与酉最小公倍数有关的和函数
The Sum Function Related to the Least Unitary Common Multiple
摘要: 最大公因数和最小公倍数问题是数论的经典问题之一,那么对任意的正整数n,若 d|n ( d, n d )=1 ,我们就称dn的酉除数(unitary divisor),用 [ m,n ] 表示两个数m, n的酉最小公倍数,本文主要考虑当 [ m,n ] x 时,满足该条件的点 ( m,n ) 的和函数的渐近公式。
Abstract: The greatest common divisor and the least common multiple are one of the classical problems in number theory. For any positive integer n, if d|n and ( d, n d )=1 , we call d is the unitary divisor of n. In this paper, using [ m,n ] to represent the unitary least common multiple of two numbers m, n, and this article mainly considers the asymptotic formula of the sum function of points that satisfy this condition when [ m,n ] x .
文章引用:邱雨豪. 与酉最小公倍数有关的和函数[J]. 理论数学, 2024, 14(12): 90-94. https://doi.org/10.12677/pm.2024.1412410

1. 引言

最小公倍数问题是数论中的经典问题之一。整数环Z上最小公倍数的和函数定义为:

L( n )= i=1 n lcm( i,n )

那么 L( n ) 的和函数的渐近公式为

nx L( n ) = ζ( 3 ) 8ζ( 2 ) x 4 +O( x 3 ( logx ) 2/3 ( loglogx ) 4/3 )

参见([1], Th.6.3)。

lcm和函数的其他推广结果可参考[2] [3]

如果对任意的正整数n,若 d|n ( d, n d )=1 ,那么称dn的酉除数(unitary divisor),其基本性质可见[4]

那么,同样也可以考虑 [ m,n ]x 1 相关的计数问题。H. Jager [5]在1962年得到该和式的渐近公式。Suryanarayana D, Sitaramachandrarao R [6], WG Nowak, M Schmeier [7]分别在黎曼假设的前提下将该渐近公式的余项改进至 x 2α 54α exp( A logx loglogx ) x 53 116 +ϵ

基于以上结果的启发,本文研究当两个数的酉最小公倍数小于等于x时满足该条件的数对 ( m,n ) 有多少个,即对 [ m,n ] x 1 进行计算,得到如下定理。

定理: [ m,n ] x 1 = A 1 x ( logx ) 2 + A 2 xlogx+ A 3 x+O( x ( logx ) 2 ) ,其中 A 1 , A 2 , A 3 为常数。

2. 基本引理

引理2.1 kn 1 k =logn+γ+O( 1 n )

证明:参见([8],定理0.8)

引理2.2 d|n μ( d ) ={ 1,n=1 0,n>1

证明:参见([8],定理2.8)

引理2.3(a) nx μ( n ) n 2 = 6 π 2 +O( 1 x )

(b) kx 1 n s = x 1s 1s +ζ( s )+O( x s ) s>0 s1

证明:参见([9],P61,定理3.2)

引理2.4 nx logn n = 1 2 log 2 x+A+O( logx x ) A为常数

证明:由Euler求和公式即可得出

nx logn n = 1 x logt t dt + 1 x ( t[ t ] ) 1logt t 2 dt+ logx x ( [ x ]x ) = 1 x logt t dt + 1 ( t[ t ] ) 1logt t 2 dt x ( t[ t ] ) 1logt t 2 dt+ logx x ( [ x ]x ) = 1 2 log 2 x+ 1 ( t[ t ] ) 1logt t 2 dt x ( t[ t ] ) 1logt t 2 dt+O( logx x )

由于 x ( t[ t ] ) 1logt t 2 dt x 1logt t 2 dt x 1 t 2 dt = 1 x

1 x ( t[ t ] ) 1logt t 2 dt 收敛,记为常数A

= 1 2 log 2 x+A+O( logx x )

引理2.5 [ m,n ] = mn ( m,n )

证明:见文献[4]

引理2.6 nx τ 3 ( x ) =x P 3 ( logx )+O( x 43 96 +ε ) P 3 ( logx ) logx 的一个二次多项式

证明:见文献[10]

3. 定理证明

证明:首先由引理2.5将所求和式转化为下式

[ m,n ] x 1 = mn ( m,n ) x 1 = mnkx ( m,n ) =k 1

这里令 ( m,n ) =k 。下面由引理2.2,我们将上式转化以下和式

= m 1 n 1 x k ( m 1 , n 1 )=k 1 d|( m 1 , n 1 ) μ( d ) = d x μ( d ) d| m 1 ,d| n 1 m 1 n 1 x k 1 = d x μ( d ) d 2 m 2 n 2 x/k 1 = d x μ( d ) lx/ d 2 τ 3 ( l ) ( l= m 2 n 2 k ) = d x μ( d ) { x d 2 C 1 ( log x d 2 ) 2 + C 2 x d 2 log x d 2 + C 3 x d 2 +O( ( x d 2 ) 43/ 96 +ε ) } = S 1 + S 2 + S 3 + S 4

其中

S 1 = d x μ( d ) x d 2 C 1 ( log x d 2 ) 2 S 2 = d x μ( d ) x d 2 C 2 log x d 2 S 3 = d x μ( d ) x d 2 C 3 S 4 = d x μ( d )O( ( x d 2 ) 43/ 96 +ε )

下面对 S 1 , S 2 , S 3 , S 4 分别进行计算,从而得到所需结果

A、对 S 4 的计算:

| d x μ( d )O( ( x d 2 ) 43 96 +ϵ ) | x 1 2 +ϵ (1)

B、对 S 3 的计算:

d x μ( d ) d 2 c 3 x =( 6 π 2 +O( 1 x ) ) c 3 x= c 4 x+O( x ) (2)

C、对 S 2 的计算:

S 2 = d x μ( d ) x d 2 c 2 ( log x d 2 )= c 2 x d x μ( d ) d 2 ( logxlog d 2 ) = S 21 + S 22

S 21 = c 2 xlogx d x μ( d ) d 2 = c 5 xlogx+O( x logx )

S 22 = c 2 x d x μ( d ) d 2 log d 2 = c 2 x( d=1 μ( d ) d 2 log d 2 d> x μ( d ) d 2 log d 2 ) = c 2 x( A+O( logx x ) )= c 6 x+O( x logx )

所以

S 2 = c 5 xlogx+ c 6 x+O( x logx ) (3)

D、对 S 1 的计算:

S 1 = d x μ( d ) x d 2 c 1 ( log x d 2 ) 2 = c 1 x d x μ( d ) d 2 ( ( logx ) 2 2logxlog d 2 +4log d 2 ) = S 11 + S 12 + S 13

S 11 = c 1 x ( logx ) 2 d x μ( d ) d 2 = c 7 x ( logx ) 2 +O( x ( logx ) 2 ) S 12 = c 1 xlogx d x μ( d ) d 2 logd= c 8 xlogx+O( x logx ) S 13 = c 1 x d x μ( d ) d 2 ( logd ) 2 = c 9 x+O( x ( logx ) 2 )

综合上式有:

S 1 = c 7 x ( logx ) 2 + c 8 xlogx+ c 9 x+O( x ( logx ) 2 ) (4)

综合(1)~(4)式定理得证。

符号说明

[m,n]

两个数的最小酉公倍数

ζ( s )

黎曼zeta函数

μ( n )

莫比乌斯函数

log( x )

以自然常数e为底的对数

τ 3 ( n )

三维除数函数

γ

欧拉常数

f=O( g )

| f( x ) |Cg( x )

( m,n )

两个数的最大酉公因数

参考文献

[1] Bordelles, O. (2007) Mean Values of Generalized GCD-Sum and LCM-Sum Functions. Journal of Integer Sequences, 10.
[2] Hilberdink, T., Luca, F. and Tóth, L. (2019) On Certain Sums Concerning the GCD’S and LCM’s of K Positive Integers. International Journal of Number Theory, 16, 77-90.
https://doi.org/10.1142/s1793042120500049
[3] Broughan, K.A. (2001) The GCD-Sum Function. Journal of Integer Sequences, 4.
[4] Hansen, R.T. and Swanson, L.G. (1979) Unitary Divisors. Mathematics Magazine, 52, 217-222.
https://doi.org/10.1080/0025570x.1979.11976785
[5] Jager, H. (1962) On the Number of Pairs of Integers with Least Common Multiple Not Exceeding X. Indagationes Mathematicae (Proceedings), 65, 346-350.
https://doi.org/10.1016/s1385-7258(62)50034-6
[6] Sitaramachandra Rao, R. and Suryanarayana, D. (1970) The Number of Pairs of Integers with L. C. M. ≤ X. Archiv der Mathematik, 21, 490-497.
https://doi.org/10.1007/bf01220953
[7] Nowak, W.G. and Schmeier, M. (1988) Conditional Asymptotic Formulae for a Class of Arithmetic Functions. Proceedings of the American Mathematical Society, 103, 713-717.
https://doi.org/10.1090/s0002-9939-1988-0947644-0
[8] Tenenbaum, G. (2015) Introduction to Analytic and Probabilistic Number Theory. American Mathematical Society.
https://doi.org/10.1090/gsm/163
[9] Apostol, T.M. (2013) Introduction to Analytic Number Theory. Springer Science & Business Media.
[10] Kolesnik, G.A. (1981) On the Estimation of Multiple Exponential Sums. In: Halberstam, H. and Hooley, C., Eds., Recent Progress in Analytic Number Theory, Academic Press, 231-246.