对结直肠癌ICB治疗的影响,包括治疗机制、面临的挑战、肠道菌群与ICB治疗效果的关联、影响ICB治疗效果的肠道菌群特征等内容,并通过梳理相关文献进行了总结。本文研究表明肠道菌群在维持人体健康和疾病进程中扮演着关键角色,肠道菌群的不同组成能够显著影响ICB的治疗效果,通过粪便微生物移植、抗生素的合理使用、益生菌补充等方法调节肠道菌群成为了优化结直肠癌ICB治疗效果的一个重要研究方向。本文能够为临床制定肠道菌群干预结直肠癌ICB治疗提供一定的参考,并为更深入地探讨肠道菌群与ICB治疗之间的相互作用机制提供借鉴。
Abstract: The role of the gut microbiome in immunotherapy for colorectal cancer, particularly with immune checkpoint inhibitors (ICB), is increasingly being recognized. Modulating the gut microbiome has become an important area of research for optimizing the effects of ICB therapy. Currently, there is a lack of comprehensive integration of research findings on the gut microbiome’s impact on colorectal cancer ICB treatment, as well as a lack of unified clinical treatment guidelines. This article systematically and comprehensively explores the influence of the gut microbiome on colorectal cancer ICB treatment, including the mechanisms of therapy, challenges faced, the association between the gut microbiome and ICB treatment outcomes, and the characteristics of the gut microbiome that affect ICB treatment efficacy, summarized through a review of relevant literature. The study indicates that the gut microbiome plays a key role in maintaining human health and the disease process, with different compositions of the gut microbiome significantly impacting the efficacy of ICB treatment. Methods such as fecal microbiota transplantation, rational use of antibiotics, and probiotic supplementation to modulate the gut microbiome have become important research directions for optimizing colorectal cancer ICB treatment outcomes. This article provides references for the clinical development of gut microbiome interventions in colorectal cancer ICB treatment and offers insights for further exploration of the interaction mechanisms between the gut microbiome and ICB therapy.
文章引用:赵飞, 李爱静, 夏雯晴, 张翼, 高翔鹏. 肠道菌群对结直肠癌ICB治疗的影响[J]. 临床医学进展, 2024, 14(12): 1024-1035. https://doi.org/10.12677/acm.2024.14123181

1. 引言

结直肠癌是癌症相关发病率的第三大原因,是男性和女性癌症相关死亡的第二大常见原因[1] [2]。有研究者认为结直肠癌与肠道菌群密切相关[3]-[5],由于早期筛查不充分、当前治疗的局限性以及消化系统肿瘤转移和复发的频率增加[1] [2],导致患者的预后仍然很差。因此,确定新的诊断生物标志物和治疗方式,减轻抗肿瘤耐药性的出现,并改善患者的预后和生活质量是至关重要的。

免疫疗法已成为一种新的肿瘤治疗方法,基于肿瘤免疫逃逸机制,克服导致肿瘤逃逸的途径,可增强宿主的抗肿瘤免疫反应以识别和消除肿瘤细胞,从而产生有希望的治疗结果[6] [7]。目前,免疫检查点抑制剂(ICB)是结直肠癌治疗采取的主要免疫治疗方法[8]。然而,ICB治疗仍然存在一些缺点。少数人接受ICB有效,但易耐药,并且进程缓慢。此外,ICB依赖自身免疫功能的激活来消除肿瘤,这些机制可能会影响健康组织的自我耐受性,导致免疫副作用[9]

肠道微生物群在新陈代谢、整体稳态发挥着至关重要的作用。例如,有助于维生素的产生和同化,调节肠道内分泌功能、神经信号、骨矿物质密度、合成神经递质和代谢胆汁[10]-[13]。此外,肠道微生物群对宿主免疫反应的成熟和持续表达有重要影响[14] [15]。肠道菌群生态失调对免疫系统的影响会贯穿生命发育的整个过程,包括生理和病理状况[16]-[19]。肠道菌群可以通过破坏细胞生长稳态、调节免疫反应和药物代谢来促进肿瘤发生[20]。而且可以通过充当免疫系统刺激的调节因子来影响肿瘤的发展[21]。微生物在癌症检测、治疗和预后中的作用多样,一直在被探究[22] [23]

近年来,肠道菌群与结直肠癌的ICB治疗之间的潜在关联得到了广泛的研究,包括肠道菌群与其相关代谢物之间的关系、肠道菌群与ICB相关不良事件之间的相关性、抗生素的应用对ICB的影响,以及益生菌和粪便移植在临床实践中的应用和有效性[24]。虽然肠道菌群影响ICB治疗的具体机制尚不清楚,但目前的研究表明肠道菌群可能作为调节ICB疗效的关键靶点,使其在临床环境中的实际应用前景广阔[25]。本综述探讨了肠道菌群与结直肠癌的ICB治疗之间的关系,总结了当前的研究进展,并探讨了这些因素之间潜在的相互作用机制和未来前景。

2. 结直肠癌与ICB治疗

2.1. ICB治疗的机制

肿瘤免疫治疗是通过肿瘤细胞逃避人体免疫系统的机制启动的。通常,免疫系统可以根据肿瘤相关抗原识别并消除健康组织中的肿瘤细胞。然而,肿瘤利用各种免疫过程来逃避免疫系统,包括定向调节Tregs功能或分泌、抗原呈递过程、免疫抑制介质产生的改变、免疫耐受的发展以及逃避免疫系统介导的杀伤[26]。关键的免疫检查点包括抑制性程序性细胞死亡1 (PD-1)、程序性细胞死亡配体-1 (PD-L1)或细胞毒性T淋巴细胞相关蛋白4 (CTLA-4),这些途径允许恶性肿瘤逃避宿主的免疫监视[27];免疫检查点在调节宿主的抗肿瘤免疫力中发挥着至关重要的作用。它们的抑制激活了对癌细胞的免疫反应。因此,针对这些靶点的ICB靶向抗体可以应用在化疗和其他靶向药物的辅助和联合治疗,近年来取得了实质性进展[28]-[30]

2.2. ICB在结直肠癌治疗中的应用

ICB在结直肠癌治疗领域的应用,标志着癌症治疗进入了一个全新的时代。ICB通过靶向免疫检查点,如PD-1/PD-L1和CTLA-4,能够解除肿瘤对免疫系统的抑制,从而激活患者的免疫应答以对抗肿瘤细胞。尽管ICB在许多肿瘤类型中显示出显著疗效,但其在结直肠癌治疗中的应用仍然复杂,并受限于特定的肿瘤特性,如微卫星不稳定性(MSI)高或错配修复缺陷(dMMR)状态等[31]。有研究表明[32],对于MSI-H (微卫星不稳定性高)/dMMR的晚期结直肠癌患者,ICB疗法能够显著提高生存率,并且与传统化疗相比,具有较低的副作用风险。然而,对于MSS或微卫星不稳定性低的患者,ICB疗法的效果较差,这表明MSI状态是ICB治疗反应的重要预测因素。ICB疗法在结直肠癌治疗中的应用取得了初步成果,尤其是对于MSI-H/dMMR患者[33]。然而,针对MSS/MSI-L患者的有效治疗策略仍然是未来研究的重点。此外,了解ICB治疗引发的免疫相关副作用并制定管理策略也是提高治疗效果和患者生活质量的关键。

2.3. ICB治疗面临的挑战

免疫检查点抑制剂在治疗各种恶性肿瘤方面取得了早期成功[34]。然而,一些患者最初对ICB治疗有反应,但后来表现出耐药性,这与肿瘤细胞丰富的突变功能有关,使其能够再次逃避T细胞介导的免疫监视[35]。此外,免疫治疗的首要重点是增强免疫激活机制。这种“免疫增强”策略经常导致频繁的不良事件。免疫治疗的患者间异质性、缺乏持续疗效和免疫相关不良事件是免疫治疗的主要问题[36] [37]。因此,需要开发更多的治疗和预防方法来解决ICB的缺陷。

3. 肠道菌群与ICB治疗效果的关联

3.1. 肠道菌群通过影响宿主的免疫反应来调节ICB治疗的效果

越来越多的证据表明,肠道微生物群可以通过调节免疫细胞的增殖和表达影响免疫平衡,特别是辅助T细胞17 (Th17)和Treg细胞之间的平衡[38]。Th17细胞有助于自身免疫和炎症,而Treg细胞则抑制免疫反应并维持免疫稳态。两种细胞类型最初都是在肿瘤生长因子(TGF)-β的影响下从初始CD4 T细胞分化而来[39]。因此,多种肠道微生物群可能会调节并促进Th17/Treg细胞的增殖。有研究表明,脆弱拟杆菌可以通过Toll样受体2 (TLR2)刺激Treg细胞增殖,从而抑制Th17细胞的活性[40] [41]。总之,肠道微生物群在调节促炎症反应和免疫调节之间的平衡方面发挥着重要作用,尽管其确切的潜在机制仍不清楚。

相较于体内环境,肿瘤内的肠道菌群对于调节肿瘤微环境中的免疫反应以及影响免疫疗法对肿瘤治疗效果更为有效[42]。瘤内微生物通过介导多种免疫细胞和PD-1/PD-L1轴,在抗肿瘤免疫反应中发挥积极或消极的作用[43] [44]。许多文献报道了瘤内微生物在抗肿瘤免疫反应中的促进作用。例如,结直肠癌患者正常组织中寄居的Lachnospiraceae家族细菌能够分解溶解性甘油磷脂,这种物质会降低CD8+ T细胞的活性。通过这种方式,这些细菌有助于改善免疫系统对肿瘤的监视,从而控制结直肠癌的发展[45]。大肠杆菌是从包括结直肠癌在内的实体瘤中分离出来的一种常见细菌。大肠杆菌TOP10能够促进CD8+ T细胞和CD4+ T细胞的激活,这两种细胞作为效应细胞,在抑制肿瘤的发生和进展中发挥重要作用[46]。Shi等人观察到,双歧杆菌的全身给药和局部递送可促进结直肠癌小鼠的先天免疫反应[47]。然而,也有些瘤内微生物会阻碍抗肿瘤免疫治疗的疗效。共生菌通过丁酸盐等代谢物增强免疫抑制性Treg细胞的产生并刺激癌细胞的生长[48] [49]

3.2. 特定肠道微生物与ICB治疗的关联机制

肠道微生物群及其代谢物通过保持肠粘膜屏障的完整性、调节炎症因子和控制免疫细胞激活等来改变肿瘤微环境,这些机制共同限制了肿瘤的进展[50]。肠道微生物群在ICB治疗中的作用可能归因于其相关代谢物。已发现大多数与肠道微生物群相关的代谢物参与免疫调节、减弱免疫反应,并可能有助于免疫耐受,减少免疫过度造成的伤害。下面详细介绍几种关键肠道菌的作用。

3.2.1. 大肠杆菌

大肠杆菌是一种兼性厌氧革兰氏阴性菌,常见于正常肠道菌群中[51]。大多数大肠杆菌菌株是共生的,很少在宿主中引起疾病。然而,特定菌株可产生具有遗传毒性的毒素,从而调节细胞分化、细胞凋亡和增殖[52],导致细胞不受控制地增殖成恶性肿瘤[53]甚至导致结直肠癌的肝转移[54]。然而,大肠杆菌还具有抗炎和抗癌特性。大肠杆菌分泌短链脂肪酸(SCFA),可抑制促炎介质(如IL-1β、IL-6、IL-8和TNF-α)的产生[55]。这种下调可能有助于抑制与炎症相关的癌症的进展。大肠杆菌通过上调PTEN和AKT1引起对结直肠癌细胞的促凋亡作用[56]。因此对大肠杆菌在肿瘤发展中作用的进一步研究在结直肠癌诊断和治疗中具有重要意义。

3.2.2. 具核梭杆菌

具核梭杆菌是一种厌氧、革兰阴性、机会性细菌,在胃肠道和口腔肠道均存在[57]。具核梭杆菌可以通过引发炎症反应和抑制抗癌免疫反应来促进肿瘤的发生、增殖和进展。在具有不同MSI状态的CRC病例中,具核梭杆菌会引发不同的免疫反应[58]。该细菌抑制高MSICRC的适应性抗肿瘤免疫反应,而在低MSICRC中显示出促炎作用。结直肠癌组织中具核梭杆菌DNA的浓度与患者生存率呈负相关,最终导致生存时间缩短,这种负相关被归因于细菌促进神经浸润和血管肿瘤血栓形成的作用[59]。但是具核梭杆菌可以激活STING信号转导导致PD-L1表达增加,干扰素-γ和CD8+肿瘤浸润淋巴细胞积累,导致肿瘤抑制[60]。当与PD-L1阻断治疗联合使用时,这种作用增强了肿瘤的敏感性和对免疫检查点阻断的反应,从而显著提高了患者的总生存率[60]

3.2.3. 脆弱芽孢杆菌

脆弱芽孢杆菌是一种革兰氏阴性厌氧菌,主要栖息于肠道[61]。脆弱芽孢杆菌是一种机会性病原体,包括两个不同的类群,即非产毒脆弱拟杆菌(NTBF)和产肠毒素脆弱拟杆菌(ETBF) [62]。ETBF通过分泌BFT (一种20 kDa的锌依赖性金属蛋白酶毒素)引起肠粘膜损伤和炎症[63]。黏膜组织暴露于BFT与结直肠癌的发病机制密切相关。脆弱芽孢杆菌和大肠杆菌的共定植诱导白细胞介素(IL)-17分泌,导致结肠上皮DNA损伤[64]。相比之下,一些脆弱芽孢杆菌还可以发挥抗肿瘤作用。脆弱芽孢杆菌通过刺激丁酸盐的分泌,对NLRP3介导的炎症信号通路产生负面影响[65]。丁酸盐抑制巨噬细胞活化和促炎介质(如IL-18和IL-1β)的分泌,从而降低肠道炎症水平并限制结直肠癌的发展。脆弱芽孢杆菌能够通过激活CD4+ T细胞,进而促使产生抗炎分子如IL-10,这有助于抑制肿瘤的形成和侵袭[66]

4. 影响ICB治疗效果的肠道菌群特征

4.1. 肠道菌群的组成特征对ICB治疗效果的影响

肠道微生物群在ICB治疗中发挥着至关重要的调节作用,为增强ICB的临床疗效提供了一种新方法。一般来说,肠道菌群中厚壁菌门微生物群水平较高的患者对ICB表现出更有利的反应,而变形菌门丰富的患者则表现出较弱的反应。就不良反应的发生情况而言,厚壁菌门的含量较高,而拟杆菌门的含量较低。先前的一项涵盖临床和动物研究的研究表明,针对PD-1/PD-L1轴的ICB的临床反应与嗜黏蛋白阿克曼菌的相对丰度之间存在相关性[67]。嗜黏蛋白阿克曼菌是一种严格厌氧的肠道细菌,依靠肠道粘蛋白作为其唯一的碳和氮源而茁壮成长,以与宿主健康密切相关的方式在肠道中定殖。它调节生物体的免疫反应,维持代谢平衡,增强ICB对各种癌症类型的反应[68]。此外,肠道微生物群多样性较高的患者在接受抗PD-1治疗时表现出增强的肿瘤杀伤作用[69]

4.2. 调整肠道菌群和优化ICB治疗效果

4.2.1. 抗生素

通过抗生素(ATB)调节相关肠道微生物的生态失调可能是改善ICB临床结局的潜在策略[70]。抗生素的使用会改变肠道微生物群的组成,从而影响肠道微生物群在ICB有效性中的调节作用。一般来说,抗生素治疗与较差的OS相关[71]。抗生素的使用成为接受ICB治疗的晚期癌症患者PFS和OS的独立影响因素。重复或长期使用抗生素的患者表现出较差的治疗反应[72]。预防性ATB通常与免疫疗法或化疗结合使用,以预防可能的感染[73]。CRC小鼠模型中粪便的高通量测序表明,ABX给药破坏了肠道微生物群并降低了5-FU的抗肿瘤功效[74]。一项针对接受ICB治疗的癌症患者的回顾性数据分析发现,累积使用ATB与较短的PFS和OS相关,这可能是由于对免疫治疗有效性的影响。一项针对接受ICB治疗的多种癌症的荟萃分析研究表明,接受ICB治疗的无ATB患者的OS明显更长[75]。抗生素影响ICB有效性的机制可能在于破坏肠道菌群的生态稳定性,从而损害肠道菌群维持的免疫稳态,进而导致肠道免疫反应失调。因此,综合目前研究的结果,接受ICB的患者应谨慎使用抗生素,以确保ICB的疗效。

4.2.2. 靶向治疗

大多数瘤内微生物抑制抗肿瘤反应,从而促进肿瘤增殖[76]。因此,消除瘤内微生物可能是一种潜在的辅助抗癌治疗。Bullman等人对寄宿结肠癌异种移植物的小鼠给予甲硝唑,发现梭杆菌载量降低,随后抑制癌细胞增殖和整体肿瘤生长[77]。然而,抗生素对瘤内细菌没有选择性,从而限制了它们潜在的抗肿瘤作用。相比之下,噬菌体对其靶细菌具有高度特异性,可以精确地裂解细胞内微生物[78]。将特异性靶向细胞核镰刀菌的噬菌体注射到小鼠体内,发现噬菌体能够穿透肿瘤组织并感染其靶细菌[79]。使用噬菌体修饰的纳米颗粒对患有CRC的小鼠进行静脉内或口服给药,发现化疗效果增强,核镰刀菌负荷减少[80]

4.2.3. 益生菌

利用益生菌补充剂调节肠道菌群是一种ICB治疗中的临床方法。补充益生菌来调节肠道菌群的微生态环境可能会减轻irAE的发生,特别是免疫相关的肠道炎症症状。益生菌的补充可以通过在肠道中产生SCFA等有益代谢物来调节免疫平衡,从而促进细胞毒性T淋巴细胞的浸润和活化,并在ICB治疗期间抑制肿瘤微环境中Tregs的功能。小鼠模型证明补充益生菌可以预防辐射诱导的急性肠道损伤中肠道菌群失调[81]。对CRC小鼠模型的研究表明,预防性使用干酪乳杆菌鼠李糖可减轻由5-FU、亚叶酸和奥沙利铂组成的化疗方案引起的腹泻和肠粘膜炎[82]。补充鼠李糖乳杆菌Probio-M9通过后续代谢提高抗PD-1治疗结直肠癌的治疗效率[83]。大肠杆菌菌株Nissle1917作为益生菌增强转化生长因子阻滞剂对肿瘤生长的抑制能力与其减弱肿瘤微环境免疫抑制性物质的能力有关[84]。嗜黏蛋白阿克曼菌是新一代有益微生物,可以影响葡萄糖和脂质代谢以及肠道免疫[85]。然而,益生菌在ICB中作用并不总是有益的,有效性可能受到各种研究中使用的不同类型益生菌、不同肿瘤类型和不同患者群体的影响。不适当的补充可能会产生矛盾的结果。例如低纤维饮食或益生菌(长双歧杆菌或LGG)会损害基于抗PD-1的治疗反应[86]

4.2.4. 粪便细菌移植

粪便细菌移植(FMT)是一种将粪便微生物群从健康供体转移到受体肠道的方法,是一种靶向肠道菌群调节方法。通过粪便微生物群移植操纵微生物群的组成也是抑制癌症生长的有效策略[77]。与其他调节肠道微生物群的方法不同,FMT对肠道微生物群的干预可以持续约24周,而无需频繁干预[87]。粪便微生物群移植可增强人体对肿瘤的免疫反应,并有效抑制CRC患者的进展[88]。在无菌小鼠或ATB治疗的小鼠中移植对ICB有反应的癌症患者的粪便改善了PD-1阻滞剂的抗肿瘤作用[89]。对无菌小鼠有反应的患者通过FMT增强了T细胞反应并提高了抗PD-L1治疗效果[90]。ICB引起的结肠炎通常用皮质类固醇治疗,会产生副作用。由ICB引起的免疫相关结肠炎可以用FMT治疗,调节肠道微生物群可以消除ICB相关结肠炎[91]。粪便来源药物SER-109的III期临床试验最近取得成功,不仅为治疗复发性艰难梭菌感染提供了新的希望,而且代表了粪便来源药物临床使用的重要一步和癌症治疗的新选择[92]。然而,FMT不仅转移细菌,还转移其他非细菌微生物和相关代谢物,它们对受体的影响尚不清楚,并且FMT仍然存在潜在的安全问题,需要进一步验证FMT在免疫治疗中的转化潜力和长期影响[93]

5. 研究不足和发展方向

5.1. 目前研究中存在的空白和未来研究的方向

肠道微生物是用于癌症诊断和预后预测的有前途的生物标志物,也是新治疗方式的新靶点。然而,关于微生物群调节治疗反应的机制缺乏明确性,疾病的微生物标志物之间缺乏共识,微生物调节方法缺乏成熟度。尽管微生物组研究取得了最新进展,但当前研究的局限性阻碍了细菌疗法的临床应用。结合宏基因组学、代谢组学和转录组学,进一步探索肠道菌群与癌症治疗和早期诊断之间的关系,以及肠道微生物与放疗、化疗和免疫治疗相互作用的具体机制,是下一个需要解决的问题。最后,靶向肠道菌群以改变癌症治疗的疗效和毒性将是下一代个性化药物的途径。

5.2. 肠道菌群的调节策略有效整合到结直肠癌的标准治疗中

肠道微生物组成和功能的操纵可以增强治疗结果并改善患者对ICB的反应。肠道菌群代表了癌症免疫治疗中预测生物标志物和治疗干预的潜在途径。评估患者肠道菌群可以为后续ICB的临床实施提供指导和规范。建立用于样本收集、测序和数据分析的标准化方法,从而减少研究之间的差异。另一方面,建立较为统一的研究方法,包括微生物生物标志物鉴定、粪便微生物群移植以及通过抗生素、益生菌和饮食干预来操纵肠道微生物群。肠道菌群可以作为多种疾病的生物标志物,而肠道菌群具有非侵入性、诊断效率高、诊断准确等优点,利用肠道菌群进行癌症的早期诊断和预后预测是未来的趋势。

有研究构建了基于粪便菌群的检测分类模型;在一组具有受试者工作特征曲线的27种微生物物种中,鉴定准确度较高,并且在疾病的早期和晚期准确度一致[94]。病原菌也可作为诊断和预后标志物。一项针对患者的粪便宏观基因组研究表明,产气荚膜梭杆菌在结直肠癌组织中的丰度明显更高[95]。在化疗后复发的CRC患者中,镰刀菌核含量丰富,与患者的临床病理特征相关,并且与传统的AJCC分期相比,在预测CRC复发方面更准确[96]。核镰刀菌历来与不良预后有关,并且与结直肠癌以及食管的不良预后显著相关,核镰刀菌的患病率随着肿瘤进展而同时增加[97]。这些研究表明,微生物生物标志物不仅可以通过非侵入性测试在早期诊断癌症,还可以预测癌症治疗的结果。然而,癌症类型、治疗方法、样本类型、测序技术和生物信息学管道的差异可能导致偏倚。为了减少研究之间的差异,应标准化一系列过程,例如样本收集、测序技术和分析方法。

6. 总结与展望

ICB已广泛应用于癌症治疗的临床实践,并且越来越多的证据支持肠道微生物群对增强ICB治疗效果的影响。免疫系统作为这些实体之间的沟通桥梁,在它们的作用机制中发挥着关键作用。ICB主要通过调节免疫系统的激活来消除肿瘤细胞,免疫系统同样受到肠道微生物群的影响。一般来说,肠道微生物群,特别是共生细菌,主要维持免疫耐受以保护自己的生态位,而ICB治疗的原理恰恰相反。相反,病原菌激活免疫系统可能会对身体本身造成伤害。最后,实现肠道微生物群和ICB治疗之间的平衡可能是一项非常复杂的任务。然而,这种平衡可能成为提高ICB效率的关键因素,从而显着影响癌症患者的预后。

肠道微生物群对癌症免疫反应和免疫治疗的重大影响催生了基于微生物群的精准医学作为癌症治疗领域的一种治疗方式。与传统疗法相比,基于肠道菌群组成的精准疗法以更具选择性和安全性的方式促进肿瘤细胞的免疫消除。此外,实施涉及抗生素、益生元、益生菌和后生元的联合干预措施可能会通过改变肠道微生物群来增加化疗效果。越来越多的证据支持肠道微生物群在肿瘤进展、成熟和治疗反应中发挥的关键作用。未来的研究可以深入研究肠道微生物群及其下游代谢物如何影响ICB功效的分子复杂性。努力阐明维持肠道微生物群和ICB之间平衡的精确机制,并确定关键物种。最终,在临床实践中,需要精确、个体化地实施特定的益生菌补充和粪便移植,以提高ICB的有效性并优化患者预后。

NOTES

*共同第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[3] Wang, Z., Dan, W., Zhang, N., Fang, J. and Yang, Y. (2023) Colorectal Cancer and Gut Microbiota Studies in China. Gut Microbes, 15, Article 2236364.
https://doi.org/10.1080/19490976.2023.2236364
[4] Tilg, H., Adolph, T.E., Gerner, R.R. and Moschen, A.R. (2018) The Intestinal Microbiota in Colorectal Cancer. Cancer Cell, 33, 954-964.
https://doi.org/10.1016/j.ccell.2018.03.004
[5] Cheng, Y., Ling, Z. and Li, L. (2020) The Intestinal Microbiota and Colorectal Cancer. Frontiers in Immunology, 11, Article 615056.
https://doi.org/10.3389/fimmu.2020.615056
[6] Abbott, M. and Ustoyev, Y. (2019) Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35, Article 150923.
https://doi.org/10.1016/j.soncn.2019.08.002
[7] Christofi, T., Baritaki, S., Falzone, L., Libra, M. and Zaravinos, A. (2019) Current Perspectives in Cancer Immunotherapy. Cancers, 11, Article 1472.
https://doi.org/10.3390/cancers11101472
[8] Gupta, S.L., Basu, S., Soni, V. and Jaiswal, R.K. (2022) Immunotherapy: An Alternative Promising Therapeutic Approach against Cancers. Molecular Biology Reports, 49, 9903-9913.
https://doi.org/10.1007/s11033-022-07525-8
[9] Kennedy, L.B. and Salama, A.K.S. (2020) A Review of Cancer Immunotherapy Toxicity. CA: A Cancer Journal for Clinicians, 70, 86-104.
https://doi.org/10.3322/caac.21596
[10] Vaishnava, S., Behrendt, C.L., Ismail, A.S., Eckmann, L. and Hooper, L.V. (2008) Paneth Cells Directly Sense Gut Commensals and Maintain Homeostasis at the Intestinal Host-Microbial Interface. Proceedings of the National Academy of Sciences, 105, 20858-20863.
https://doi.org/10.1073/pnas.0808723105
[11] Belkaid, Y. and Naik, S. (2013) Compartmentalized and Systemic Control of Tissue Immunity by Commensals. Nature Immunology, 14, 646-653.
https://doi.org/10.1038/ni.2604
[12] Carabotti, M., Scirocco, A., Maselli, M.A., et al. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology, 28, 203-209.
[13] Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V. and Thiele, I. (2015) Systematic Genome Assessment of B-Vitamin Biosynthesis Suggests Co-Operation among Gut Microbes. Frontiers in Genetics, 6, Article 148.
https://doi.org/10.3389/fgene.2015.00148
[14] Jandhyala, S.M. (2015) Role of the Normal Gut Microbiota. World Journal of Gastroenterology, 21, 8787-8803.
https://doi.org/10.3748/wjg.v21.i29.8787
[15] Tuddenham, S. and Sears, C.L. (2015) The Intestinal Microbiome and Health. Current Opinion in Infectious Diseases, 28, 464-470.
https://doi.org/10.1097/qco.0000000000000196
[16] Gao, Y., O’Hely, M., Quinn, T.P., Ponsonby, A., Harrison, L.C., Frøkiær, H., et al. (2022) Maternal Gut Microbiota during Pregnancy and the Composition of Immune Cells in Infancy. Frontiers in Immunology, 13, Article 986340.
https://doi.org/10.3389/fimmu.2022.986340
[17] Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J., et al. (2016) Age-Related Changes in Gut Microbiota Composition from Newborn to Centenarian: A Cross-Sectional Study. BMC Microbiology, 16, Article No. 90.
https://doi.org/10.1186/s12866-016-0708-5
[18] Greenhalgh, K., Meyer, K.M., Aagaard, K.M. and Wilmes, P. (2016) The Human Gut Microbiome in Health: Establishment and Resilience of Microbiota over a Lifetime. Environmental Microbiology, 18, 2103-2116.
https://doi.org/10.1111/1462-2920.13318
[19] Feng, Q., Chen, W. and Wang, Y. (2018) Gut Microbiota: An Integral Moderator in Health and Disease. Frontiers in Microbiology, 9, Article 151.
https://doi.org/10.3389/fmicb.2018.00151
[20] Garrett, W.S. (2015) Cancer and the Microbiota. Science, 348, 80-86.
https://doi.org/10.1126/science.aaa4972
[21] Deng, H.D. and Fan, X.L. (2022) The Role of Intestinal Microbiota in Tumor Occurrence, Development and Immunotherapy: A Review. Chinese Journal of Biotechnology, 38, 2105-2119.
[22] Starnes, C.O. (1992) Coley’s Toxins in Perspective. Nature, 357, 11-12.
https://doi.org/10.1038/357011a0
[23] White, M.K., Pagano, J.S. and Khalili, K. (2014) Viruses and Human Cancers: A Long Road of Discovery of Molecular Paradigms. Clinical Microbiology Reviews, 27, 463-481.
https://doi.org/10.1128/cmr.00124-13
[24] Shi, Z., Li, H., Song, W., Zhou, Z., Li, Z. and Zhang, M. (2023) Emerging Roles of the Gut Microbiota in Cancer Immunotherapy. Frontiers in Immunology, 14, Article 1139821.
https://doi.org/10.3389/fimmu.2023.1139821
[25] Vivarelli, S., Salemi, R., Candido, S., Falzone, L., Santagati, M., Stefani, S., et al. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers, 11, Article 38.
https://doi.org/10.3390/cancers11010038
[26] Vinay, D.S., Ryan, E.P., Pawelec, G., Talib, W.H., Stagg, J., Elkord, E., et al. (2015) Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Seminars in Cancer Biology, 35, S185-S198.
https://doi.org/10.1016/j.semcancer.2015.03.004
[27] Marincola, F.M., Wang, E., Herlyn, M., Seliger, B. and Ferrone, S. (2003) Tumors as Elusive Targets of T-Cell-Based Active Immunotherapy. Trends in Immunology, 24, 334-341.
https://doi.org/10.1016/s1471-4906(03)00116-9
[28] Wei, G., Zhang, H., Zhao, H., Wang, J., Wu, N., Li, L., et al. (2021) Emerging Immune Checkpoints in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cancer Letters, 511, 68-76.
https://doi.org/10.1016/j.canlet.2021.04.021
[29] Barbari, C., Fontaine, T., Parajuli, P., Lamichhane, N., Jakubski, S., Lamichhane, P., et al. (2020) Immunotherapies and Combination Strategies for Immuno-Oncology. International Journal of Molecular Sciences, 21, Article 5009.
https://doi.org/10.3390/ijms21145009
[30] Decker, W.K., da Silva, R.F., Sanabria, M.H., Angelo, L.S., Guimarães, F., Burt, B.M., et al. (2017) Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Frontiers in Immunology, 8, Article 829.
https://doi.org/10.3389/fimmu.2017.00829
[31] Breakstone, R. (2021) Colon Cancer and Immunotherapy—Can We Go Beyond Microsatellite Instability? Translational Gastroenterology and Hepatology, 6, 12.
https://doi.org/10.21037/tgh.2020.03.08
[32] Saleh, K., Kordahi, M., Felefly, T. and Khalife, N. (2021) Pembrolizumab: A New Standard of Care in Metastatic Colorectal Cancer. Immunotherapy, 13, 1245-1247.
https://doi.org/10.2217/imt-2021-0051
[33] Zhang, X., Wu, T., Cai, X., Dong, J., Xia, C., Zhou, Y., et al. (2022) Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities. Frontiers in Immunology, 13, Article 795972.
https://doi.org/10.3389/fimmu.2022.795972
[34] Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., et al. (2022) The Role of PD-1/PD-L1 and Application of Immune-Checkpoint Inhibitors in Human Cancers. Frontiers in Immunology, 13.
https://doi.org/10.3389/fimmu.2022.964442
[35] Syn, N.L., Teng, M.W.L., Mok, T.S.K. and Soo, R.A. (2017) De-Novo and Acquired Resistance to Immune Checkpoint Targeting. The Lancet Oncology, 18, e731-e741.
https://doi.org/10.1016/s1470-2045(17)30607-1
[36] Robert, C., Schachter, J., Long, G.V., Arance, A., Grob, J.J., Mortier, L., et al. (2015) Pembrolizumab versus Ipilimumab in Advanced Melanoma. New England Journal of Medicine, 372, 2521-2532.
https://doi.org/10.1056/nejmoa1503093
[37] Sanmamed, M.F. and Chen, L. (2018) A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell, 175, 313-326.
https://doi.org/10.1016/j.cell.2018.09.035
[38] Cheng, H., Guan, X., Chen, D. and Ma, W. (2019) The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms, 7, Article 583.
https://doi.org/10.3390/microorganisms7120583
[39] Lee, G.R. (2018) The Balance of Th17 versus Treg Cells in Autoimmunity. International Journal of Molecular Sciences, 19, 730.
https://doi.org/10.3390/ijms19030730
[40] Erturk-Hasdemir, D., Oh, S.F., Okan, N.A., Stefanetti, G., Gazzaniga, F.S., Seeberger, P.H., et al. (2019) Symbionts Exploit Complex Signaling to Educate the Immune System. Proceedings of the National Academy of Sciences, 116, 26157-26166.
https://doi.org/10.1073/pnas.1915978116
[41] Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating Tlr2-Activated γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article 2221485.
https://doi.org/10.1080/19490976.2023.2221485
[42] Nejman, D., Livyatan, I., Fuks, G., Gavert, N., Zwang, Y., Geller, L.T., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science, 368, 973-980.
https://doi.org/10.1126/science.aay9189
[43] Zitvogel, L., Daillère, R., Roberti, M.P., Routy, B. and Kroemer, G. (2017) Anticancer Effects of the Microbiome and Its Products. Nature Reviews Microbiology, 15, 465-478.
https://doi.org/10.1038/nrmicro.2017.44
[44] Cogdill, A.P., Gaudreau, P.O., Arora, R., Gopalakrishnan, V. and Wargo, J.A. (2018) The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends in Immunology, 39, 900-920.
https://doi.org/10.1016/j.it.2018.09.007
[45] Zhang, X., Yu, D., Wu, D., Gao, X., Shao, F., Zhao, M., et al. (2023) Tissue-Resident Lachnospiraceae Family Bacteria Protect against Colorectal Carcinogenesis by Promoting Tumor Immune Surveillance. Cell Host & Microbe, 31, 418-432.e8.
https://doi.org/10.1016/j.chom.2023.01.013
[46] Stern, C., Kasnitz, N., Kocijancic, D., Trittel, S., Riese, P., Guzman, C.A., et al. (2015) Induction of CD4+ and CD8+ Anti‐Tumor Effector T Cell Responses by Bacteria Mediated Tumor Therapy. International Journal of Cancer, 137, 2019-2028.
https://doi.org/10.1002/ijc.29567
[47] Shi, Y., Zheng, W., Yang, K., Harris, K.G., Ni, K., Xue, L., et al. (2020) Intratumoral Accumulation of Gut Microbiota Facilitates CD47-Based Immunotherapy via STING Signaling. Journal of Experimental Medicine, 217, e20192282.
https://doi.org/10.1084/jem.20192282
[48] Belcheva, A., Irrazabal, T., Robertson, S.J., Streutker, C., Maughan, H., Rubino, S., et al. (2014) Gut Microbial Metabolism Drives Transformation of Msh2-Deficient Colon Epithelial Cells. Cell, 158, 288-299.
https://doi.org/10.1016/j.cell.2014.04.051
[49] Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., de Roos, P., et al. (2013) Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-Cell Generation. Nature, 504, 451-455.
https://doi.org/10.1038/nature12726
[50] Li, T., Han, L., Ma, S., Lin, W., Ba, X., Yan, J., et al. (2023) Interaction of Gut Microbiota with the Tumor Microenvironment: A New Strategy for Antitumor Treatment and Traditional Chinese Medicine in Colorectal Cancer. Frontiers in Molecular Biosciences, 10, Article 1140325.
https://doi.org/10.3389/fmolb.2023.1140325
[51] Blount, Z.D. (2015) The Natural History of Model Organisms: The Unexhausted Potential of E. coli. eLife, 4, e05826.
https://doi.org/10.7554/elife.05826
[52] Croxen, M.A. and Finlay, B.B. (2009) Molecular Mechanisms of Escherichia coli Pathogenicity. Nature Reviews Microbiology, 8, 26-38.
https://doi.org/10.1038/nrmicro2265
[53] Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H.M., Nomburg, J., et al. (2020) Mutational Signature in Colorectal Cancer Caused by Genotoxic pks+ E. coli. Nature, 580, 269-273.
https://doi.org/10.1038/s41586-020-2080-8
[54] Bertocchi, A., Carloni, S., Ravenda, P.S., Bertalot, G., Spadoni, I., Lo Cascio, A., et al. (2021) Gut Vascular Barrier Impairment Leads to Intestinal Bacteria Dissemination and Colorectal Cancer Metastasis to Liver. Cancer Cell, 39, 708-724.e11.
https://doi.org/10.1016/j.ccell.2021.03.004
[55] Nakkarach, A., Foo, H.L., Song, A.A., Mutalib, N.E.A., Nitisinprasert, S. and Withayagiat, U. (2021) Anti-Cancer and Anti-Inflammatory Effects Elicited by Short Chain Fatty Acids Produced by Escherichia coli Isolated from Healthy Human Gut Microbiota. Microbial Cell Factories, 20, Article No. 36.
https://doi.org/10.1186/s12934-020-01477-z
[56] Alizadeh, S., Esmaeili, A. and Omidi, Y. (2020) Anti-Cancer Properties of Escherichia coli Nissle 1917 against HT-29 Colon Cancer Cells through Regulation of Bax/Bcl-xL and AKT/PTEN Signaling Pathways. Iranian Journal of Basic Medical Sciences, 23, 886-893.
https://doi.org/10.22038/ijbms.2020.43016.10115
[57] Brennan, C.A. and Garrett, W.S. (2018) Fusobacterium nucleatum—Symbiont, Opportunist and Oncobacterium. Nature Reviews Microbiology, 17, 156-166.
https://doi.org/10.1038/s41579-018-0129-6
[58] Hamada, T., Zhang, X., Mima, K., Bullman, S., Sukawa, Y., Nowak, J.A., et al. (2018) Fusobacterium nucleatum in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunology Research, 6, 1327-1336.
https://doi.org/10.1158/2326-6066.cir-18-0174
[59] Liu, W., Zhang, X., Xu, H., Li, S., Lau, H.C., Chen, Q., et al. (2021) Microbial Community Heterogeneity within Colorectal Neoplasia and Its Correlation with Colorectal Carcinogenesis. Gastroenterology, 160, 2395-2408.
https://doi.org/10.1053/j.gastro.2021.02.020
[60] Gao, Y., Bi, D., Xie, R., Li, M., Guo, J., Liu, H., et al. (2021) Fusobacterium nucleatum Enhances the Efficacy of PD-L1 Blockade in Colorectal Cancer. Signal Transduction and Targeted Therapy, 6, Article No. 398.
https://doi.org/10.1038/s41392-021-00795-x
[61] Cheng, W.T., Kantilal, H.K. and Davamani, F. (2020) The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation. Malaysian Journal of Medical Sciences, 27, 9-21.
https://doi.org/10.21315/mjms2020.27.4.2
[62] Snezhkina, A.V., Krasnov, G.S., Lipatova, A.V., Sadritdinova, A.F., Kardymon, O.L., Fedorova, M.S., et al. (2016) The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of C‐Myc and C/EBPβ Rather than Enterotoxigenic Bacteroides fragilis Infection. Oxidative Medicine and Cellular Longevity, 2016, Article 2353560.
https://doi.org/10.1155/2016/2353560
[63] Sears, C.L., Geis, A.L. and Housseau, F. (2014) Bacteroides fragilis Subverts Mucosal Biology: From Symbiont to Colon Carcinogenesis. Journal of Clinical Investigation, 124, 4166-4172.
https://doi.org/10.1172/jci72334
[64] Dejea, C.M., Fathi, P., Craig, J.M., Boleij, A., Taddese, R., Geis, A.L., et al. (2018) Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science, 359, 592-597.
https://doi.org/10.1126/science.aah3648
[65] Shao, X., Sun, S., Zhou, Y., Wang, H., Yu, Y., Hu, T., et al. (2021) Bacteroides fragilis Restricts Colitis-Associated Cancer via Negative Regulation of the NLRP3 Axis. Cancer Letters, 523, 170-181.
https://doi.org/10.1016/j.canlet.2021.10.002
[66] Round, J.L., Lee, S.M., Li, J., Tran, G., Jabri, B., Chatila, T.A., et al. (2011) The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota. Science, 332, 974-977.
https://doi.org/10.1126/science.1206095
[67] Derosa, L., Routy, B., Thomas, A.M., Iebba, V., Zalcman, G., Friard, S., et al. (2022) Intestinal Akkermansia Muciniphila Predicts Clinical Response to PD-1 Blockade in Patients with Advanced Non-Small-Cell Lung Cancer. Nature Medicine, 28, 315-324.
https://doi.org/10.1038/s41591-021-01655-5
[68] Cani, P.D., Depommier, C., Derrien, M., Everard, A. and de Vos, W.M. (2022) Akkermansia muciniphila: Paradigm for Next-Generation Beneficial Microorganisms. Nature Reviews Gastroenterology & Hepatology, 19, 625-637.
https://doi.org/10.1038/s41575-022-00631-9
[69] Jin, Y., Dong, H., Xia, L., Yang, Y., Zhu, Y., Shen, Y., et al. (2019) The Diversity of Gut Microbiome Is Associated with Favorable Responses to Anti-Programmed Death 1 Immunotherapy in Chinese Patients with NSCLC. Journal of Thoracic Oncology, 14, 1378-1389.
https://doi.org/10.1016/j.jtho.2019.04.007
[70] Ting, N.L., Lau, H.C. and Yu, J. (2022) Cancer Pharmacomicrobiomics: Targeting Microbiota to Optimise Cancer Therapy Outcomes. Gut, 71, 1412-1425.
https://doi.org/10.1136/gutjnl-2021-326264
[71] Yang, M., Wang, Y., Yuan, M., Tao, M., Kong, C., Li, H., et al. (2020) Antibiotic Administration Shortly before or after Immunotherapy Initiation Is Correlated with Poor Prognosis in Solid Cancer Patients: An Up-to-Date Systematic Review and Meta-Analysis. International Immunopharmacology, 88, Article 106876.
https://doi.org/10.1016/j.intimp.2020.106876
[72] Tinsley, N., Zhou, C., Tan, G., Rack, S., Lorigan, P., Blackhall, F., et al. (2019) Cumulative Antibiotic Use Significantly Decreases Efficacy of Checkpoint Inhibitors in Patients with Advanced Cancer. The Oncologist, 25, 55-63.
https://doi.org/10.1634/theoncologist.2019-0160
[73] Teillant, A., Gandra, S., Barter, D., Morgan, D.J. and Laxminarayan, R. (2015) Potential Burden of Antibiotic Resistance on Surgery and Cancer Chemotherapy Antibiotic Prophylaxis in the USA: A Literature Review and Modelling Study. The Lancet Infectious Diseases, 15, 1429-1437.
https://doi.org/10.1016/s1473-3099(15)00270-4
[74] Yuan, L., Zhang, S., Li, H., Yang, F., Mushtaq, N., Ullah, S., et al. (2018) The Influence of Gut Microbiota Dysbiosis to the Efficacy of 5-Fluorouracil Treatment on Colorectal Cancer. Biomedicine & Pharmacotherapy, 108, 184-193.
https://doi.org/10.1016/j.biopha.2018.08.165
[75] Wilson, B.E., Routy, B., Nagrial, A. and Chin, V.T. (2019) The Effect of Antibiotics on Clinical Outcomes in Immune-Checkpoint Blockade: A Systematic Review and Meta-Analysis of Observational Studies. Cancer Immunology, Immunotherapy, 69, 343-354.
https://doi.org/10.1007/s00262-019-02453-2
[76] Pushalkar, S., Hundeyin, M., Daley, D., Zambirinis, C.P., Kurz, E., Mishra, A., et al. (2018) The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discovery, 8, 403-416.
https://doi.org/10.1158/2159-8290.cd-17-1134
[77] Bullman, S., Pedamallu, C.S., Sicinska, E., Clancy, T.E., Zhang, X., Cai, D., et al. (2017) Analysis of Fusobacterium Persistence and Antibiotic Response in Colorectal Cancer. Science, 358, 1443-1448.
https://doi.org/10.1126/science.aal5240
[78] Kabwe, M., Dashper, S., Bachrach, G. and Tucci, J. (2021) Bacteriophage Manipulation of the Microbiome Associated with Tumour Microenvironments—Can This Improve Cancer Therapeutic Response? FEMS Microbiology Reviews, 45, fuab017.
https://doi.org/10.1093/femsre/fuab017
[79] Dolgin, E. (2020) Fighting Cancer with Microbes. Nature, 577, S16-S18.
https://doi.org/10.1038/d41586-020-00199-x
[80] Zheng, D., Dong, X., Pan, P., Chen, K., Fan, J., Cheng, S., et al. (2019) Phage-Guided Modulation of the Gut Microbiota of Mouse Models of Colorectal Cancer Augments Their Responses to Chemotherapy. Nature Biomedical Engineering, 3, 717-728.
https://doi.org/10.1038/s41551-019-0423-2
[81] Zhao, T., Xie, L., Cai, S., Xu, J., Zhou, H., Tang, L., et al. (2021) Dysbiosis of Gut Microbiota Is Associated with the Progression of Radiation-Induced Intestinal Injury and Is Alleviated by Oral Compound Probiotics in Mouse Model. Frontiers in Cellular and Infection Microbiology, 11, Article 717636.
https://doi.org/10.3389/fcimb.2021.717636
[82] Chang, C., Liu, C., Lee, H., Huang, Y., Li, L., Chiau, J.C., et al. (2018) Lactobacillus Casei Variety Rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Frontiers in Microbiology, 9, Article 983.
https://doi.org/10.3389/fmicb.2018.00983
[83] Gao, G., Shen, S., Zhang, T., Zhang, J., Huang, S., Sun, Z., et al. (2023) Lacticaseibacillus rhamnosus Probio-M9 Enhanced the Antitumor Response to Anti-PD-1 Therapy by Modulating Intestinal Metabolites. eBioMedicine, 91, Article 104533.
https://doi.org/10.1016/j.ebiom.2023.104533
[84] Shi, L., Sheng, J., Wang, M., Luo, H., Zhu, J., Zhang, B., et al. (2019) Combination Therapy of TGF-Β Blockade and Commensal-Derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression. Theranostics, 9, 4115-4129.
https://doi.org/10.7150/thno.35131
[85] Naito, Y., Uchiyama, K. and Takagi, T. (2018) A Next-Generation Beneficial Microbe: Akkermansia muciniphila. Journal of Clinical Biochemistry and Nutrition, 63, 33-35.
https://doi.org/10.3164/jcbn.18-57
[86] Spencer, C.N., Mcquade, J.L., Gopalakrishnan, V., McCulloch, J.A., Vetizou, M., Cogdill, A.P., et al. (2021) Dietary Fiber and Probiotics Influence the Gut Microbiome and Melanoma Immunotherapy Response. Science, 374, 1632-1640.
https://doi.org/10.1126/science.aaz7015
[87] Borody, T.J. and Khoruts, A. (2011) Fecal Microbiota Transplantation and Emerging Applications. Nature Reviews Gastroenterology & Hepatology, 9, 88-96.
https://doi.org/10.1038/nrgastro.2011.244
[88] Yu, H., Li, X., Han, X., Chen, B., Zhang, X., Gao, S., et al. (2023) Fecal Microbiota Transplantation Inhibits Colorectal Cancer Progression: Reversing Intestinal Microbial Dysbiosis to Enhance Anti-Cancer Immune Responses. Frontiers in Microbiology, 14, Article 1126808.
https://doi.org/10.3389/fmicb.2023.1126808
[89] Routy, B., Le Chatelier, E., Derosa, L., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science (New York, N.Y.), 359, 91-97.
[90] Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M., et al. (2018) The Commensal Microbiome Is Associated with Anti-PD-1 Efficacy in Metastatic Melanoma Patients. Science, 359, 104-108.
https://doi.org/10.1126/science.aao3290
[91] Wang, Y., Wiesnoski, D.H., Helmink, B.A., Gopalakrishnan, V., Choi, K., DuPont, H.L., et al. (2018) Fecal Microbiota Transplantation for Refractory Immune Checkpoint Inhibitor-Associated Colitis. Nature Medicine, 24, 1804-1808.
https://doi.org/10.1038/s41591-018-0238-9
[92] Feuerstadt, P., Louie, T.J., Lashner, B., Wang, E.E.L., Diao, L., Bryant, J.A., et al. (2022) SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. New England Journal of Medicine, 386, 220-229.
https://doi.org/10.1056/nejmoa2106516
[93] Giles, E.M., D’Adamo, G.L. and Forster, S.C. (2019) The Future of Faecal Transplants. Nature Reviews Microbiology, 17, 719-719.
https://doi.org/10.1038/s41579-019-0271-9
[94] Kartal, E., Schmidt, T.S.B., Molina-Montes, E., Rodríguez-Perales, S., Wirbel, J., Maistrenko, O.M., et al. (2022) A Faecal Microbiota Signature with High Specificity for Pancreatic Cancer. Gut, 71, 1359-1372.
https://doi.org/10.1136/gutjnl-2021-324755
[95] Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T., et al. (2019) Metagenomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal Cancer. Nature Medicine, 25, 968-976.
https://doi.org/10.1038/s41591-019-0458-7
[96] Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., et al. (2017) Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell, 170, 548-563.e16.
https://doi.org/10.1016/j.cell.2017.07.008
[97] Flanagan, L., Schmid, J., Ebert, M., Soucek, P., Kunicka, T., Liska, V., et al. (2014) Fusobacterium nucleatum Associates with Stages of Colorectal Neoplasia Development, Colorectal Cancer and Disease Outcome. European Journal of Clinical Microbiology & Infectious Diseases, 33, 1381-1390.
https://doi.org/10.1007/s10096-014-2081-3