[1]
|
姜文, 姚卫星, 王英玉. 铸件中显微孔洞特征及其对疲劳寿命影响的研究进展[J]. 航空工程进展, 2019, 10(4): 445, 455, 486.
|
[2]
|
Cervellon, A., Hémery, S., Kürnsteiner, P., Gault, B., Kontis, P. and Cormier, J. (2020) Crack Initiation Mechanisms during Very High Cycle Fatigue of Ni-Based Single Crystal Superalloys at High Temperature. Acta Materialia, 188, 131-144. https://doi.org/10.1016/j.actamat.2020.02.012
|
[3]
|
Ruttert, B., Meid, C., Mujica Roncery, L., Lopez-Galilea, I., Bartsch, M. and Theisen, W. (2018) Effect of Porosity and Eutectics on the High-Temperature Low-Cycle Fatigue Performance of a Nickel-Base Single-Crystal Superalloy. Scripta Materialia, 155, 139-143. https://doi.org/10.1016/j.scriptamat.2018.06.036
|
[4]
|
Han, G., Zhang, Z., Li, J., Jin, T., Sun, X. and Hu, Z. (2013) High Cycle Fatigue Behavior of a Nickel—Based Single Crystal Superalloy DD98M at 900˚C. Acta Metallurgica Sinica, 48, 170-175. https://doi.org/10.3724/sp.j.1037.2011.00433
|
[5]
|
Bortoluci Ormastroni, L.M., Mataveli Suave, L., Cervellon, A., Villechaise, P. and Cormier, J. (2020) LCF, HCF and VHCF Life Sensitivity to Solution Heat Treatment of a Third-Generation Ni-Based Single Crystal Superalloy. International Journal of Fatigue, 130, Article ID: 105247. https://doi.org/10.1016/j.ijfatigue.2019.105247
|
[6]
|
Cervellon, A., Cormier, J., Mauget, F. and Hervier, Z. (2017) VHCF Life Evolution after Microstructure Degradation of a Ni-Based Single Crystal Superalloy. International Journal of Fatigue, 104, 251-262. https://doi.org/10.1016/j.ijfatigue.2017.07.021
|
[7]
|
Hong, H.U., Choi, B.G., Kim, I.S., Yoo, Y.S. and Jo, C.Y. (2011) Characterization of Deformation Mechanisms during Low Cycle Fatigue of a Single Crystal Nickel-Based Superalloy. Journal of Materials Science, 46, 5245-5251. https://doi.org/10.1007/s10853-011-5462-3
|
[8]
|
Jiang, R., Bull, D.J., Evangelou, A., Harte, A., Pierron, F., Sinclair, I., et al. (2018) Strain Accumulation and Fatigue Crack Initiation at Pores and Carbides in a SX Superalloy at Room Temperature. International Journal of Fatigue, 114, 22-33. https://doi.org/10.1016/j.ijfatigue.2018.05.003
|
[9]
|
Liu, Y., Kang, M., Wu, Y., Wang, M., Gao, H. and Wang, J. (2017) Effects of Microporosity and Precipitates on the Cracking Behavior in Polycrystalline Superalloy Inconel 718. Materials Characterization, 132, 175-186. https://doi.org/10.1016/j.matchar.2017.08.012
|
[10]
|
Chen, Q.Z., Jones, N. and Knowles, D.M. (2002) The Microstructures of Base/Modified RR2072 SX Superalloys and Their Effects on Creep Properties at Elevated Temperatures. Acta Materialia, 50, 1095-1112. https://doi.org/10.1016/s1359-6454(01)00410-4
|
[11]
|
MacLachlan, D.W. and Knowles, D.M. (2001) Modelling and Prediction of the Stress Rupture Behaviour of Single Crystal Superalloys. Materials Science and Engineering: A, 302, 275-285. https://doi.org/10.1016/s0921-5093(00)01829-3
|
[12]
|
Yi, J.Z., Torbet, C.J., Feng, Q., Pollock, T.M. and Jones, J.W. (2007) Ultrasonic Fatigue of a Single Crystal Ni-Base Superalloy at 1000˚C. Materials Science and Engineering: A, 443, 142-149. https://doi.org/10.1016/j.msea.2006.08.028
|
[13]
|
Bogno, A.A., Valloton, J., Rappaz, M., Qureshi, A. and Henein, H. (2024) Tailored Solidification Microstructures for Innovative Use of High-Density Materials in Lightweight Products. Journal of Alloys and Metallurgical Systems, 5, Article ID: 100061. https://doi.org/10.1016/j.jalmes.2024.100061
|
[14]
|
Hu, N., Huang, Y., Wang, K., Hu, W., Chen, J. and Deng, H. (2022) Solidification of Undercooled Liquid under Supergravity Field by Phase-Field Crystal Approach. Metals, 12, Article 232. https://doi.org/10.3390/met12020232
|
[15]
|
周伟, 刘林, 介子奇, 等. 硼对K4169高温合金流动性及缩松的影响[J]. 稀有金属材料与工程, 2014, 43(12): 3082-3088.
|
[16]
|
黄乾尧, 李汉康. 高温合金[M]. 北京: 冶金工业出版社, 2000.
|
[17]
|
胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 2010.
|
[18]
|
黄敏, 张功, 王栋, 等. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
|
[19]
|
邹碧康. 服役破损叶片顶端磨损区域的曲面重构技术研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017.
|
[20]
|
刘林, 张军, 沈军, 等. 高温合金定向凝固技术研究进展[J]. 中国材料进展, 2010, 29(7): 1-9.
|
[21]
|
Xue, Y., Wang, X., Zhao, J., Shi, Z., Liu, S. and Li, J. (2023) Effect of Withdrawal Rate on Solidification Microstructures of DD9 Single Crystal Turbine Blade. Materials, 16, Article 3409. https://doi.org/10.3390/ma16093409
|
[22]
|
Jeong, J.J., Lee, H., Yun, D.W., Jeong, H.W., Yoo, Y., Seo, S., et al. (2023) Analysis of a Single Crystal Solidification Process of an Ni-Based Superalloy Using a CAFE Model. Korean Journal of Metals and Materials, 61, 126-136. https://doi.org/10.3365/kjmm.2023.61.2.126
|
[23]
|
Zhang, X., He, Y., Zhao, S., Ding, H. and Hu, Y. (2023) Innovative Liquid Metal Strategy for Real-Time Thermal Control in Additive Manufacturing. Journal of Materials Processing Technology, 322, Article ID: 118166. https://doi.org/10.1016/j.jmatprotec.2023.118166
|
[24]
|
南晓斌, 材料工程. Pt元素扩散行为对DD5单晶高温合金组织和性能的影响[D]: [硕士学位论文]. 太原: 太原理工大学, 2022.
|
[25]
|
王雷, 奚运涛, 王世清, 等. TWIP钢在高温ECAP过程中的微观组织及孪晶行为研究[J]. 材料导报, 2018, 32(z1): 432-438.
|
[26]
|
殷克勤. 我国航空涡轮高温材料及工艺进展[J]. 材料工程, 1997(9): 3-5, 12.
|
[27]
|
杜旭博. 涡轮叶片孔槽结构的气膜冷却特性研究[D]: [硕士学位论文]. 天津: 中国民航大学, 2020.
|
[28]
|
Wang, B., Zeng, L. and Li, J. (2022) A Geometry Optimization of Spiral Grain Selector during Directional Solidification of Nickel‐Based Superalloy. Crystal Research and Technology, 57, Article ID: 2100257. https://doi.org/10.1002/crat.202100257
|
[29]
|
Zhang, H. and Xu, Q. (2017) Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy. Materials, 10, Article 1236. https://doi.org/10.3390/ma10111236
|
[30]
|
Dai, H.J., D’Souza, N. and Dong, H.B. (2011) Grain Selection in Spiral Selectors during Investment Casting of Single-Crystal Turbine Blades: Part I. Experimental Investigation. Metallurgical and Materials Transactions A, 42, 3430-3438. https://doi.org/10.1007/s11661-011-0760-6
|
[31]
|
(2018) Novel Seed Crystal Paving Method during Cast Single Crystal Production. https://eureka.patsnap.com/patent-CN108754598A
|
[32]
|
Zheng, M., Bian, Z., Qu, D., Zhang, S., Ren, X., Chen, W., et al. (2024) Void-induced Mechanisms in Tensile Behavior of Nickel-Based Single Crystal Superalloys. Physica Scripta, 99, Article ID: 095947. https://doi.org/10.1088/1402-4896/ad6bff
|
[33]
|
Zhang, S. and Meng, L. (2012) Single Crystal Alloy on the Creep Behavior of Holes in Three-Dimensional Finite Element Simulation. Advanced Materials Research, 462, 61-64. https://doi.org/10.4028/www.scientific.net/amr.462.61
|
[34]
|
Sato, Y. and Taira, T. (2022) Comprehensive Thermal Parameters of YAG Single Crystal from 160 K to 500 K. Optica Advanced Photonics Congress 2022, Barcelona, 11-15 December 2022. https://doi.org/10.1364/assl.2022.ath1a.8
|
[35]
|
Boujnah, M., Ennaceri, H., El Kenz, A., Benyoussef, A., Chavira, E., Loulidi, M., et al. (2020) The Impact of Point Defects on the Optical and Electrical Properties of Cubic ZrO2. Journal of Computational Electronics, 19, 940-946. https://doi.org/10.1007/s10825-020-01520-7
|
[36]
|
Wang, B., Zeng, L., Xia, M., Ren, N. and Li, J. (2022) Substrate Stimulating Technique for Ni-Based Single Crystal Superalloy Preparation during Direction Solidification. Materials & Design, 224, Article ID: 111334. https://doi.org/10.1016/j.matdes.2022.111334
|
[37]
|
张卫国, 刘林, 赵新宝, 等. 定向凝固高温合金的研究进展[J]. 铸造, 2009, 58(1): 1-6.
|
[38]
|
Miller, J.D. (2011) Heat Extraction and Dendritic Growth during Directional Solidification of Single-Crystal Nickel-base Superalloys. http://deepblue.lib.umich.edu/handle/2027.42/84495
|
[39]
|
王安东, 马亚硕, 施轶超, 等. 热处理对低Re镍基单晶高温合金组织的影响[J]. 热加工工艺, 2020, 49(12): 113-118.
|
[40]
|
葛丙明, 刘林, 张胜霞, 等. 抽拉速率对定向凝固叶片状DZ125高温合金微观组织的影响[J]. 金属学报, 2011, 47(11): 1470-1476.
|
[41]
|
刘刚, 刘林, 赵新宝, 等. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报, 2010, 46(1): 77-83.
|
[42]
|
杨初斌, 刘林, 赵新宝, 等. <001>和<011>取向DD407单晶高温合金枝晶间距和微观偏析[J]. 金属学报, 2011, 47(10): 1246-1250.
|
[43]
|
Domeij, B. and Diószegi, A. (2024) A Review of Dendritic Austenite in Cast Irons. International Journal of Metalcasting, 18, 1968-1981. https://doi.org/10.1007/s40962-023-01239-8
|
[44]
|
Szeliga, D. (2018) Effect of Processing Parameters and Shape of Blade on the Solidification of Single-Crystal CMSX-4 Ni-Based Superalloy. Metallurgical and Materials Transactions B, 49, 2550-2570. https://doi.org/10.1007/s11663-018-1347-z
|
[45]
|
刘晓功, 饶洋, 刘培元, 等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响[J]. 铸造, 2022, 71(4): 415-419.
|
[46]
|
Torfeh, M., Mirbagheri, S.M.H., Nakhodchi, S. and Aghazadeh Mohandesi, J. (2021) Experimental and Numerical Analysis of Microstructure and High-Temperature Tensile Behavior of a Directionally Solidified Superalloy. Journal of Materials Engineering and Performance, 30, 862-875. https://doi.org/10.1007/s11665-020-05383-8
|
[47]
|
Liang, X., Bos, C., Hermans, M. and Richardson, I. (2023) Influence of the Temperature Gradient and the Pulling Velocity on Solidification Cracking Susceptibility during Welding: A Phase Field Study. Materials & Design, 235, Article ID: 112424. https://doi.org/10.1016/j.matdes.2023.112424
|
[48]
|
Li, J., Qiao, D., Li, J., Luo, X., Peng, P., Yan, X., et al. (2024) Effects of Cooling Rate on Microstructure and Microhardness of Directionally Solidified Galvalume Alloy. China Foundry, 21, 213-220. https://doi.org/10.1007/s41230-024-3093-y
|
[49]
|
Song, Y., Fan, J., Li, J., Yang, H., Yuan, R., Yu, J., et al. (2024) New Insights into the Optimisation of the Solution Heat Treatment Process and Properties of CMSX-4 Superalloys. Materials Science and Engineering: A, 890, Article ID: 145947. https://doi.org/10.1016/j.msea.2023.145947
|
[50]
|
Lin, Y., Yu, W., Wang, G., Li, Z., Jiang, Y., Feng, J., et al. (2024) Exploring the Effect of Alloying Elements on the Thermoelasticity and Strength of Bcc Fe-Based Alloys by First-Principles Phonon Calculations. Journal of Materials Research and Technology, 30, 954-965. https://doi.org/10.1016/j.jmrt.2024.03.101
|
[51]
|
Yue, X.D., Wang, R., Zhao, J.Q., Shi, Z.X., Yang, W.P. and Li, J.R. (2023) Process Optimization Method for Inhibiting TCP Precipitation in a Nickel-Based Single Crystal Superalloy with High Refractory Element Content. Journal of Physics: Conference Series, 2639, Article ID: 012018. https://doi.org/10.1088/1742-6596/2639/1/012018
|
[52]
|
Xia, W., Zhao, X., Wang, J., Yue, Q., Cheng, Y., Kong, L., et al. (2023) New Strategy to Improve the Overall Performance of Single-Crystal Superalloys by Designing a Bimodal γ’ Precipitation Microstructure. Acta Materialia, 257, Article ID: 119200. https://doi.org/10.1016/j.actamat.2023.119200
|
[53]
|
Wang, Y., Zhang, X., Tian, H., Hao, L., Tian, Z., Meng, J., et al. (2024) Effect of Purity on Solidification Structure and Micro-Segregation in a Nickel-Based Single Crystal Superalloy. Journal of Alloys and Compounds, 999, 174929. https://doi.org/10.1016/j.jallcom.2024.174929
|
[54]
|
Okugawa, M., Saito, K., Yoshima, H., Sawaizumi, K., Nomoto, S., Watanabe, M., et al. (2024) Solute Segregation in a Rapidly Solidified Hastelloy-X Ni-Based Superalloy during Laser Powder Bed Fusion Investigated by Phase-Field and Computational Thermal-Fluid Dynamics Simulations. Additive Manufacturing, 84, Article ID: 104079. https://doi.org/10.1016/j.addma.2024.104079
|
[55]
|
Zhang, C., Zhou, Y., Shen, C., Ren, W., Yuan, X., Ding, B., et al. (2024) Effects of Longitudinal Magnetic Field on Primary Dendrite Spacing and Segregation of Directionally Solidified Single Crystal Superalloy. Progress in Natural Science: Materials International, 34, 26-36. https://doi.org/10.1016/j.pnsc.2024.01.007
|
[56]
|
Roósz, A., Rónaföldi, A., Li, Y., Mangelinck-Noël, N., Zimmermann, G., Nguyen-Thi, H., et al. (2022) Influence of Solidification Parameters on the Amount of Eutectic and Secondary Arm Spacing of Al-7wt% Si Alloy Solidified under Microgravity. Crystals, 12, Article 414. https://doi.org/10.3390/cryst12030414
|
[57]
|
Che, J., Shi, G., Meng, S., Zou, C., Yao, D. and Cao, G. (2023) Molecular Dynamics Simulation and Experimental Study on Formation Mechanism of Micro-Hole and Cracks in Nano-Imprinting Diamond. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 238, 1374-1385. https://doi.org/10.1177/09544054231191639
|
[58]
|
Lumper, L.A., Schaffar, G.J.K., Sommerauer, M. and Maier-Kiener, V. (2023) In-Situ Microscopy Methods for Imaging High-Temperature Microstructural Processes—Exploring the Differences and Gaining New Potentials. Materials Science and Engineering: A, 887, Article ID: 145738. https://doi.org/10.1016/j.msea.2023.145738
|
[59]
|
Niu, H., Zheng, F., Wang, H., Liu, C., Li, R., Li, X., et al. (2022) An in Situ X-Ray Tomography Study on the Stress Corrosion Behavior of a Ni-Based Single-Crystal Superalloy. Metallurgical and Materials Transactions A, 54, 777-782. https://doi.org/10.1007/s11661-022-06925-6
|
[60]
|
Feng, S., Liotti, E. and Grant, P.S. (2022) X-ray Imaging of Alloy Solidification: Crystal Formation, Growth, Instability and Defects. Materials, 15, Article 1319. https://doi.org/10.3390/ma15041319
|
[61]
|
Becker, C.G., Tourret, D., Smith, D., Rodgers, B., Imhoff, S., Gibbs, J., et al. (2021) Integrating in Situ X-Ray Imaging, Energy Dispersive Spectroscopy, and Calculated Phase Diagram Analysis of Solute Segregation during Solidification of an Al-Ag Alloy. JOM, 73, 3291-3300. https://doi.org/10.1007/s11837-021-04884-8
|