[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708
|
[3]
|
Wang, Z., Dan, W., Zhang, N., Fang, J. and Yang, Y. (2023) Colorectal Cancer and Gut Microbiota Studies in China. Gut Microbes, 15, Article 2236364. https://doi.org/10.1080/19490976.2023.2236364
|
[4]
|
Tilg, H., Adolph, T.E., Gerner, R.R. and Moschen, A.R. (2018) The Intestinal Microbiota in Colorectal Cancer. Cancer Cell, 33, 954-964. https://doi.org/10.1016/j.ccell.2018.03.004
|
[5]
|
Cheng, Y., Ling, Z. and Li, L. (2020) The Intestinal Microbiota and Colorectal Cancer. Frontiers in Immunology, 11, Article 615056. https://doi.org/10.3389/fimmu.2020.615056
|
[6]
|
Abbott, M. and Ustoyev, Y. (2019) Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35, Article 150923. https://doi.org/10.1016/j.soncn.2019.08.002
|
[7]
|
Christofi, T., Baritaki, S., Falzone, L., Libra, M. and Zaravinos, A. (2019) Current Perspectives in Cancer Immunotherapy. Cancers, 11, Article 1472. https://doi.org/10.3390/cancers11101472
|
[8]
|
Gupta, S.L., Basu, S., Soni, V. and Jaiswal, R.K. (2022) Immunotherapy: An Alternative Promising Therapeutic Approach against Cancers. Molecular Biology Reports, 49, 9903-9913. https://doi.org/10.1007/s11033-022-07525-8
|
[9]
|
Kennedy, L.B. and Salama, A.K.S. (2020) A Review of Cancer Immunotherapy Toxicity. CA: A Cancer Journal for Clinicians, 70, 86-104. https://doi.org/10.3322/caac.21596
|
[10]
|
Vaishnava, S., Behrendt, C.L., Ismail, A.S., Eckmann, L. and Hooper, L.V. (2008) Paneth Cells Directly Sense Gut Commensals and Maintain Homeostasis at the Intestinal Host-Microbial Interface. Proceedings of the National Academy of Sciences, 105, 20858-20863. https://doi.org/10.1073/pnas.0808723105
|
[11]
|
Belkaid, Y. and Naik, S. (2013) Compartmentalized and Systemic Control of Tissue Immunity by Commensals. Nature Immunology, 14, 646-653. https://doi.org/10.1038/ni.2604
|
[12]
|
Carabotti, M., Scirocco, A., Maselli, M.A., et al. (2015) The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Annals of Gastroenterology, 28, 203-209.
|
[13]
|
Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V. and Thiele, I. (2015) Systematic Genome Assessment of B-Vitamin Biosynthesis Suggests Co-Operation among Gut Microbes. Frontiers in Genetics, 6, Article 148. https://doi.org/10.3389/fgene.2015.00148
|
[14]
|
Jandhyala, S.M. (2015) Role of the Normal Gut Microbiota. World Journal of Gastroenterology, 21, 8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
|
[15]
|
Tuddenham, S. and Sears, C.L. (2015) The Intestinal Microbiome and Health. Current Opinion in Infectious Diseases, 28, 464-470. https://doi.org/10.1097/qco.0000000000000196
|
[16]
|
Gao, Y., O’Hely, M., Quinn, T.P., Ponsonby, A., Harrison, L.C., Frøkiær, H., et al. (2022) Maternal Gut Microbiota during Pregnancy and the Composition of Immune Cells in Infancy. Frontiers in Immunology, 13, Article 986340. https://doi.org/10.3389/fimmu.2022.986340
|
[17]
|
Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J., et al. (2016) Age-Related Changes in Gut Microbiota Composition from Newborn to Centenarian: A Cross-Sectional Study. BMC Microbiology, 16, Article No. 90. https://doi.org/10.1186/s12866-016-0708-5
|
[18]
|
Greenhalgh, K., Meyer, K.M., Aagaard, K.M. and Wilmes, P. (2016) The Human Gut Microbiome in Health: Establishment and Resilience of Microbiota over a Lifetime. Environmental Microbiology, 18, 2103-2116. https://doi.org/10.1111/1462-2920.13318
|
[19]
|
Feng, Q., Chen, W. and Wang, Y. (2018) Gut Microbiota: An Integral Moderator in Health and Disease. Frontiers in Microbiology, 9, Article 151. https://doi.org/10.3389/fmicb.2018.00151
|
[20]
|
Garrett, W.S. (2015) Cancer and the Microbiota. Science, 348, 80-86. https://doi.org/10.1126/science.aaa4972
|
[21]
|
Deng, H.D. and Fan, X.L. (2022) The Role of Intestinal Microbiota in Tumor Occurrence, Development and Immunotherapy: A Review. Chinese Journal of Biotechnology, 38, 2105-2119.
|
[22]
|
Starnes, C.O. (1992) Coley’s Toxins in Perspective. Nature, 357, 11-12. https://doi.org/10.1038/357011a0
|
[23]
|
White, M.K., Pagano, J.S. and Khalili, K. (2014) Viruses and Human Cancers: A Long Road of Discovery of Molecular Paradigms. Clinical Microbiology Reviews, 27, 463-481. https://doi.org/10.1128/cmr.00124-13
|
[24]
|
Shi, Z., Li, H., Song, W., Zhou, Z., Li, Z. and Zhang, M. (2023) Emerging Roles of the Gut Microbiota in Cancer Immunotherapy. Frontiers in Immunology, 14, Article 1139821. https://doi.org/10.3389/fimmu.2023.1139821
|
[25]
|
Vivarelli, S., Salemi, R., Candido, S., Falzone, L., Santagati, M., Stefani, S., et al. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers, 11, Article 38. https://doi.org/10.3390/cancers11010038
|
[26]
|
Vinay, D.S., Ryan, E.P., Pawelec, G., Talib, W.H., Stagg, J., Elkord, E., et al. (2015) Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Seminars in Cancer Biology, 35, S185-S198. https://doi.org/10.1016/j.semcancer.2015.03.004
|
[27]
|
Marincola, F.M., Wang, E., Herlyn, M., Seliger, B. and Ferrone, S. (2003) Tumors as Elusive Targets of T-Cell-Based Active Immunotherapy. Trends in Immunology, 24, 334-341. https://doi.org/10.1016/s1471-4906(03)00116-9
|
[28]
|
Wei, G., Zhang, H., Zhao, H., Wang, J., Wu, N., Li, L., et al. (2021) Emerging Immune Checkpoints in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cancer Letters, 511, 68-76. https://doi.org/10.1016/j.canlet.2021.04.021
|
[29]
|
Barbari, C., Fontaine, T., Parajuli, P., Lamichhane, N., Jakubski, S., Lamichhane, P., et al. (2020) Immunotherapies and Combination Strategies for Immuno-Oncology. International Journal of Molecular Sciences, 21, Article 5009. https://doi.org/10.3390/ijms21145009
|
[30]
|
Decker, W.K., da Silva, R.F., Sanabria, M.H., Angelo, L.S., Guimarães, F., Burt, B.M., et al. (2017) Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Frontiers in Immunology, 8, Article 829. https://doi.org/10.3389/fimmu.2017.00829
|
[31]
|
Breakstone, R. (2021) Colon Cancer and Immunotherapy—Can We Go Beyond Microsatellite Instability? Translational Gastroenterology and Hepatology, 6, 12. https://doi.org/10.21037/tgh.2020.03.08
|
[32]
|
Saleh, K., Kordahi, M., Felefly, T. and Khalife, N. (2021) Pembrolizumab: A New Standard of Care in Metastatic Colorectal Cancer. Immunotherapy, 13, 1245-1247. https://doi.org/10.2217/imt-2021-0051
|
[33]
|
Zhang, X., Wu, T., Cai, X., Dong, J., Xia, C., Zhou, Y., et al. (2022) Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities. Frontiers in Immunology, 13, Article 795972. https://doi.org/10.3389/fimmu.2022.795972
|
[34]
|
Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., et al. (2022) The Role of PD-1/PD-L1 and Application of Immune-Checkpoint Inhibitors in Human Cancers. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.964442
|
[35]
|
Syn, N.L., Teng, M.W.L., Mok, T.S.K. and Soo, R.A. (2017) De-Novo and Acquired Resistance to Immune Checkpoint Targeting. The Lancet Oncology, 18, e731-e741. https://doi.org/10.1016/s1470-2045(17)30607-1
|
[36]
|
Robert, C., Schachter, J., Long, G.V., Arance, A., Grob, J.J., Mortier, L., et al. (2015) Pembrolizumab versus Ipilimumab in Advanced Melanoma. New England Journal of Medicine, 372, 2521-2532. https://doi.org/10.1056/nejmoa1503093
|
[37]
|
Sanmamed, M.F. and Chen, L. (2018) A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell, 175, 313-326. https://doi.org/10.1016/j.cell.2018.09.035
|
[38]
|
Cheng, H., Guan, X., Chen, D. and Ma, W. (2019) The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms, 7, Article 583. https://doi.org/10.3390/microorganisms7120583
|
[39]
|
Lee, G.R. (2018) The Balance of Th17 versus Treg Cells in Autoimmunity. International Journal of Molecular Sciences, 19, 730. https://doi.org/10.3390/ijms19030730
|
[40]
|
Erturk-Hasdemir, D., Oh, S.F., Okan, N.A., Stefanetti, G., Gazzaniga, F.S., Seeberger, P.H., et al. (2019) Symbionts Exploit Complex Signaling to Educate the Immune System. Proceedings of the National Academy of Sciences, 116, 26157-26166. https://doi.org/10.1073/pnas.1915978116
|
[41]
|
Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating Tlr2-Activated γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article 2221485. https://doi.org/10.1080/19490976.2023.2221485
|
[42]
|
Nejman, D., Livyatan, I., Fuks, G., Gavert, N., Zwang, Y., Geller, L.T., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science, 368, 973-980. https://doi.org/10.1126/science.aay9189
|
[43]
|
Zitvogel, L., Daillère, R., Roberti, M.P., Routy, B. and Kroemer, G. (2017) Anticancer Effects of the Microbiome and Its Products. Nature Reviews Microbiology, 15, 465-478. https://doi.org/10.1038/nrmicro.2017.44
|
[44]
|
Cogdill, A.P., Gaudreau, P.O., Arora, R., Gopalakrishnan, V. and Wargo, J.A. (2018) The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends in Immunology, 39, 900-920. https://doi.org/10.1016/j.it.2018.09.007
|
[45]
|
Zhang, X., Yu, D., Wu, D., Gao, X., Shao, F., Zhao, M., et al. (2023) Tissue-Resident Lachnospiraceae Family Bacteria Protect against Colorectal Carcinogenesis by Promoting Tumor Immune Surveillance. Cell Host & Microbe, 31, 418-432.e8. https://doi.org/10.1016/j.chom.2023.01.013
|
[46]
|
Stern, C., Kasnitz, N., Kocijancic, D., Trittel, S., Riese, P., Guzman, C.A., et al. (2015) Induction of CD4+ and CD8+ Anti‐Tumor Effector T Cell Responses by Bacteria Mediated Tumor Therapy. International Journal of Cancer, 137, 2019-2028. https://doi.org/10.1002/ijc.29567
|
[47]
|
Shi, Y., Zheng, W., Yang, K., Harris, K.G., Ni, K., Xue, L., et al. (2020) Intratumoral Accumulation of Gut Microbiota Facilitates CD47-Based Immunotherapy via STING Signaling. Journal of Experimental Medicine, 217, e20192282. https://doi.org/10.1084/jem.20192282
|
[48]
|
Belcheva, A., Irrazabal, T., Robertson, S.J., Streutker, C., Maughan, H., Rubino, S., et al. (2014) Gut Microbial Metabolism Drives Transformation of Msh2-Deficient Colon Epithelial Cells. Cell, 158, 288-299. https://doi.org/10.1016/j.cell.2014.04.051
|
[49]
|
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., de Roos, P., et al. (2013) Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-Cell Generation. Nature, 504, 451-455. https://doi.org/10.1038/nature12726
|
[50]
|
Li, T., Han, L., Ma, S., Lin, W., Ba, X., Yan, J., et al. (2023) Interaction of Gut Microbiota with the Tumor Microenvironment: A New Strategy for Antitumor Treatment and Traditional Chinese Medicine in Colorectal Cancer. Frontiers in Molecular Biosciences, 10, Article 1140325. https://doi.org/10.3389/fmolb.2023.1140325
|
[51]
|
Blount, Z.D. (2015) The Natural History of Model Organisms: The Unexhausted Potential of E. coli. eLife, 4, e05826. https://doi.org/10.7554/elife.05826
|
[52]
|
Croxen, M.A. and Finlay, B.B. (2009) Molecular Mechanisms of Escherichia coli Pathogenicity. Nature Reviews Microbiology, 8, 26-38. https://doi.org/10.1038/nrmicro2265
|
[53]
|
Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H.M., Nomburg, J., et al. (2020) Mutational Signature in Colorectal Cancer Caused by Genotoxic pks+ E. coli. Nature, 580, 269-273. https://doi.org/10.1038/s41586-020-2080-8
|
[54]
|
Bertocchi, A., Carloni, S., Ravenda, P.S., Bertalot, G., Spadoni, I., Lo Cascio, A., et al. (2021) Gut Vascular Barrier Impairment Leads to Intestinal Bacteria Dissemination and Colorectal Cancer Metastasis to Liver. Cancer Cell, 39, 708-724.e11. https://doi.org/10.1016/j.ccell.2021.03.004
|
[55]
|
Nakkarach, A., Foo, H.L., Song, A.A., Mutalib, N.E.A., Nitisinprasert, S. and Withayagiat, U. (2021) Anti-Cancer and Anti-Inflammatory Effects Elicited by Short Chain Fatty Acids Produced by Escherichia coli Isolated from Healthy Human Gut Microbiota. Microbial Cell Factories, 20, Article No. 36. https://doi.org/10.1186/s12934-020-01477-z
|
[56]
|
Alizadeh, S., Esmaeili, A. and Omidi, Y. (2020) Anti-Cancer Properties of Escherichia coli Nissle 1917 against HT-29 Colon Cancer Cells through Regulation of Bax/Bcl-xL and AKT/PTEN Signaling Pathways. Iranian Journal of Basic Medical Sciences, 23, 886-893. https://doi.org/10.22038/ijbms.2020.43016.10115
|
[57]
|
Brennan, C.A. and Garrett, W.S. (2018) Fusobacterium nucleatum—Symbiont, Opportunist and Oncobacterium. Nature Reviews Microbiology, 17, 156-166. https://doi.org/10.1038/s41579-018-0129-6
|
[58]
|
Hamada, T., Zhang, X., Mima, K., Bullman, S., Sukawa, Y., Nowak, J.A., et al. (2018) Fusobacterium nucleatum in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunology Research, 6, 1327-1336. https://doi.org/10.1158/2326-6066.cir-18-0174
|
[59]
|
Liu, W., Zhang, X., Xu, H., Li, S., Lau, H.C., Chen, Q., et al. (2021) Microbial Community Heterogeneity within Colorectal Neoplasia and Its Correlation with Colorectal Carcinogenesis. Gastroenterology, 160, 2395-2408. https://doi.org/10.1053/j.gastro.2021.02.020
|
[60]
|
Gao, Y., Bi, D., Xie, R., Li, M., Guo, J., Liu, H., et al. (2021) Fusobacterium nucleatum Enhances the Efficacy of PD-L1 Blockade in Colorectal Cancer. Signal Transduction and Targeted Therapy, 6, Article No. 398. https://doi.org/10.1038/s41392-021-00795-x
|
[61]
|
Cheng, W.T., Kantilal, H.K. and Davamani, F. (2020) The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation. Malaysian Journal of Medical Sciences, 27, 9-21. https://doi.org/10.21315/mjms2020.27.4.2
|
[62]
|
Snezhkina, A.V., Krasnov, G.S., Lipatova, A.V., Sadritdinova, A.F., Kardymon, O.L., Fedorova, M.S., et al. (2016) The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of C‐Myc and C/EBPβ Rather than Enterotoxigenic Bacteroides fragilis Infection. Oxidative Medicine and Cellular Longevity, 2016, Article 2353560. https://doi.org/10.1155/2016/2353560
|
[63]
|
Sears, C.L., Geis, A.L. and Housseau, F. (2014) Bacteroides fragilis Subverts Mucosal Biology: From Symbiont to Colon Carcinogenesis. Journal of Clinical Investigation, 124, 4166-4172. https://doi.org/10.1172/jci72334
|
[64]
|
Dejea, C.M., Fathi, P., Craig, J.M., Boleij, A., Taddese, R., Geis, A.L., et al. (2018) Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science, 359, 592-597. https://doi.org/10.1126/science.aah3648
|
[65]
|
Shao, X., Sun, S., Zhou, Y., Wang, H., Yu, Y., Hu, T., et al. (2021) Bacteroides fragilis Restricts Colitis-Associated Cancer via Negative Regulation of the NLRP3 Axis. Cancer Letters, 523, 170-181. https://doi.org/10.1016/j.canlet.2021.10.002
|
[66]
|
Round, J.L., Lee, S.M., Li, J., Tran, G., Jabri, B., Chatila, T.A., et al. (2011) The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota. Science, 332, 974-977. https://doi.org/10.1126/science.1206095
|
[67]
|
Derosa, L., Routy, B., Thomas, A.M., Iebba, V., Zalcman, G., Friard, S., et al. (2022) Intestinal Akkermansia Muciniphila Predicts Clinical Response to PD-1 Blockade in Patients with Advanced Non-Small-Cell Lung Cancer. Nature Medicine, 28, 315-324. https://doi.org/10.1038/s41591-021-01655-5
|
[68]
|
Cani, P.D., Depommier, C., Derrien, M., Everard, A. and de Vos, W.M. (2022) Akkermansia muciniphila: Paradigm for Next-Generation Beneficial Microorganisms. Nature Reviews Gastroenterology & Hepatology, 19, 625-637. https://doi.org/10.1038/s41575-022-00631-9
|
[69]
|
Jin, Y., Dong, H., Xia, L., Yang, Y., Zhu, Y., Shen, Y., et al. (2019) The Diversity of Gut Microbiome Is Associated with Favorable Responses to Anti-Programmed Death 1 Immunotherapy in Chinese Patients with NSCLC. Journal of Thoracic Oncology, 14, 1378-1389. https://doi.org/10.1016/j.jtho.2019.04.007
|
[70]
|
Ting, N.L., Lau, H.C. and Yu, J. (2022) Cancer Pharmacomicrobiomics: Targeting Microbiota to Optimise Cancer Therapy Outcomes. Gut, 71, 1412-1425. https://doi.org/10.1136/gutjnl-2021-326264
|
[71]
|
Yang, M., Wang, Y., Yuan, M., Tao, M., Kong, C., Li, H., et al. (2020) Antibiotic Administration Shortly before or after Immunotherapy Initiation Is Correlated with Poor Prognosis in Solid Cancer Patients: An Up-to-Date Systematic Review and Meta-Analysis. International Immunopharmacology, 88, Article 106876. https://doi.org/10.1016/j.intimp.2020.106876
|
[72]
|
Tinsley, N., Zhou, C., Tan, G., Rack, S., Lorigan, P., Blackhall, F., et al. (2019) Cumulative Antibiotic Use Significantly Decreases Efficacy of Checkpoint Inhibitors in Patients with Advanced Cancer. The Oncologist, 25, 55-63. https://doi.org/10.1634/theoncologist.2019-0160
|
[73]
|
Teillant, A., Gandra, S., Barter, D., Morgan, D.J. and Laxminarayan, R. (2015) Potential Burden of Antibiotic Resistance on Surgery and Cancer Chemotherapy Antibiotic Prophylaxis in the USA: A Literature Review and Modelling Study. The Lancet Infectious Diseases, 15, 1429-1437. https://doi.org/10.1016/s1473-3099(15)00270-4
|
[74]
|
Yuan, L., Zhang, S., Li, H., Yang, F., Mushtaq, N., Ullah, S., et al. (2018) The Influence of Gut Microbiota Dysbiosis to the Efficacy of 5-Fluorouracil Treatment on Colorectal Cancer. Biomedicine & Pharmacotherapy, 108, 184-193. https://doi.org/10.1016/j.biopha.2018.08.165
|
[75]
|
Wilson, B.E., Routy, B., Nagrial, A. and Chin, V.T. (2019) The Effect of Antibiotics on Clinical Outcomes in Immune-Checkpoint Blockade: A Systematic Review and Meta-Analysis of Observational Studies. Cancer Immunology, Immunotherapy, 69, 343-354. https://doi.org/10.1007/s00262-019-02453-2
|
[76]
|
Pushalkar, S., Hundeyin, M., Daley, D., Zambirinis, C.P., Kurz, E., Mishra, A., et al. (2018) The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discovery, 8, 403-416. https://doi.org/10.1158/2159-8290.cd-17-1134
|
[77]
|
Bullman, S., Pedamallu, C.S., Sicinska, E., Clancy, T.E., Zhang, X., Cai, D., et al. (2017) Analysis of Fusobacterium Persistence and Antibiotic Response in Colorectal Cancer. Science, 358, 1443-1448. https://doi.org/10.1126/science.aal5240
|
[78]
|
Kabwe, M., Dashper, S., Bachrach, G. and Tucci, J. (2021) Bacteriophage Manipulation of the Microbiome Associated with Tumour Microenvironments—Can This Improve Cancer Therapeutic Response? FEMS Microbiology Reviews, 45, fuab017. https://doi.org/10.1093/femsre/fuab017
|
[79]
|
Dolgin, E. (2020) Fighting Cancer with Microbes. Nature, 577, S16-S18. https://doi.org/10.1038/d41586-020-00199-x
|
[80]
|
Zheng, D., Dong, X., Pan, P., Chen, K., Fan, J., Cheng, S., et al. (2019) Phage-Guided Modulation of the Gut Microbiota of Mouse Models of Colorectal Cancer Augments Their Responses to Chemotherapy. Nature Biomedical Engineering, 3, 717-728. https://doi.org/10.1038/s41551-019-0423-2
|
[81]
|
Zhao, T., Xie, L., Cai, S., Xu, J., Zhou, H., Tang, L., et al. (2021) Dysbiosis of Gut Microbiota Is Associated with the Progression of Radiation-Induced Intestinal Injury and Is Alleviated by Oral Compound Probiotics in Mouse Model. Frontiers in Cellular and Infection Microbiology, 11, Article 717636. https://doi.org/10.3389/fcimb.2021.717636
|
[82]
|
Chang, C., Liu, C., Lee, H., Huang, Y., Li, L., Chiau, J.C., et al. (2018) Lactobacillus Casei Variety Rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Frontiers in Microbiology, 9, Article 983. https://doi.org/10.3389/fmicb.2018.00983
|
[83]
|
Gao, G., Shen, S., Zhang, T., Zhang, J., Huang, S., Sun, Z., et al. (2023) Lacticaseibacillus rhamnosus Probio-M9 Enhanced the Antitumor Response to Anti-PD-1 Therapy by Modulating Intestinal Metabolites. eBioMedicine, 91, Article 104533. https://doi.org/10.1016/j.ebiom.2023.104533
|
[84]
|
Shi, L., Sheng, J., Wang, M., Luo, H., Zhu, J., Zhang, B., et al. (2019) Combination Therapy of TGF-Β Blockade and Commensal-Derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression. Theranostics, 9, 4115-4129. https://doi.org/10.7150/thno.35131
|
[85]
|
Naito, Y., Uchiyama, K. and Takagi, T. (2018) A Next-Generation Beneficial Microbe: Akkermansia muciniphila. Journal of Clinical Biochemistry and Nutrition, 63, 33-35. https://doi.org/10.3164/jcbn.18-57
|
[86]
|
Spencer, C.N., Mcquade, J.L., Gopalakrishnan, V., McCulloch, J.A., Vetizou, M., Cogdill, A.P., et al. (2021) Dietary Fiber and Probiotics Influence the Gut Microbiome and Melanoma Immunotherapy Response. Science, 374, 1632-1640. https://doi.org/10.1126/science.aaz7015
|
[87]
|
Borody, T.J. and Khoruts, A. (2011) Fecal Microbiota Transplantation and Emerging Applications. Nature Reviews Gastroenterology & Hepatology, 9, 88-96. https://doi.org/10.1038/nrgastro.2011.244
|
[88]
|
Yu, H., Li, X., Han, X., Chen, B., Zhang, X., Gao, S., et al. (2023) Fecal Microbiota Transplantation Inhibits Colorectal Cancer Progression: Reversing Intestinal Microbial Dysbiosis to Enhance Anti-Cancer Immune Responses. Frontiers in Microbiology, 14, Article 1126808. https://doi.org/10.3389/fmicb.2023.1126808
|
[89]
|
Routy, B., Le Chatelier, E., Derosa, L., et al. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science (New York, N.Y.), 359, 91-97.
|
[90]
|
Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M., et al. (2018) The Commensal Microbiome Is Associated with Anti-PD-1 Efficacy in Metastatic Melanoma Patients. Science, 359, 104-108. https://doi.org/10.1126/science.aao3290
|
[91]
|
Wang, Y., Wiesnoski, D.H., Helmink, B.A., Gopalakrishnan, V., Choi, K., DuPont, H.L., et al. (2018) Fecal Microbiota Transplantation for Refractory Immune Checkpoint Inhibitor-Associated Colitis. Nature Medicine, 24, 1804-1808. https://doi.org/10.1038/s41591-018-0238-9
|
[92]
|
Feuerstadt, P., Louie, T.J., Lashner, B., Wang, E.E.L., Diao, L., Bryant, J.A., et al. (2022) SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. New England Journal of Medicine, 386, 220-229. https://doi.org/10.1056/nejmoa2106516
|
[93]
|
Giles, E.M., D’Adamo, G.L. and Forster, S.C. (2019) The Future of Faecal Transplants. Nature Reviews Microbiology, 17, 719-719. https://doi.org/10.1038/s41579-019-0271-9
|
[94]
|
Kartal, E., Schmidt, T.S.B., Molina-Montes, E., Rodríguez-Perales, S., Wirbel, J., Maistrenko, O.M., et al. (2022) A Faecal Microbiota Signature with High Specificity for Pancreatic Cancer. Gut, 71, 1359-1372. https://doi.org/10.1136/gutjnl-2021-324755
|
[95]
|
Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T., et al. (2019) Metagenomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal Cancer. Nature Medicine, 25, 968-976. https://doi.org/10.1038/s41591-019-0458-7
|
[96]
|
Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., et al. (2017) Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell, 170, 548-563.e16. https://doi.org/10.1016/j.cell.2017.07.008
|
[97]
|
Flanagan, L., Schmid, J., Ebert, M., Soucek, P., Kunicka, T., Liska, V., et al. (2014) Fusobacterium nucleatum Associates with Stages of Colorectal Neoplasia Development, Colorectal Cancer and Disease Outcome. European Journal of Clinical Microbiology & Infectious Diseases, 33, 1381-1390. https://doi.org/10.1007/s10096-014-2081-3
|