非参数过程位置与尺度参数联合监测的EEWMA-Lepage控制图
Distribution-Free EEWMA-Lepage Control Chart for Joint Monitoring of Location and Scale Parameters
摘要: 针对非参数过程的质量控制问题,构建了可以联合监测过程位置参数和尺度参数的Lepage样本统计量,在EWMA图统计量中整合Lepage的历史、当前以及最新差异信息,提出了扩展EWMA-Lepage(EEWMA-Lepage, EEL)控制图及其时变控制限方案(EEL-TV)和稳态控制限方案(EEL-SS),通过对过程位置与尺度参数的联合监控实现了非参数过程的质量控制。实验结果表明,以过程运行长度的均值、标准差和百分位数作为控制图性能的评价指标,EEL控制图具备对不同过程分布良好的稳健性和对过程参数小漂移比EWMA-Lepage控制图更优的监测性能。
Abstract: Aiming at the problem on quality control of distribution-free process, we propose an extended EWMA (EEWMA-Lepage, EEL) control chart and design its corresponding time-varying scheme (EEL-TV) and steady-state scheme (EEL-SS), through constructing the Lepage sample statistic of joint monitoring on process’ location and scale parameters, integrating the sample history, current and latest difference information into EWMA chart statistic, and joint-monitor the process location and scale parameters to realize the quality control of distribution-free process. The numerical simulation results show that the EEL control chart provides a strong robustness to different process distributions and better monitoring performance on small-shift-monitoring of process parameters than EWMA-Lepage control chart, using the mean, standard deviation and percentiles of process running length as performance-evaluation indexes of control chart.
文章引用:王佳颖, 宋学力, 胡小红, 卿晶, 王凯明. 非参数过程位置与尺度参数联合监测的EEWMA-Lepage控制图[J]. 应用数学进展, 2024, 13(12): 5198-5216. https://doi.org/10.12677/aam.2024.1312502

1. 引言

在质量控制和管理中,统计过程控制(SPC)是基于数理统计学原理,研究生产过程质量控制的一门科学,近年来已被广泛应用于服务水平管理[1]、医疗保健分析[2]、环境水质[3]和产品质量监控[4] [5]等领域。统计过程监控通过提取过程监控指标,设计图统计量,设置控制限,根据图统计量的样本观测值与控制限的关系给出监测规则,把生产过程状态区分为受控(IC)状态或失控(OC)状态。传统控制图是利用过程分布规律构建的,被称为参数控制图。然而,在当今大数据背景下,许多过程监控数据分布规律复杂难以建模,参数控制图监控策略自然成了“无源之水”无法实现。所以,构建不依赖于过程分布模型的非参数控制图(参见Qiu [6],Koutras M V和Triantafyllou I S [7])具有一定的理论意义和现实意义。

非参数过程的位置参数作为数据集中趋势的数字特征,可以通过过程样本均值得到其无偏估计;尺度参数作为数据分散程度的数字特征,可以利用样本方差进行无偏估计以及相合估计,所以位置参数和尺度参数[8]是非参数过程监测的两个主要指标,一般通过监测这两个参数是否发生漂移来推断过程的状态。针对非参数过程的位置参数和尺度参数进行质量监控常常面临以下问题:1) 事先无法预知哪个参数发生漂移;2) 根据产品质量监测要求,只要两参数之一发生漂移即判定为产品不合格或过程失控;3) 两参数的变化相互影响,存在关联,无法对每个参数进行独立监测。

2020年,项冬冬,濮晓龙[9]对近二十年位置和尺度参数联合监测控制图的相关研究做了文献综述,对于非参数联合监测的方案主要基于Lepage和Cucconi两大统计量,其中,由Lepage Y (1971)提出的Lepage统计量[10],以其构造简单和分布易于建模等统计学特点被广泛应用到联合监测控制图的设计及研究中。Mukherjee等[11]和Chowdhury等[12]基于Lepage统计量分别提出了Shewhart-Lepage (SL)和CUSUM-Lepage (CL)控制图,实现了对过程位置和尺度参数的联合监测。Mukherjee和Marozzi [13]通过加入二维圆形网络思维对SL控制图进行改进,实现联合监测的同时,可进一步诊断失控过程具体的漂移参数。

生产的统计过程控制(SPC)一般分为两个阶段:第一阶段(SPCI)和第二阶段(SPCII)。SPCI阶段一般为调试阶段,过程被调试稳定以后进入SPC II阶段。所以,SPCII阶段中,过程失控常常表现为过程参数的小漂移,所以需要设计参数小漂移敏感的控制图来监测和推断过程的状态。为提高控制图对过程参数小漂移的监测能力,Mukherjee (2017) [4]通过对当前和历史样本信息进行加权,提出了基于Lepage统计量的指数移动平均加权EWMA-Lepage (EL)控制图,并设计了对监测早期漂移敏感但结构复杂的时变控制限(EL-TV)方案和不具备监测早期漂移能力但结构简单的稳态控制限(EL-SS)方案。值得注意的是,在过程状态变化前后,过程指标信息会发生陡变,这种陡变信息可以通过样本信息的变化监测,所以样本最新差异信息是监测过程变化又一重要的信息来源。因此,在参数控制图研究中,Naveed等(2018) [14]通过在EWMA图统计量基础上加入样本最新差异信息,开发了扩展EWMA (EEWMA)控制图,并通过仿真实验和实例应用证明了EEWMA控制图提高了对过程参数小漂移的高敏感性。在非参数控制图的对应研究中,Talordphop等(2023) [15]基于EEWMA控制图提出了以符号秩为样本统计量的EEWMA(EEWMA-SR)控制图。EEWMA-SR非参控制图对过程位置参数小漂移监测具有高敏感度的优点,但是未涉及到尺度参数这一非参数过程中的重要指标。

综上,针对非参数过程位置和尺度参数小漂移的联合监测是一个亟待研究且极具挑战性的问题。本文拟采取Lepage统计量,结合EEWMA控制图对小飘移高敏感度的优势,开发基于Lepage统计量联合监测的EEWMA (EEWMA-Lepage, EEL)控制图,并设计对应于EEL控制图的时变控制限方案(EEL-TV)和稳态控制限方案(EEL-SS)。最后通过仿真实验和实例应用评估EEL控制图的性能。文章结构安排如下:第1节EEWMA-Lepage控制图的设计;第2节EEWMA-Lepage控制图的性能评估;第3节 数值实验和实例分析。

2. EEWMA-Lepage控制图的设计

( X 1 , X 2 ,, X m ) 为来自受控过程SPCI阶段的简单样本,样本容量为m,其总体 X 的累积分布函数为 F( x ) Y t =( Y t1 , Y t2 ,, Y tn ) t=1,2, ,是来自SPC II阶段第t时间点容量为n的待检验样本,与

( X 1 , X 2 ,, X m ) 相互独立,并且 Y t 的总体 Y 的分布函数 P{ Yx }=G( x ) 满足 G( x )=F( xθ δ ) ,其中 θ

δ 分别表示过程的位置参数和尺度参数, θR,δ>0 。当SPC II阶段处于IC状态时, G( x )=F( x ) ,即 θ=0,δ=1 ;所以当 θ0,δ=1 时,可判定过程位置参数发生了漂移;当 θ=0,δ1 时,判定为过程尺度参数发生了漂移;当 θ0,δ1 时,则位置参数与尺度参数同时发生了漂移。所以可以通过图统计量的样本观测值以及对 θ δ 取值假设来推断过程是否处于IC状态。

2.1. Lepage统计量

Lepage统计量[10]是Lepage Y于1971年构建的用于检验位置参数符号秩和(WRS)统计量和尺度参数Ansari-Bradley (AB)统计量的统计量:

WR S t = i=1 n R ti A B t = i=1 n | R ti 1 2 ( N+1 ) | (1)

其中, R t1 R t2 R tn 是待检测样本 Y t =( Y t1 , Y t2 ,, Y tn ) ,在混合样本 ( X 1 , X 2 ,, X m , Y t1 , Y t2 ,, Y tn ) 中的秩,混合样本容量 N=m+n t=1,2, 。当过程处于IC状态时, WR S t A B t 的均值和方差分别为:

E( WR S t |IC )= μ WRS = 1 2 n( N+1 ) Var( WR S t |IC )= σ WRS = 1 12 mn( N+1 )

E( A B t |IC )= μ AB ={ nN 4 , N n( N 2 1 ) 4 , N

Var( A B t |IC )= σ A B ={ 1 48 mn ( N 2 4 ) N1 , N 1 48 mn( N+1 )( N 2 +3 ) N 2 , N (2)

Lepage统计量定义为:

L t = ( WR S t μ WRS σ WRS ) 2 + ( A B t μ AB σ AB ) 2 (3)

当过程处于IC状态时, L t 渐近服从 χ 2 2 E( L t |IC )=2 Var( L t |IC )=4

2.2. EWMA-Lepage控制图

EWMA-Lepage (EL)控制图是Mukherjee等[11]基于Lepage统计量提出的联合监测控制图,其图统计量定义为 E L t

E L t =λ L t +( 1λ )E L t1 (4)

其中, 0<λ1 为平滑参数,初始值 E L 0 =2 。当过程处于IC状态时, E L t 的均值和方差分别为:

E( E L t )=E( L t )=2 (5)

Var( E L t )=[ λ 2λ ( 1 ( 1λ ) 2t ) ] σ L t 2 = 4λ 2λ ( 1 ( 1λ ) 2t ) (6)

由于Lepage统计量是依据标准化 WR S t A B t 的平方和而构建的,过程参数的上下漂移都将会导致 L t 的增大,故控制图只需设置上控制限H,即可达到监测效果。其中,EL-TV方案的控制限:

H EL ( t )=2+ K T 4λ 2λ ( 1 ( 1λ ) 2t ) (7)

和EL-SS方案的控制限(t趋于无穷大时, H EL ( t ) 的极限,也称为渐近控制限):

H EL =2+ K S 4λ 2λ (8)

KTKS分别为时变控制限系数和稳态控制限系数; E L t > H EL ( t ) E L t > H EL 时,EL控制图在第t时间监测出过程参数的漂移,并发出OC信号。

如前所述,在SPC II阶段,过程参数的漂移主要为中小漂移,而且由于过程随机性的影响,小漂移引起的样本信息的变化很容易被淹没在随机信息中,导致失控状态的晚发现甚至未发现。所以控制图的设计对小漂移的敏感度具有更高的要求,需要充分挖掘小漂移相关信息。所以,针对非参数过程变化,我们结合EWMA-Lepage联合监测位置参数和尺度参数的优点,在EWMA-Lepage的图统计量中加入样本的最新差异信息,设计EEWMA-Lepage (EEL)控制图,以进一步提高对过程参数小漂移的敏感性。

2.3. EEWMA-Lepage控制图

2.3.1. EEWMA-Lepage控制图的设计

EEWMA-Lepage (EEL)图统计量定义为:

EE L t = λ 2 ( L t L t1 )+( λ 1 λ 2 ) L t +( 1( λ 1 λ 2 ) )EE L t1 (9)

整理式(9)得

EE L t = λ 1 L t λ 2 L t1 +( 1 λ 1 + λ 2 )EE L t1 (10)

其中, L t L t1 表示样本最新差异信息, 0< λ 1 1 0< λ 2 λ 1 为两个平滑参数,初始值 EE L 0 =2 。当 λ 2 =0 时,EEL控制图可简化为EL控制图。当过程处于IC状态, EE L t 的均值和方差分别为:

E( EE L t )=E( L t )=2 (11)

Var( EE L t )=[ ( λ 1 2 + λ 2 2 ) 1 λ 3 2t 1 λ 3 2 2 λ 1 λ 2 λ 3 1 λ 3 2t2 1 λ 3 2 ] σ L t 2 =4[ ( λ 1 2 + λ 2 2 ) 1 λ 3 2t 1 λ 3 2 2 λ 1 λ 2 λ 3 1 λ 3 2t2 1 λ 3 2 ] (12)

EEL-TV方案的控制限为:

H EEL ( t )=2+ K T 4[ ( λ 1 2 + λ 2 2 ) 1 λ 3 2t 1 λ 3 2 2 λ 1 λ 2 λ 3 1 λ 3 2t2 1 λ 3 2 ] (13)

和EEL-SS方案的控制限(t趋于无穷大时, H EEL ( t ) 的极限,也称为渐近控制限)为:

H EEL =2+ K S 4 λ 1 2 + λ 2 2 2 λ 1 λ 2 λ 3 1 λ 3 2 (14)

KTKS分别表示时变控制限系数和稳态控制限系数, λ 3 =1 λ 1 + λ 2 ;当 EE L t > H EEL ( t ) EE L t > H EEL 时,EEL控制图在第t时间监测出过程参数的漂移,并发出OC信号。

EEWMA-Lepage控制图的具体步骤如下:

1) 固定参考样本容量m,待检测样本容量n,平滑参数 λ 1 λ 2 ,受控平均运行长度ARL0

2) 确定控制限系数KTKS,依据式(13)、式(14)计算出时变控制限或稳态控制限;

3) 采集受控阶段I未知分布,样本容量为m的参考样本,标记为 X=( X 1 , X 2 ,, X m )

4) 依次收集阶段II第t时间点,样本容量为n的待检测样本,标记为 Y=( Y t1 , Y t2 ,, Y tn ) t=1,2, ,依据式(10)计算出 EE L t 图统计量;

5) 当 EE L t > H EEL ( t ) EE L t > H EEL 时,EEL控制图在第t时间监测出过程参数的漂移,发出OC信号,停止生产并调查其原因;否则,认为过程仍处于IC状态,返回步骤(4),继续下一组(t + 1)监测。

2.3.2. EEWMA-Lepage控制限的确定

参考样本量m = 100、300,待检测样本量n = 5、10、15,平滑参数 λ= λ 1 =0.05 λ 2 =0.01 、0.02、0.03、0.05,受控平均运行长度ARL0 = 370、500的不同组合方案,给出EL控制图和EEL控制图的时变控制限系数KT和稳态控制限系数KS,见表1表2。基于非参数控制图与过程分布无关的特性,使用任何概率分布求取控制限系数的结果近似,故对参考样本和待检测样本的数据均来自 Normal( 0,1 ) 。其结果基于R软件的50,000次Monte Carlo模拟实验。

3. EEWMA-Lepage控制图的性能评估

控制图的性能一般通过平均运行长度(ARL)和运行长度标准偏差(SDRL)评价,由于非参数控制图的运行长度分布具有右偏特征,故本节还将运行长度第(5, 25, 50, 75, 95)百分位数作为衡量指标对EEL控制图进行受控状态监测性能和失控状态监测性能分析。

Table 1. Steady-state control limit coefficients KS of EL and EEL control charts

1. EL和EEL控制图的稳态控制限系数KS

ARL0

m

n

EL

EEL

λ = 0.05

λ = 0.1

λ1 = 0.05

λ1 = 0.05

λ1 = 0.05

λ1 = 0.1

λ1 = 0.1

λ1 = 0.1

λ2 = 0.01

λ2 = 0.02

λ2 = 0.03

λ2 = 0.02

λ2 = 0.03

λ2 = 0.05

370

100

5

1.803

2.367

1.760

1.751

1.797

2.386

2.425

2.536

10

1.735

2.335

1.672

1.637

1.652

2.341

2.358

2.445

15

1.581

2.222

1.507

1.451

1.441

2.221

2.232

2.301

300

5

2.116

2.631

2.103

2.137

2.251

2.677

2.717

2.877

10

2.146

2.673

2.129

2.152

2.256

2.715

2.755

2.892

15

2.130

2.665

2.105

2.120

2.215

2.700

2.736

2.876

500

100

5

1.972

2.537

1.922

1.918

1.980

2.566

2.595

2.728

10

1.895

2.503

1.838

1.797

1.833

2.510

2.534

2.628

15

1.739

2.393

1.669

1.616

1.608

2.395

2.407

2.478

300

5

2.292

2.816

2.281

2.318

2.452

2.869

2.918

3.087

10

2.328

2.859

2.313

2.338

2.455

2.906

2.947

3.098

15

2.317

2.855

2.288

2.307

2.412

2.901

2.938

3.078

Table 2. Time-varying control limit coefficients KT of EL and EEL control charts

2. EL和EEL控制图的时变控制限系数KT

ARL0

m

n

EL

EEL

λ = 0.05

λ = 0.1

λ1 = 0.05

λ1 = 0.05

λ1 = 0.05

λ1 = 0.1

λ1 = 0.1

λ1 = 0.1

λ2 = 0.01

λ2 = 0.02

λ2 = 0.03

λ2 = 0.02

λ2 = 0.03

λ2 = 0.05

370

100

5

1.853

2.393

1.820

1.830

1.893

2.410

2.450

2.568

10

1.793

2.359

1.745

1.722

1.746

2.371

2.387

2.489

15

1.645

2.256

1.578

1.541

1.545

2.248

2.273

2.331

300

5

2.165

2.656

2.163

2.211

2.347

2.708

2.751

2.908

10

2.202

2.695

2.193

2.232

2.352

2.750

2.775

2.925

15

2.186

2.693

2.171

2.203

2.312

2.728

2.769

2.900

500

100

5

2.008

2.555

1.968

1.985

2.063

2.593

2.623

2.750

10

1.945

2.523

1.897

1.875

1.913

2.532

2.558

2.652

15

1.796

2.413

1.727

1.689

1.706

2.412

2.426

2.508

300

5

2.335

2.838

2.333

2.386

2.538

2.898

2.944

3.112

10

2.376

2.883

2.368

2.412

2.537

2.928

2.973

3.127

15

2.353

2.876

2.338

2.375

2.488

2.913

2.956

3.098

3.1. 受控性能分析

当过程处于IC状态时,依据受控ARL (ARL0),受控SDRL (SDRL0)和受控运行长度的百分位数,对EL控制图、EEL控制图的时变控制限方案和稳态控制限方案进行受控性能分析,结果见表3表4。单元格第一行展示ARL0 (SDRL0);第二行展示运行长度的第(5, 25, 50, 75, 95)百分位数。

Table 3. The controlled performance of steady-state control limit scheme

3. 稳态控制限方案的受控性能

ARL0

m

n

EL

EEL

λ = 0.05

λ1 = 0.05; λ2 = 0.01

λ1 = 0.05; λ2 = 0.02

λ1 = 0.05; λ2 = 0.03

370

100

5

369.0 (771.5)

11, 50, 141, 370, 1395

370.8 (797.1)

11, 48, 137, 363, 1412

369.2 (831.8)

10, 43, 127, 353, 1414

371.3 (893.1)

8, 37, 10, 325, 1489

10

369.5 (790.5)

10, 44, 129, 359, 1458

370.8 (828.2)

9, 40, 121, 349, 1490

369.8 (878.5)

8, 34, 107, 325, 1475

369.7 (929.7)

6, 28, 90, 299, 1531

15

368.8 (848.1)

8, 33, 109, 341, 1502

370.3 (902.6)

7, 29, 98, 321, 1534

369.6 (945.3)

5, 24, 85, 299, 1579

368.5 (1039.1)

4, 18, 63, 255, 1602

300

5

370.8 (492.0)

18, 84, 210, 466, 1260

371.8 (512.6)

18, 81, 207, 464, 1259

370.6 (522.3)17, 78, 201, 458, 1250

372.3 (599.3)

13, 62, 176, 440, 1362

10

371.0 (509.8)

18, 80, 205, 462, 1273

370.0 (510.9)

18, 79, 202, 459, 1273

369.3 (536.3)

16, 74, 195, 452, 1281

369.3 (569.2)

15, 68, 183, 442, 1317

15

372.0 (521.3)

16, 75, 198, 459, 1295

371.3 (531.3)

16, 73, 194, 456, 1312

370.9 (565.0)

15, 68, 185, 445, 1328

373.1 (598.0)

14, 63, 175, 440, 1356

500

100

5

496.3 (1005.5)

14, 65, 185, 493, 1921

498.3 (1104.1)

2, 33, 147, 453, 2026

509.8 (1192.9)

2, 26, 133, 441, 2209

501.3 (1240.8)

3, 21, 109, 407, 2186

10

501.5 (1057.8)

12, 55, 163, 478, 2020

501.3 (1167.2)

2, 24, 124, 436, 2190

500.5 (1236.3)

2, 17, 104, 407, 2234

498.6 (1281.6)

2, 14, 80, 364, 2317

15

501.6 (1113.3)

9, 42, 141, 451, 2128

502.3 (1237.8)

1, 15, 96, 404, 2293

500.6 (1038.8)

1, 11, 74, 353.3, 2365

502.6 (1398.7)

2, 9, 50, 305, 2502

300

5

503.3 (705.1)

23, 108, 617, 1748

500.5 (770.0)

3, 74, 249, 611, 1822

500.0 (812.5)

3, 63, 233, 592, 1880

500.3 (848.8)

4, 54, 220, 589, 1895

10

500.3 (695.6)

22, 104, 270, 615, 1742

503.3 (778.3)

3, 7, 242, 617, 1862

502.6 (809.6)

3, 60, 229, 601, 1911

500.6 (842.7)

4, 49, 212, 590, 1960

15

501.1 (721.2)

20, 98, 259, 613, 1779

505.6 (823.2)

2, 62, 230, 606, 1910

500.3 (836.3)

3, 51, 210, 589, 1943

503.3 (898.1)

4, 42, 192, 578, 2004

Table 4. The controlled performance of Time-varying control limit scheme

4. 时变控制限方案的受控性能

ARL0

m

n

EL

EEL

λ = 0.05

λ1 = 0.05; λ2 = 0.01

λ1 = 0.05; λ2 = 0.02

λ1 = 0.05; λ2 = 0.03

370

100

5

368.8 (812.3)

2, 30, 123, 364, 1450

370.7 (865.5)

2, 23, 112, 348, 1526

372.0 (933.1)

2, 17, 96, 324, 1525

368.1 (980.7)

2, 15, 79, 299, 1555

10

369.0 (855.5)

1, 22, 106, 347, 1535

369.1 (898.8)

1, 16, 93, 332, 1557

369.5 (968.1)

1, 11, 74, 299, 1587

368.5 (1047.1)

2, 10, 53, 259, 1630

15

373.5 (940.9)

1, 15, 87, 320, 1601

370.6 (976.5)

1, 10, 69, 293, 1615

368.1 (1030.6)

1, 8, 52, 264, 1657

370.3 (1126.8)

1, 7, 34, 217, 1723

300

5

373.3 (542.6)

2, 59, 194, 468, 1339

372.6 (578.3)

2, 52, 186, 462, 1347

369.5 (597.1)

3, 42, 174, 450, 1373

370.8 (640.6)

3, 36, 159, 440, 1418

10

371.2 (556.2)

2, 57, 190, 466, 1341

368.9 (562.6)

2, 49, 182, 457, 1374

370.2 (601.0)

2, 40, 170, 450, 1395

369.3 (634.3)

3, 33, 153, 441, 1434

15

371.0 (568.7)

2, 52, 180, 458, 1370

369.5 (588.2)

2, 42, 170, 455, 1406

370.3 (619.9)

2, 34, 157, 441, 1442

369.5 (666.0)

3, 28, 140, 429, 1467

500

100

5

502.4 (1077.3)

2, 42, 162, 279, 2067

498.3 (1104.1)

2, 33, 147, 453, 2026

509.8 (1192.9)

2, 26, 133, 441, 2209

501.3 (1240.8)

3, 21, 109, 407, 2186

10

502.2 (1112, 3)

2, 32, 142, 466, 2168

501.3 (1167.2)

2, 24, 124, 436, 2190

500.5 (1236.3)

2, 17, 104, 407, 2234

498.6 (1281.6)

2, 14, 80, 364, 2317

15

497.8 (1170.8)

1, 21, 114, 424, 2213

502.3 (1237.8)

1, 15, 96, 404, 2293

500.6 (1038.8)

1, 11, 74, 353.3, 2365

502.6 (1398.7)

2, 9, 50, 305, 2502

300

5

505.8 (756.1)

3, 84, 259, 629, 1807

500.5 (770.0)

3, 74, 249, 611, 1822

500.0 (812.5)

3, 63, 233, 592, 1880

500.3 (848.8)

4, 54, 220, 589, 1895

10

500.6 (747.2)

3, 78, 251, 617, 1820

503.3 (778.3)

3, 7, 242, 617, 1862

502.6 (809.6)

3, 60, 229, 601, 1911

500.6 (842.7)

4, 49, 212, 590, 1960

15

499.5 (774.8)

2, 71, 236, 608, 1881

505.6 (823.2)

2, 62, 230, 606, 1910

500.3 (836.3)

3, 51, 210, 589, 1943

503.3 (898.1)

4, 42, 192, 578, 2004

表3表4可见,在受控状态下,ARL 的实际值近似等于给定值ARL0 = 500,EEL控制图的受控性能是非常令人满意,且有较强的稳定性。此外,ARL0值远大于中位数(第50百分位数),中位数与第25分位数之间的差异远小于中位数与第75分位数之间的差异,运行长度分布呈现出右偏状态。当n固定时,随着m增加,第25、50、75分位数值会随之增加,SDRL值随之减小,表明运行长度的分布逐渐对称,控制图的受控性能逐渐变好;相反,当m固定时,SDRL值会随着n的增加而增加,第25、50、75分位数值会随着n增加而减小,表明运行长度的分布逐渐向右偏移。因此,在控制图构建时,建议使用相对较大的参考样本容量m和较小的待检测样本容量n组合方案,可以有效降低SDRL值和更加对称的运行长度分布,进一步获得更好的控制图性能。

3.2. 失控性能分析

当过程处于OC状态,希望通过控制图能尽快监测过程参数发生,做出OC状态推断并发出失控警告,所以失控状态过程的平均运行长度越小越好,即失控ARL (ARL1),失控SDRL (SDRL1)和失控运行长度百分位数越小表示控制图失控性能越好。当参考样本容量 m=100 ,待检测样本容量 n=5 ,受控平均运行长度ARL0 = 500,平滑参数 λ= λ 1 =0.05 λ 2 =0.01,0.03 时,给出位置参数漂移量 θ=( 0,0.1,0.25,0.5,0.75,1,1.5 ) 和尺度参数漂移量 δ=( 1,1.1,1.25,1.5,1.75,2 ) 的42种漂移组合(其中, θ=0 δ=1 对应过程处于IC状态),将对应位置参数和尺度参数漂移组合的ARL1、SDRL1,运行长度百分位数作为评价指标。为比较非参数过程意义下EL和EEL控制图对失控状态的监测性能,对真实过程分布,选取具有代表性的两个对称分布和一个偏态分布为例:

1) 对称中尾分布:正态分布密度函数为 f( x )= 1 δ 2π e ( xθ ) 2 2 δ 2 x( ,+ ) ,记为 Normal( θ,δ )

2) 对称重尾分布:拉普拉斯分布密度函数为 f( x )= 1 2δ e | xθ | δ x( ,+ ) ,记为 Laplace( θ,δ )

3) 偏态分布:对数正态分布密度函数为 f( x )= 1 δμ 2π e 1 2 δ 2 ( ln( x )θ ) 2 x( 0,+ ) ,记为 Lognormal( θ,δ )

结果见表5~7,单元格的第一行展示ARL1 (SDRL1);第二行展示失控运行长度的第(5, 25, 50, 75, 95)百分位数,灰色阴影标注展示了EEL控制图具有更优的失控性能。

Table 5. Control chart performance based on Normal( θ,δ ) distribution (m = 100, n = 5, ARL0 = 500)

5. 基于 Normal( θ,δ ) 分布的控制图性能(m = 100, n = 5, ARL0 = 500)

θ

Steady-State

Time-Varying

EWMA

EEWMA

EEWMA

EWMA

EEWMA

EEWMA

λ = 0.05

λ1 = 0.05;λ2 = 0.01

λ1 = 0.05; λ2 = 0.03

λ = 0.05

λ1 = 0.05; λ2 = 0.01

λ1 = 0.05; λ2 = 0.03

δ = 1

0

496.3 (1005.5)

14, 65, 185, 493, 1921

498.8 (1043.9)

13, 60, 175, 477, 1962

498.6 (1142.7)

10, 48, 146, 437, 2048

503.1 (1077.5)

12, 41, 161, 485, 2100

498.3 (1104.1)

2, 33, 147, 453, 2026

501.3 (1240.8)

3, 21, 109, 407, 2186

0.1

425.7 (901.9)

12, 52, 151, 410, 1672

409.3 (911.4)

12, 49, 137, 378, 1608

404.8 (984.6)

9, 40, 17, 339, 1673

416.6 (929.7)

2, 32, 128, 389, 1717

404.6 (971.6)

2, 25, 111, 359, 1696

404.8 (1070.6)

2, 17, 84, 320, 1712

0.25

173.8 (438.1)

7, 24, 60, 156, 638

166.8 (447.9)

7, 23, 56, 145, 637

156.3 (485.6)

5, 21, 48, 124, 570

167.1 (477.8)

1, 12, 46, 142, 661

156.6 (471.1)

1, 10, 41, 129, 613

148.5 (526.0)

2, 9, 30, 102, 570

0.5

25.2 (43.9)

3, 8, 15, 28, 76

24.4 (61.0)

3, 8, 15, 27, 72

22.6 (37.7)

2, 7, 14, 26, 66

20.1 (44.1)

1, 3, 9, 22, 71

18.3 (42.2)

1, 3, 8, 20, 64

16.4 (39.3)

1, 3, 8, 18, 55

0.75

8.2 (6.7)

2, 4, 6, 10, 20

8.0 (6.5)

2, 4, 6, 10, 20

7.9 (6.9)

1, 3, 6, 10, 20

5.2 (6.1)

1, 1, 3, 7, 17

4.9 (5.9)

1, 1, 3, 6, 16

5.0 (5.4)

1, 2, 3, 6, 15

1

4.3 (2.6)

1, 3, 4, 5, 9

4.2 (2.7)

1, 2, 4, 5, 9

4.0 (2.9)

1, 2, 3, 5, 10

2.5 (2.2)

1, 1, 2, 3, 7

2.4 (2.1)

1, 1, 2, 3, 6

2.6 (2.1)

1, 1, 2, 3, 7

1.5

2.1 (1.0)

1, 1, 2, 3, 4

1.9 (0.9)

1, 1, 2, 2, 4

1.7 (1.0)

1, 1, 1, 2, 4

1.3 (0.6)

1, 1, 1, 1, 2

1.2 (0.5)

1, 1, 1, 1, 2

1.2 (0.6)

1, 1, 1, 2, 2

δ = 1.1

0

174.1 (360.9)

9, 29, 73, 180, 640

165.8 (359.9)

8, 28, 68, 166, 607

145.3 (357.8)

6, 24, 57, 139, 524

156.6 (356.1)

1, 15, 57, 158, 605

148.0 (351.3)

1, 12, 50, 147

134.9 (398.4)

2, 10, 35, 118, 525

0.1

147.0 (305.9)

8, 26, 63, 151, 526

139.0 (305.8)

7, 24, 58, 140, 506

127.9 (321.2)

5, 22, 51, 122, 457

139.2 (342.0)

1, 13, 49, 138, 532

129.8 (337.9)

1, 10, 42, 125, 500

116.3 (353.2)

2, 9, 31, 99, 459

0.25

78.9 (180.7)

6, 16, 35, 78, 272

74.0 (159.3)

5, 16, 34, 75, 255

66.9 (170.6)

4, 14, 30, 66, 229

69.2 (182.2)

1, 7, 25, 69, 259

63.3 (160.2)

1, 6, 21, 62, 243

54.7 (150.3)

1, 6, 17, 50, 209

0.5

19.6 (25.5)

3, 7, 13, 23, 57

19.0 (24.8)

3, 7, 12, 22, 55

17.5 (21.6)

2, 6, 12, 22, 50

14.8 (25.3)

1, 3, 7, 17, 52

13.6 (23.1)

1, 2, 7, 16, 48

12.3 (21.5)

1, 3, 7, 14, 41

0.75

7.8 (6.3)

2, 4, 6, 10, 19

7.7 (6.1)

2, 4, 6, 10, 19

7.3 (6.1)

1, 3, 6, 10, 19

5.0 (5.8)

1, 1, 2, 6, 15

4.7 (5.4)

1, 1, 2, 6, 15

4.8 (5.1)

1, 1, 2, 6, 15

1

4.4 (2.7)

1, 2, 4, 6, 9

4.3 (2.7)

1, 2, 4, 6, 9

4.0 (3.0)

1, 2, 3, 5, 5, 10

2.6 (2.3)

1, 1, 2, 3, 7

2.5 (2.1)

1, 1, 2, 3, 7

2.6 (2.1)

1, 1, 2, 3, 7

1.5

2.2 (1.0)

1, 1, 2, 3, 4

2.1 (1.0)

1, 1, 2, 3, 4

1.8 (1.1)

1, 1, 2, 2, 4

1.3 (0.6)

1, 1, 1, 1, 3

1.3 (0.6)

1, 1, 1, 1, 3

1.3 (0.7)

1, 1, 1, 1, 3

δ = 1.25

0

45.5 (66.6)

5, 13, 26, 53, 145

42.8 (61.1)

5, 13, 25, 50, 137

38.4 (57.8)

1, 3, 12, 23, 45, 119

34.4 (63.1)

1, 5, 15, 40, 127

34.4 (63.1)

1, 5, 15, 40, 127

29.6 (63.1)

1, 5, 13, 32, 109

0.1

42.3 (60.5)

5, 13, 25, 49, 135

40.0 (63.2)

4, 12, 24, 47, 127

36.3 (53.7)

3, 11, 22, 43, 112

34.8 (60.0)

1, 5, 16, 41, 125

31.4 (53.6)

1, 4, 14, 37, 116

27.4 (56.9)

1, 5, 12, 30, 100

0.25

30.0 (39.3)

4, 10, 19, 36, 91

28.8 (38.4)

4, 10, 18, 34, 88

25.9 (32.1)

3, 9, 17, 32, 77

24.0 (39.2)

1, 4, 12, 29, 86

21.8 (36.2)

1, 3, 10, 26, 79

19.0 (31.0)

1, 4, 9, 22, 67

0.5

13.7 (13.7)

2, 6, 10, 17, 37

13.4 (12.9)

2, 6, 10, 17, 36

12.5 (12.0)

1, 5, 9, 16, 34

9.8 (13.3)

1, 2, 5, 12, 32

8.9 (12.2)

1, 2, 5, 11, 30

8.4 (10.4)

1, 2, 5, 10, 27

0.75

7.2 (5.4)

2, 4, 6, 9, 17

7.0 (5.3)

1, 3, 6, 9, 17

6.6 (5.3)

1, 3, 5, 9, 17

4.4 (4.8)

1, 1, 3, 6, 13

4.2 (4.5)

1, 1, 3, 5, 13

4.3 (4.15)

1, 2, 3, 6, 12

1

4.4 (2.7)

1, 2, 4, 6, 10

4.3 (2.7)

1, 2, 4, 6, 9

4.0 (2.9)

1, 2, 3, 5, 10

2.5 (2.3)

1, 1, 2, 3, 7

2.4 (2.1)

1, 1, 2, 3, 7

2.6 (2.1)

1, 1, 2, 3, 7

1.5

2.3 (1.1)

1, 1, 2, 3, 4

2.2 (1.1)

1, 1, 2, 3, 4

1.9 (1.2)

1, 1, 2, 3, 4

1.3 (0.7)

1, 1, 1, 2, 3

1.3 (0.7)

1, 1, 1, 2, 3

1.4 (0.8)

1, 1, 1, 2, 3

δ = 1.5

0

14.3 (12.6)

3, 6, 11, 18, 37

14.0 (12.0)

3, 6, 11, 18, 36

13.3 (11.8)

2, 6, 10, 17, 34

9.2 (11.5)

1, 2, 5, 12, 31

9.2 (11.5)

1, 2, 5, 12, 31

8.6 (9.8)

1, 3, 5, 11, 27

0.1

14.0 (12.1)

3, 6, 11, 18, 36

13.6 (11.7)

3, 6, 10, 17, 35

13.0 (11.4)

2, 5, 10, 17, 34

9.7 (11.9)

1, 2, 6, 13, 32

8.9 (11.0)

1, 2, 5, 12, 30

8.5 (9.7)

1, 2, 5, 11, 27

0.25

12.3 (10.3)

3, 6, 10, 16, 31

12.1 (10.1)

2, 6, 9, 15, 31

11.5 (9.7)

2, 5, 9, 15, 30

8.4 (10.1)

1, 2, 5, 11, 27

7.7 (9.3)

1, 2, 5, 10, 25

7.4 (8.2)

1, 2, 5, 9, 23

0.5

8.6 (6.6)

2, 4, 7, 11, 21

8.6 (6.6)

2, 4, 7, 11, 21

8.1 (6.6)

1, 4, 7, 11, 21

5.6 (6.1)

1, 2, 3, 7, 18

5.3 (5.9)

1, 2, 3, 7, 17

5.2 (5.4)

1, 2, 4, 7, 15

0.75

5.9 (4.0)

2, 3, 5, 8, 13

5.8 (4.0)

1, 3, 5, 8, 13

5.5 (4.1)

1, 2, 4, 7, 14

3.6 (3.5)

1, 1, 2, 5, 11

3.4 (3.3)

1, 1, 2, 4, 10

3.5 (3.1)

1, 1, 3, 5, 10

1

4.2 (2.5)

1, 2, 4, 5, 9

4.1 (2.6)

1, 2, 4, 5, 9

3.8 (2.7)

1, 2, 3, 5, 9

2.4 (2.1)

1, 1, 2, 3, 7

2.4 (1.9)

1, 1, 2, 3, 6

2.5 (2.0)

1, 1, 2, 3, 7

1.5

2.5(1.3)

1, 2, 2, 3, 5

2.3 (1.3)

1, 2, 2, 3, 5

2.1 (1.3)

1, 1, 2, 3, 5

1.5 (0.9)

1, 1, 1, 2, 3

1.4 (0.8)

1, 1, 1, 2, 3

1.5 (0.9)

1, 1, 1, 2, 3

δ = 1.75

0

8.2 (5.6)

2, 4, 7, 10, 19

8.0 (5.6)

2, 4, 7, 10, 19

7.6 (5.8)

1, 4, 6, 10, 19

4.8 (5.0)

1, 1, 3, 6, 15

4.8(5.0)

1, 1, 3, 6, 15

4.8 (4.5)

1, 2, 3, 6, 14

0.1

8.1 (5.5)

2, 4, 7, 10, 18

7.9 (5.6)

1, 2, 4, 7, 10

7.5 (5.6)

1, 3, 6, 10, 18

5.0 (5.2)

1, 1, 3, 7, 15

4.7 (4.8)

1, 1, 3, 6, 14, 71

4.7 (4.5)

1, 2, 3, 6, 14

0.25

7.6 (5.5)

2, 4, 6, 10, 18

7.4 (5.1)

2, 4, 6, 10, 17

7.1 (5.3)

1, 3, 6, 10, 17

4.7 (4.8)

1, 1, 3, 6, 14

4.4 (4.6)

1, 1, 3, 6, 13

4.4 (4.1)

1, 2, 3, 6, 13

0.5

6.3(4.1)

1, 3, 4, 6, 11

6.2 (4.2)

1, 3, 5, 8, 14

5.9 (4.3)

1, 3, 5, 8, 14

3.8 (3.7)

1, 1, 2, 5, 11

3.7 (3.5)

1, 1, 2, 5, 11

3.7 (3.2)

1, 1, 3, 5, 10

0.75

5.0 (3.1)

1, 3, 4, 6, 11

4.9 (3.2)

1, 3, 4, 6, 11

4.6 (3.3)

1, 2, 4, 6, 11

3.0 (2.7)

1, 1, 2, 4, 8

2.8 (2.5)

1, 1, 2, 4, 8

3.0 (2.4)

1, 1, 2, 4, 8

1

3.9 (2.3)

1, 2, 3, 5, 8

3.8 (2.3)

1, 2, 3, 5, 8

3.5 (2.5)

1, 2, 3, 5, 8

2.3 (1.9)

1, 1, 2, 3, 6

2.2 (1.7)

1, 1, 2, 3, 6

2.3 (1.7)

1, 1, 2, 3, 6

1.5

2.6 (1.3)

1, 2, 2, 3, 5

2.5 (1.3)

1, 2, 2, 3, 5

2.2 (1.4)

1, 1, 2, 3, 5

1.5 (1.0)

1, 1, 1, 2, 3

1.5 (0.9)

1, 1, 1, 2, 3

1.6 (0.9)

1, 1, 1, 2, 4

δ = 2

0

5.8 (3.5)

2, 3, 5, 7, 13

5.7 (3.6)

2, 3, 5, 7, 12

5.4 (3.8)

1, 3, 5, 7, 13

3.2 (3.0)

1, 1, 2, 4, 9

3.2 (3.0)

1, 1, 2, 4, 9

3.4 (2.8)

1, 1, 3, 4, 9

0.1

5.8 (3.6)

2, 3, 5, 7, 13

5.6 (3.6)

1, 3, 5, 7, 13

5.4 (3.8)

1, 3, 5, 7, 13

3.4 (3.2)

1, 1, 2, 4, 10

3.2 (3.0)

1, 1, 2, 4, 9

3.4 (2.8)

1, 1, 3, 4, 9

0.25

5.6 (3.4)

2, 3, 5, 7, 12

5.5 (3.4)

1, 3, 5, 7, 12

5.2 (3.6)

1, 3, 4, 7, 12

3.3 (3, 0)

1, 1, 2, 4, 9

3.1 (2.8)

1, 1, 2, 4, 9

3.2 (2.7)

1, 1, 2, 4, 9

0.5

5.0 (3.0)

2, 3, 4, 6, 11

4. 9(3.0)

1, 3, 4, 6, 11

4.6 (3.2)

1, 2, 4, 6, 11

2.9 (2.6)

1, 1, 2, 4, 8

2.8 (2.4)

1, 1, 2, 4, 8

2.9 (2.4)

1, 1, 2, 4, 8

0.75

4.3 (2.5)

1, 3, 4, 5, 9

4.2 (2.5)

1, 2, 4, 5, 9

3.9 (2.7)

1, 2, 3, 5, 9

2.5 (2.1)

1, 1, 2, 3, 7

2.4 (2.0)

1, 1, 2, 3, 6

2.5 (1.9)

1, 1, 2, 3, 6

1

3.6 (2.1)

1, 2, 3, 5, 8

3.5 (2.1)

1, 2, 3, 5, 8

3.2 (2.2)

1, 2, 3, 4, 8

2, 1 (1.6)

1, 1, 2, 3, 5

2.0 (1.5)

1, 1, 1, 3, 5

2.2 (1.5)

1, 1, 2, 3, 5

1.5

2.6 (1.4)

1, 2, 2, 3, 5

2.5 (1.4)

1, 2, 2, 3, 5

2.2 (1.4)

1, 1, 2, 3, 5

1.6 (1.0)

1, 1, 1, 2, 4

1.5 (0.9)

1, 1, 1, 2, 3

2.0 (1.0)

1, 1, 1, 2, 4

Table 6. Control chart performance based on Laplace( θ,δ ) distribution (m = 100, n = 5, ARL0 = 500)

6. 基于 Laplace( θ,δ ) 分布的控制图性能(m = 100, n = 5, ARL0 = 500)

θ

Steady-State

Time-Varying

EWMA

EEWMA

EEWMA

EWMA

EEWMA

EEWMA

λ = 0.05

λ1 = 0.05; λ2 = 0.01

λ1 = 0.05; λ2 = 0.03

λ = 0.05

λ1 = 0.05; λ2 = 0.01

λ1 = 0.05; λ2 = 0.03

δ = 1

0

501.9 (1010.6)

14, 66, 187, 499, 1944

500.2 (1057.2)

14, 60, 173, 474, 1958

500.2 (1130.2)

10, 48, 146, 437, 2092

498.3 (1045)

2, 42, 163, 481, 2051

499.3 (1095.8)

2, 31, 145, 456, 2054

505.7 (1240.7)

3, 21, 111, 415, 2254

0.1

451.9 (940.8)

13, 57, 162, 443, 1771

446.1 (974.6)

12, 53, 152, 1751

441.5 (1051.8)

9, 43, 125, 380, 1796

448.8 (997.3)

2, 35, 141, 426, 1842

440.3 (1020.0)

2, 27, 124, 401, 1854

440.1 (1146.0)

2, 18, 91, 353, 1840

0.25

275.7 (679.5)

9, 32, 87, 245, 1078

262.6 (762.5)

8, 29, 80, 227, 2021

251.5 (721.8)

6, 26, 68, 196, 967

263.0 (697.9)

1, 17, 68, 223, 1083

251.0 (695.1)

1, 14, 60, 204, 1024

247.1 (773.8)

2, 11, 43, 169, 1021

0.5

56.1 (164.3)

4, 11, 22, 49, 196

53.5 (163.6)

4, 11, 21, 47, 183

50.8 (186.9)

3, 10, 21, 44, 161

49.8 (173.1)

1, 4, 14, 41, 184

46.1 (168.5)

1, 4, 13, 37, 171

42.6 (176.6)

1, 4, 11, 30, 143

0.75

13.8 (23.3)

3, 5, 9, 15, 38

13, 4 (22.4)

2, 5, 9, 15, 37

13.1 (19.1)

2, 5, 9, 16, 37

9.8 (24.1)

1, 2, 5, 11, 33

9.2 (19.1)

1, 2, 4, 10, 31

8.8 (20.0)

1, 2, 5, 10, 28

1

6.2 (5.1)

2, 3, 5, 8, 15

6.1 (5.1)

1, 3, 5, 8, 15

6.0 (5.3)

1, 3, 5, 8, 15

3.7 (4.6)

1, 1, 2, 4, 11

3.5 (4.3)

1, 1, 2, 4, 11

3.7 (4.0)

1, 1, 3, 4, 11

1.5

2.7 (1.4)

1, 2, 2, 3, 5

2.6 (1, 4)

1, 2, 2, 3, 5

2.4 (1.6)

1, 1, 2, 3, 6

1.5 (1.0)

1, 1, 1, 2, 3

1.5 (0.9)

1, 1, 1, 2, 3

1.6 (1.0)

1, 1, 1, 2, 3

δ = 1.1

0

240.7 (525.5)

10, 36, 93, 236, 902

229.3 (508.5)

9, 34, 87, 224, 857

221.8 (576.3)

7, 28, 72, 193, 842

226.6 (531.3)

1, 19, 77, 220, 893

221.0 (579.2)

1, 15, 66, 205, 864

201.9 (598.1)

2, 12, 47, 165, 793

0.1

222.1 (493.8)

9, 33, 85, 216, 831

209.5 (478.5)

9, 31, 77, 202, 784

193.9 (506.5)

6, 26, 65, 173, 718

206.9 (503.9)

1, 16, 66, 201, 804

197.6 (504.0)

1, 13, 59, 183, 791

183.3 (567.6)

2, 11, 42, 146, 725

0.25

136.2 (317.2)

7, 21, 51, 129, 508

133.9 (343.1)

6, 21, 48, 124, 497

125.2 (363.4)

5, 19, 42.5, 106, 457

127.6 (344.6)

1, 10, 39, 116, 501

123.9 (372.1)

1, 8, 34, 106, 486

110.7 (397.7)

2, 8, 25, 83, 431

0.5

38.8 (92.7)

4, 9, 18, 37, 129

37.3 (109.5)

4, 9, 18, 36, 119

34.3 (95.4)

3, 9, 17, 34, 107

32.7 (92.8)

1, 4, 11, 30, 121

31.1 (100.7)

1, 3, 10, 27, 113

27.5 (117.2)

1, 4, 9, 23, 96

0.75

12.4 (16.6)

2, 5, 8, 14, 24

11.9 (15.1)

2, 5, 8, 14, 33

11.8 (15.4)

1, 4, 8, 14, 33

8.7 (16.0)

1, 2, 4, 10, 29

8.1 (16.6)

1, 2, 4, 9, 27

7.7 (14.5)

1, 2, 4, 9, 24

1

6.1 (4.9)

2, 3, 5, 7, 14

6.0 (4.9)

1, 3, 5, 7, 14

5.9 (5.1)

1, 3, 5, 8, 15

3.6 (4.4)

1, 1, 2, 4, 11

3.5 (4.1)

1, 1, 2, 4, 10

3.7 (4.0)

1, 1, 2, 5, 10

1.5

2.8 (1.5)

1, 2, 3, 3, 5

2.7 (1.5)

1, 2, 2, 3, 5

2.5 (1.6)

1, 1, 2, 3, 5

1.5 (1.0)

1, 1, 1, 2, 4

1.5 (1.0)

1, 1, 1, 2, 3

1.7 (1.1)

1, 1, 1, 2, 4

δ = 1.25

0

82.7 (165.7)

6, 18, 40, 88, 284

79.2 (159.9)

6, 18, 38, 83, 372

70.4 (152.1)

4, 16, 33, 72, 241

72.4 (163.6)

1, 8, 29, 75, 275

68.5 (164.5)

1, 7, 25, 71, 260

57.7 (150.3)

1, 6, 19, 55, 222

0.1

77.6 (158.3)

6, 17, 27, 82, 270

73.9 (158.1)

6, 17, 35, 77, 252

66.2 (147.9)

4, 5, 32, 68, 225

67.2 (149.5)

1, 7, 27, 71, 251

64.2 (152.5)

1, 6, 23, 65, 244

55.0 (160.1)

1, 6, 18, 52, 207

0.25

56.5 (111.3)

5, 13, 28, 59, 194

53.2 (108.2)

5, 13, 26, 56, 178

48.0 (108.6)

3, 12, 25, 50, 158

48.0 (103.1)

1, 5, 19, 51, 180

45.0 (121.4)

1, 5, 16, 45, 67

37.8 (103.5)

1, 5, 14, 36, 141

0.5

23.5 (37.7)

3, 8, 14, 26, 73

22.7 (35.7)

3, 7, 14, 25, 69

21.3 (32.2)

2, 7, 13, 25, 64

18.5 (37.6)

1, 3, 8, 20, 66

16.9 (42.5)

1, 3, 7, 18, 60

15.1 (31.5)

1, 3, 7, 16, 52

0.75

10.4 (11.3)

2, 5, 8, 12, 27

10.2 (10.7)

2, 5, 8, 12, 27

9.9 (10.6)

1, 4, 7, 13, 27

7.0 (11.1)

1, 2, 4, 8, 23

6.5 (10.5)

1, 2, 4, 8, 22

6.3 (8.6)

1, 2, 4, 8, 19

1

5.8 (4.4)

2, 3, 5, 7, 14

5.7 (4.5)

1, 3, 5, 7, 13

5.6 (5.0)

1, 2, 4, 7, 14

3, 6 (3.9)

1, 1, 2, 4, 10

3.3 (3.6)

1, 1, 2, 4, 10

3.5 (3.5)

1, 1, 2, 4, 10

1.5

2.9 (1.5)

1, 2, 3, 4, 6

2.8 (1.5)

1, 2, 2, 4, 6

2.6 (1.7)

1, 1, 2, 3, 6

1, 7 (1.1)

1, 1, 1, 2, 4

1.6 (1.0)

1, 1, 1, 2, 4

1.7 (1.1)

1, 1, 1, 2, 4

δ = 1.5

0

25.1 (30.1)

4, 9, 16, 30, 73

24.1 (27.5)

4, 9, 16, 29, 70

22.4 (25.8)

2, 8, 16, 28, 64

19.5 (30.8)

1, 3, 10, 24, 68

17.8 (28.0)

1, 3, 9, 22, 63

15.6 (26.7)

1, 3, 8, 18, 53

0.1

24.3 (29.7)

4, 9, 16, 29, 71

23.5 (28.0)

3, 9, 16, 28, 68

21.8 (26.5)

2, 8, 15, 27, 62

18.8 (30.0)

1, 3, 10, 23, 65

17.1 (28.5)

1, 3, 8, 21, 60

15.3 (24.4)

1, 3, 8, 18, 53

0.25

20.7 (23.4)

3, 8, 14, 25, 59

20.1 (23.8)

3, 8, 14, 24, 57

18.7 (20.5)

2, 7, 13, 23, 53

15.4 (23.6)

1, 3, 8, 19, 53

14.2 (24.6)

1, 3, 7, 17, 49

13.9 (21.3)

1, 3, 7, 15, 44

0.5

13.2 (13.6)

3, 6, 10, 16, 35

13.0 (13.2)

2, 6, 10, 16, 35

12.3 (12.3)

2, 5, 9, 16, 33

9.2 (13.4)

1, 2, 5, 11, 31

8.4 (11.9)

1, 2, 5, 10, 29

8.0 (10.9)

1, 2, 5, 10, 25

0.75

8.0 (6.5)

2, 4, 6, 10, 20

7.9 (6.4)

2, 4, 6, 10, 20

7.7 (6.7)

1, 3, 6, 10, 20

5.1 (6.4)

1, 1, 3, 6, 16

4.8 (5.8)

1, 1, 3, 6, 15

4.8 (5.3)

1, 2, 3, 6, 14

1

5.4 (3.7)

2, 3, 4, 7, 12

5.2 (3.6)

1, 3, 4, 7, 12

5.0 (3.9)

1, 2, 4, 7, 12

3.1 (3.2)

1, 1, 2, 4, 9

3.0 (2.9)

1, 1, 2, 4, 9

3.1 (2.9)

1, 1, 2, 4, 9

1.5

3.0 (1.6)

1, 2, 3, 4, 6

2.8 (1.6)

1, 2, 3, 4, 6

2.6 (1.7)

1, 1, 2, 3, 6

1.7 (1.2)

1, 1, 1, 2, 4

1.6 (1.1)

1, 1, 1, 2, 4

1.7 (1.2)

1, 1, 1, 2, 4

δ = 1.75

0

8.1 (5.6)

2, 4, 7, 10, 19

8.0 (5.6)

2, 4, 7, 10, 19

7.7 (5.7)

1, 4, 6, 10, 19

4.8 (5.0)

1, 1, 3, 6, 15

4.8 (5.0)

1, 1, 3, 6, 15

4.9 (4.6)

1, 2, 3, 6, 14

0.1

13.0 (11.1)

3, 6, 10, 16, 33

12.6 (10.6)

2, 6, 10, 16, 32

12.1 (10.5)

2, 5, 10, 16, 31

8.9 (11.0)

1, 2, 5, 12, 29

8.2 (10.2)

1, 2, 5, 11, 28

7.8 (9.1)

1, 2, 5, 10, 24

0.25

11.8 (10.0)

3, 6, 9, 15, 30

11.6 (9.7)

2, 5, 9, 15, 29

11.2 (9.7)

2, 5, 9, 15, 29

7.9 (9.8)

1, 2, 5, 10, 26

7.4 (9.3)

1, 2, 4, 9, 24

7.0 (7.8)

1, 2, 5, 9, 21

0.5

9.1 (7.1)

2, 4, 7, 11, 22

8.9 (7.0)

2, 4, 7, 11, 22

8.6 (7.0)

1, 4, 7, 11, 22

5.8 (6.7)

1, 2, 3, 7, 19

5.4 (6.2)

1, 2, 3, 7, 17

5.4 (5.7)

1, 2, 4, 7, 16

0.75

6.6 (4.7)

2, 3, 5, 8, 15

6.4 (4.6)

2, 3, 5, 8, 15

6.2 (4.8)

1, 3, 5, 8, 15

4.0 (4.2)

1, 1, 3, 5, 12

3.7 (3.9)

1, 1, 2, 5, 11

3.7 (3.7)

1, 1, 3, 5, 11

1

4.9 (3.2)

1, 3, 4, 6, 11

4.7 (3.1)

1, 3, 4, 6, 10

4.5 (3.3)

1, 2, 4, 6, 11

2.8 (2.6)

1, 1, 2, 4, 8

2.7 (2.8)

1, 1, 2, 3, 7

2.8 (2.4)

1, 1, 2, 4, 8

1.5

3.0 (1.6)

1, 2, 3, 4, 6

2.8 (1.6)

1, 2, 3, 4, 6

2.6 (1.7)

1, 1, 2, 3, 6

1.7 (1.2)

1, 1, 1, 2, 4

1.6 (1.2)

1, 1, 1, 2, 4

1.7 (1.1)

1, 1, 1, 2, 4

δ = 2

0

8.8 (6.5)

2, 5, 7, 11, 21

8.7 (6.4)

2, 4, 7, 11, 21

8.5 (6.5)

1, 4, 7, 11, 21

5.6 (6.1)

1, 2, 3, 7, 17

5.2 (5.8)

1, 2, 3, 7, 16

5.2 (5.2)

1, 2, 4, 7, 15

0.1

8.8 (6.4)

2, 5, 7, 11, 21

8.6 (6.3)

2, 4, 7, 11, 20

8.3 (6.4)

1, 4, 7, 11, 20

5.5 (6.0)

1, 2, 3, 7, 17

5.1 (5.6)

1, 2, 3, 7, 16

5.3 (5.3)

1, 2, 4, 7, 15

0.25

8.3 (6.0)

2, 4, 7, 11, 19

8.1 (5.8)

2, 4, 7, 10, 19

7.9 (6.0)

1, 4, 6, 10, 19

5.2 (5.6)

1, 1, 3, 7, 16

4.8 (5.2)

1, 1, 3, 6, 15

4.9 (4.9)

1, 2, 3, 6, 14

0.5

7.0 (4.8)

2, 4, 6, 9, 16

6.9 (4.8)

2, 4, 6, 9, 16

6.6 (5.0)

1, 3, 5, 9, 16

4.2 (4.3)

1, 1, 3, 6, 13

4.0 (4.1)

1, 1, 2, 5, 12

4.1 (3.8)

1, 2, 3, 5, 11

0.75

5.5 (3.6)

2, 3, 5, 7, 12

5.4 (3.5)

1, 3, 5, 7, 12

5.2 (3.8)

1, 2, 4, 7, 13

3.3 (3.1)

1, 1, 2, 4, 9

3.0 (2.8)

1, 1, 2, 4, 9

3.2 (2.7)

1, 1, 2, 4, 9

1

4.4 (2.6)

1, 3, 4, 6, 9

4.3 (2.6)

1, 3, 4, 6, 9

4.1 (2.9)

1, 2, 3, 5, 10

2.5 (2.2)

1, 1, 2, 3, 7

2.4 (2.0)

1, 1, 2, 3, 6

2.6 (2.0)

1, 1, 2, 3, 6

1.5

2.9 (1.5)

1, 2, 3, 4, 6

2.8 (1.5)

1, 2, 3, 4, 6

2.6 (1.6)

1, 1, 2, 3, 6

1.7 (1.1)

1, 1, 1, 2, 4

1.6 (1.1)

1, 1, 1, 2, 4

1.7 (1.1)

1, 1, 1, 2, 4

Table 7. Control chart performance based on Lognormal( θ,δ ) distribution (m = 100, n = 5, ARL0 = 500)

7. 基于 Lognormal( θ,δ ) 分布的控制图性能(m = 100, n = 5, ARL0 = 500)

θ

Steady-State

Time-Varying

EWMA

EEWMA

EEWMA

EWMA

EEWMA

EEWMA

λ = 0.05

λ1 = 0.05; λ2 = 0.01

λ1 = 0.05; λ2 = 0.03

λ = 0.05

λ1 = 0.05; λ2 = 0.01

λ1 = 0.05; λ2 = 0.03

δ = 1

0

508.2 (1045.5)

14, 66, 189, 500, 2031

498.5 (1046)

13, 60, 175, 472, 1971

502.3 (1154.7)

10, 48, 146, 433, 2080

497.6 (1070.5)

2, 41, 160, 478, 2028

499.5 (1115.5)

2, 32, 145, 460, 2103

501.0 (1230.0)

2, 21, 109, 409, 2227

0.1

415.9 (882.7)

12, 52, 148, 402, 1626

411.1 (913.8)

12, 50, 140, 382, 1625

404.3 (985.4)

9, 40, 116, 341, 1646

410.7 (945.8)

2, 31, 124, 376, 1686

412.7 (943.6)

2, 32, 128, 385, 1670

405.5 (1070.5)

2, 17, 82, 318, 1754

0.25

175.0 (457.1)

7, 24, 60, 157, 655

170.0 (468.8)

7, 23, 57, 147, 618

155.3 (475.4)

5, 21, 49, 125, 557

164.8 (458.9)

1, 12, 46, 140, 657

156.7 (481.9)

1, 10, 41, 127, 607

149.0 (517.3)

2, 9, 30, 102, 572

0.5

25.3 (40.5)

3, 8, 15, 28, 77

24.3 (45.5)

3, 8, 15, 27, 73

22.5 (41.6)

2, 7, 14, 26, 65

20.0 (46.9)

1, 3, 9, 22, 69

18.2 (38.1)

1, 3, 8, 20, 65

16.4 (45.3)

1, 3, 8, 17, 55

0.75

8.3 (6.7)

2, 4, 6, 10, 20

8.0 (6.6)

2, 4, 6, 10, 20

7.9 (6.8)

1, 3, 6, 10, 20

5.3 (6.3)

1, 1, 3, 7, 17

5.0 (6.1)

1, 1, 3, 6, 16

5.0 (5.3)

1, 2, 3, 6, 15

1

4.3 (2.6)

1, 2, 4, 5, 9

4.2 (2.7)

1, 2, 4, 5, 9

4.0 (2.9)

1, 2, 3, 5, 10

2.5 (2.1)

1, 1, 2, 3, 7

2.4 (2.0)

1, 1, 2, 3, 6

2.6 (2.2)

1, 1, 2, 3, 7

1.5

2.1 (1.0)

1, 1, 2, 3, 4

1.9 (1.0)

1, 1, 2, 2, 4

1.7 (1.0)

1, 1, 1, 2, 4

1.3 (0.6)

1, 1, 1, 1, 2

1.3 (0.6)

1, 1, 1, 1, 2

1.3 (0.6)

1, 1, 1, 2, 3

δ = 1.1

0

171.6 (347.2)

9, 30, 73, 177, 634

160.7 (350.9)

8, 27, 67, 163, 585

146.1 (340.3)

6, 24, 57, 141, 545

160.3 (385.1)

1, 15, 57, 158, 633

151.5 (387.6)

1, 12, 50, 146, 581

134.7 (382.5)

2, 10, 35, 118, 536

0.1

149.6 (316.3)

8, 26, 63, 153, 545

143.3 (331.7)

7, 25, 59, 142, 511

127.0 (325.7)

6, 21, 50, 121, 455

128.7 (304.3)

1, 10, 43, 126, 513

127.3 (315.9)

1, 10, 43, 124, 499

113.1 (324.2)

2, 9, 31, 101, 447

0.25

78.1 (165.1)

6, 16, 36, 80, 270

72.3 (150.0)

5, 16, 33, 74, 255

65.1 (150.9)

4, 4, 30, 66, 220

68.5 (172.3)

1, 7, 25, 68, 261

63.6 (154.7)

1, 6, 22, 63, 243

54.7 (166.9)

1, 6, 17, 49, 204

0.5

19.6 (26.9)

3, 7, 13, 23, 56

19.2 (29.1)

3, 7, 13, 23, 55

17.5 (21.5)

2, 6, 12, 22, 50

14.7 (23.5)

1, 3, 7, 18, 51

13.5 (23.7)

1, 2, 7, 16, 47

12.2 (20.6)

1, 3, 7, 14, 41

0.75

7.8 (6.1)

2, 4, 6, 10, 19

7.7 (6.2)

2, 4, 6, 10, 19

7.4 (6.2)

1, 3, 6, 10, 19

5.0 (5.6)

1, 1, 3, 6, 15

4.7 (5.3)

1, 1, 3, 6, 15

4.7 (5.0)

1, 2, 3, 6, 14

1

4.5 (2.7)

1, 2, 4, 6, 10

4.3 (2.7)

1, 2, 3, 5, 9

4.1 (2.9)

1, 2, 3, 5, 10

2.6 (2.2)

1, 1, 2, 3, 7

2.5 (2.1)

1, 1, 2, 3, 7

2.7 (2.2)

1, 1, 2, 3, 7

1.5

2.2 (1.1)

1, 1, 2, 3, 4

2.1 (1.1)

1, 1, 2, 3, 4

1.8 (1.1)

1, 1, 2, 2, 4

1.3 (0.6)

1, 1, 1, 1, 3

1.3 (0.6)

1, 1, 1, 1, 3

1.4 (0.7)

1, 1, 1, 2, 3

δ = 1.25

0

45.6 (67.2)

5, 13, 27, 52, 146

43.0 (59.9)

5, 13, 25, 50, 137

38.7 (55.4)

3, 12, 23, 46, 122

38.2 (68.5)

1, 5, 18, 45, 138

34.3 (71.3)

1, 4, 15, 40, 124

29.2 (54.2)

1, 5, 13, 32, 109

0.1

42.1 (57.7)

5, 13, 25, 49, 134

39.9 (60.0)

5, 12, 24, 47, 125

36.0 (55.3)

3, 11, 32, 42, 111

35.3 (67.2)

1, 5, 16, 41, 128

32.1 (59.1)

1, 4, 14, 37, 118

26.6 (46.8)

1, 5, 12, 30, 98

0.25

29.8 (38.7)

4, 10, 19, 35, 91

28.6 (36.3)

4, 10, 18, 34, 87

25.9 (31.9)

2, 9, 17, 31, 77

24.2 (41.3)

1, 4, 12, 29, 85

21.8 (37.3)

1.3, 10, 26, 78

18.7 (34.3)

1, 4, 9, 21, 66

0.5

13.7 (13.5)

3, 6, 10, 17, 37

13.4 (13.1)

2, 6, 10, 17, 36

12.6 (12.2)

1, 5, 9, 16, 34

9.6 (12.8)

1, 2, 5, 12, 32

9.0 (12.6)

1, 2, 5, 11, 30

8.3 (10.4)

1, 2, 5, 10, 27

0.75

7.1 (5.3)

2, 4, 6, 9, 17

7.0 (5.3)

1, 3, 6, 9, 17

6.7 (5.4)

1, 3, 5, 9, 17

4.5 (4.8)

1, 1, 3, 6, 14

4.3 (4.5)

1, 1, 3, 5, 13

4.3 (4.2)

1, 2, 3, 6, 12

1

4.4 (2.7)

1, 2, 4, 6, 10

4.3 (2.7)

1, 2, 4, 6, 9

4.0 (2.9)

1, 2, 3, 5, 10

2.6 (2.3)

1, 1, 2, 3, 7

2.5 (2.2)

1, 1, 2, 3, 7

2.6 (2.2)

1, 1, 2, 3, 7

1.5

2.3 (1.1)

1, 1, 2, 3, 4

2.2 (1.2)

1, 1, 23, 4

1.9 (1.2)

1, 1, 2, 3, 4

1.4 (0.8)

1, 1, 1, 1, 3

1.4 (0.7)

1, 1, 1, 2, 3

1.5 (0.8)

1, 1, 1, 2, 3

δ = 1.5

0

14.3 (12.5)

3, 6, 11, 18, 37

14.1 (12.3)

3, 6, 11, 18, 36

13.3 (11.5)

2, 6, 10, 17, 34

10.0 (12.2)

1, 2, 6, 13, 33

9.2 (11.4)

1, 2, 5, 12, 31

8.6 (10.1)

1, 3, 5, 11, 27

0.1

14.0 (12.2)

3, 6, 11, 18, 36

13.6 (11.6)

3, 6, 10, 17, 35

12.9 (11.3)

2, 6, 10, 17, 34

9.6 (11.8)

1, 2, 6, 13, 32

9.0 (11.0)

1, 2, 5, 12, 30

8.4 (9.7)

1, 2, 5, 11, 26

0.25

12.3 (10.2)

3, 6, 10, 16, 31

12.0 (9.9)

2, 6, 9, 15, 30

11.5 (9.8)

2, 5, 9, 15, 30

8.5 (9.9)

1, 2, 5, 11, 27

7.8 (9.5)

1, 2, 5, 10, 26

7.5 (8.3)

1, 2, 5, 10, 23

0.5

8.8 (6.6)

2, 4, 7, 11, 21

8.5 (6.5)

2, 4, 7, 11, 21

8.2 (6.6)

1, 4, 7, 11, 21

5.6 (6.3)

1, 2, 3, 7, 18

5.3 (5.8)

1, 2, 3, 7, 17

5.2 (5.3)

1, 2, 4, 7, 15

0.75

6.0 (4.1)

2, 3, 5, 8, 14

5.8 (4.0)

1, 3, 5, 8, 13

5.5 (4.2)

1, 2, 4, 7, 14

3.6 (3.6)

1, 1, 2, 5, 11

3.4 (3.3)

1, 1, 2, 4, 10

3.4 (3.2)

1, 1, 3, 5, 10

1

4.2 (2.6)

1, 2, 4, 5, 9

4.1 (2.6)

1, 2, 4, 5, 9

3.8 (2.7)

1, 2, 3, 5, 9

2.5 (2.1)

1, 1, 2, 3, 7

2.4 (2.0)

1, 1, 2, 3, 6

2.5 (2.0)

1, 1, 2, 3, 7

1.5

2.5 (1.3)

1, 2, 2, 3, 5

2.3 (1.3)

1, 1, 2, 3, 5

2.1 (1.3)

1, 1, 2, 3, 5

1.5 (0.9)

1, 1, 1, 2, 3

1.5 (0.8)

1, 1, 1, 2, 3

1.5 (0.9)

1, 1, 1, 2, 3

δ = 1.75

0

13.2 (11.4)

3, 6, 10, 16, 34

12.8 (10.8)

3, 6, 10, 16, 33

12.3 (10.6)

2, 5, 10, 16, 32

9.0 (11.1)

1, 2, 5, 12, 30

8.4 (10.5)

1, 2, 5, 11, 28

8.0 (9.4)

1, 2, 5, 10, 25

0.1

8.1 (5.6)

2, 4, 7, 10, 19

7.9 (5.5)

2, 4, 7, 10, 18

7.6 (5.7)

1, 4, 6, 10, 19

5.0 (5.3)

1, 1, 3, 7, 15

4.7 (5.0)

1, 1, 3, 6, 14

4.8 (4.6)

1, 2, 3, 6, 14

0.25

7.6 (5.2)

2, 4, 6, 10, 18

7.5 (5.2)

2, 4, 6, 10, 17

7.1 (5.3)

1, 3, 6, 10, 17

4.7 (4.6)

1, 1, 3, 6, 14

4.4 (4.5)

1, 1, 3, 6, 13

4.5 (4.2)

1, 2, 3, 6, 13

0.5

6.3 (4.2)

2, 3, 5, 8, 14

6.2 (4.2)

1, 3, 5, 8, 14

5.9 (4.3)

1, 3, 5, 8, 14

3.8 (3.8)

1, 1, 3, 5, 11

3.6 (3.5)

1, 1, 2, 5, 11

3.7 (3.3)

1, 1, 3, 5, 10

0.75

5.0 (3.1)

1, 3, 4, 6, 11

4.9 (3.1)

1, 3, 4, 6, 11

4.6 (3.3)

1, 2, 4, 6, 11

2.9 (2.7)

1, 1, 2, 4, 8

2.8 (2.5)

1, 1, 2, 4, 8

3.0 (2.5)

1, 1, 2, 4, 8

1

3.9 (2.3)

1, 2, 3, 5, 8

3.8 (2.3)

1, 2, 3, 5, 8

3.5 (2.5)

1, 2, 3, 5, 8

2.3 (1.9)

1, 1, 2, 3, 6

2.5 (1.8)

1, 1, 2, 3, 6

2.3 (1.8)

1, 1, 2, 3, 6

1.5

2.6 (1.3)

1, 2, 2, 3, 5

2.4 (1.3)

1, 1, 2, 3, 5

2.2 (1.4)

1, 1, 2, 3, 5

1.5 (0.9)

1, 1, 1, 2, 3

1.5 (0.9)

1, 1, 1, 2, 3

1.6 (0.9)

1, 1, 1, 2, 4

δ = 2

0

5.8 (3.5)

2, 3, 5, 7, 13

5.7 (3.6)

2, 3, 5, 7, 13

5.5 (3.8)

1, 3, 5, 7, 13

3.4 (3.2)

1, 1, 2, 4, 10

3.2 (3.0)

1, 1, 2, 4, 9

3.4 (2.9)

1, 1, 3, 4, 9

0.1

5.8 (3.6)

2, 3, 5, 7, 12

5.6 (3.6)

1, 3, 5, 7, 12

5.4 (3.8)

1, 3, 5, 7, 13

3.4 (3.1)

1, 1, 1, 2, 4

3.2 (3.0)

1, 1, 2, 4, 9

3.4 (2.8)

1, 1, 3, 4, 9

0.25

5.6 (3.4)

2, 3, 5, 7, 12

5.5 (3.4)

1, 3, 5, 7, 12

5.2 (3.7)

1, 3, 4, 7, 12

3.3 (3.0)

1, 1, 2, 4, 9

3.1 (2.8)

1, 1, 2, 4, 9

3.2 (2.7)

1, 1, 2, 4, 9

0.5

5.0 (3.0)

2, 3, 4, 6, 11

4.9 (3.0)

1, 3, 4, 6, 11

4.7 (3.2)

1, 2, 4, 6, 11

2.9 (2.6)

1, 1, 2, 4, 8

2.8 (2.5)

1, 1, 2, 4, 8

2.9 (2.3)

1, 1, 2, 4, 8

0.75

4.3 (2.5)

1, 3, 4, 5, 9

4.2 (2.5)

1, 2, 4, 5, 9

3.9 (2.7)

1, 2, 3, 5, 9

2.5 (2.1)

1, 1, 2, 3, 7

2.4 (2.0)

1, 1, 2, 3, 6

2.6 (2.0)

1, 1, 2, 3, 7

1

3.6 (2.1)

1, 2, 3, 5, 7

3.5 (2.1)

1, 2, 3, 5, 7

3.3 (2.2)

1, 2, 3, 4, 8

2.1 (1.6)

1, 1, 1, 3, 5

2.1 (1.6)

1, 1, 1, 3, 5

2.2 (1.6)

1, 1, 2, 3, 5

1.5

2.6 (1.4)

1, 2, 2, 3, 5

2.5 (1.4)

1, 1, 2, 3, 5

2.2 (1.4)

1, 1, 2, 3, 5

1.6 (1.0)

1, 1, 1, 2, 4

1.5 (0.9)

1, 1, 1, 2, 3

1.6 (1.0)

1, 1, 1, 2, 4

对于表5~7的三种过程分布,失控运行长度的分布在小到中等漂移时向右倾斜,并随着漂移幅度的增加而逐渐对称;同时,ARL1、SDRL1和运行长度的百分位数随着漂移增加而急剧下降,甚至在大漂移时可以退化至1。下面将分别对三种过程分布下控制图的进行失控性能分析:

1) 当过程服从正态分布时:依据表5可以看出,基于稳态控制限方案,EEL控制图对位置和尺度参数从小到大的混合漂移监测优于EL控制图, λ 2 =0.03 的EEL控制图具备更优的监测性能;基于时变控制限方案,两种参数EEL控制图性能都优于EL控制图,其中, λ 2 =0.03 的EEL控制图对 θ=( 0,0.1,0.25,0.5 ) δ=( 1,1.1,1.25,1.5,1.75 ) 混合漂移监测表现优异, λ 2 =0.01 的EEL控制图对于其它混合大漂移监测更优。

2) 当过程服从拉普拉斯分布时:依据表6可以看出,EEL-TV方案和EEL-SS方案的性能与正态分布相似;仅 λ 2 =0.03 的EEL-TV方案存在轻微例外,对 θ=0.75 δ=( 1,1.1,1.25,1.5,1.75 ) 漂移监测更好。

3) 当过程服从对数正态分布时:依据表7可以看出,基于稳态控制限方案,与正态分布时相似;基于时变控制限方案,两种参数的EEL控制图性能都优于EL控制图, λ 2 =0.03 的 EEL控制图对 θ=( 0,0.1,0.25,0.5,0.75 ) δ=( 1,1.1,1.25,1.5 ) 混合漂移和仅有尺度参数 δ=1.75 漂移时表现优异, λ 2 =0.01 的EEL控制图对其它混合大漂移检测监测更优,且都优于EL控制图。

综上所述,对三种分布过程位置与尺度参数的联合监测,EEL控制图表现优异,且对小漂移监测效率更优于EL控制图。其中,EEL-TV方案的ARL1、SDRL1和百分位数小于EEL-SS方案,即EEL-TV方案能够及时监测出小漂移。当 λ 1 =0.05 时,EEL-SS方案选取 λ 2 =0.03 ,EEL-VT方案小漂移选取 λ 2 =0.03 和大漂移选取 λ 2 =0.01 的漂移监测效果更优。

4. 仿真实验和实例分析

本节通过仿真实验和工业活塞环实例展示EEL控制图的应用与监测性能。

4.1. 仿真实验

通过数值仿真模拟实验对EL控制图( λ=0.05 ),EEL1控制图( λ 1 =0.05 , λ 2 =0.01 )和 EEL2控制图( λ 1 =0.05 , λ 2 =0.03 )进行位置和尺度参数漂移监测的性能分析。当m = 100,n = 5和ARL0 = 500时,阶段I的IC状态数据来自 Normal( 0,1 ) ,阶段II的OC状态数据来自 Normal( 0.2,1.2 ) ,代表位置和尺度参数同时发生向上0.2的小漂移。三种控制图方案的稳态控制限系数和时变控制限系数分别为KS(EL) = 1.972、KS(EEL1) = 1.922、KS(EEL2) = 1.980和KT(EL) = 2.008、KT(EEL1) = 1.968、KT(EEL2) = 2.063,其监测结果如图1~3所示。

Figure 1. EL control chart ( λ=0.05 )

1. EL控制图( λ=0.05 )

Figure 2. EEL1 control chart ( λ 1 =0.05 , λ 2 =0.01 )

2. EEL1控制图( λ 1 =0.05 , λ 2 =0.01 )

Figure 3. EEL2 control chart ( λ 1 =0.05 , λ 2 =0.03 )

3. EEL2控制图( λ 1 =0.05 , λ 2 =0.03 )

对于稳态控制限方案,EL控制图和EEL1控制图在第48时间点发出OC信号,则EEL2控制图在第41时间点发出OC信号;对于时变控制限方案,EL控制图在第48时间点发出OC信号,EEL1和EEL2控制图都在第7时间点发出OC信号,且EEL2控制图在15、18、41仍持续发出警告。综上,EEL控制图对小漂移的监测性能优于EL控制图;EEL-TV方案监测性能优于EEL-SS方案,且对小漂移选取较大 λ 2 =0.03 的监测效果更佳。

4.2. 实例分析

通过监测工业锻压制造的活塞环直径对EL控制图( λ=0.05 )和EEL控制图( λ 1 =0.05 λ 2 =0.02 )进行实例分析。当m = 100、n = 5和ARL0 = 500时,稳态控制限系数和时变控制限系数分别为KS(EL) = 1.972、KS(EEL) = 1.918和KT(EL) = 2.008、KT(EEL) = 1.985。IC状态数据来自Montgomery [16]活塞环案例的前20组数据;待监测的15组样本数据、 E L t EE L t 图统计量见表8,控制图监测结果如图4所示。

Table 8. Sample data to be detected and statistics of EL and EEL control chart

8. 待检测样本数据及EL、EEL图统计量

t

待检测样本数据(n = 5)

E L t

EE L t

1

74.012

74.015

74.030

73.986

74.000

2.088222

2.088222

2

73.995

74.010

73.990

74.015

74.001

1.992273

1.958748

3

73.987

73.999

73.985

74.000

73.990

2.104844

2.108786

4

74.008

74.010

74.003

73.991

74.006

2.030829

1.991876

5

74.003

74.000

74.001

73.986

73.997

2.097333

2.087674

6

73.994

74.003

74.015

74.020

74.002

2.05043

2.017402

7

74.008

74.002

74.018

73.995

74.005

2.011469

1.995077

8

74.001

74.004

73.990

73.996

73.998

2.039043

2.038562

9

74.015

74.000

74.016

74.012

73.996

2.070019

2.059074

10

73.989

74.005

73.996

74.016

74.012

2.022062

1.999674

11

74.001

73.990

73.992

74.010

74.025

1.964715

1.961223

12

74.015

74.018

74.022

74.005

74.019

2.496412

2.514816

13

74.035

74.010

74.012

74.015

74.028

3.163613

2.979421

14

74.017

74.013

74.036

74.025

74.026

4.052956

3.620753

15

74.010

74.005

74.029

74.000

74.020

4.094248

3.337061

Figure 4. EL control chart and EEL control chart for monitoring piston ring data

4. 监测活塞环数据的EL控制图和EEL控制图

对于稳态控制限方案,EL、EEL控制图分别在第13、12时间点发出OC信号;时变控制限方案,EL、EEL控制图分别在第13、12时间点发出OC信号。综上,两种方案的EEL控制图监测性能都优于EL控制图,即EEL控制图对位置和尺度参数的小漂移更加敏感。

5. 结论

本文基于Lepage统计量提出一种位置和尺度参数扩展EWMA (EEWMA-Lepage, EEL)联合监测控制图,设计了时变控制限方案(EEL-TV)和稳态控制限方案(EEL-SS),并应用于监测工业活塞环生产中。基于蒙特卡洛模拟,将运行长度的均值、标准差和百分位数作为衡量指标,与现有EL控制图进行受控和失控性能比较,两种方案EEL控制图对过程位置和尺度参数小漂移具备更高的灵敏性,其中EEL-TV方案表现更优异。在实际应用中,可根据样本数据和监测需求选取合适的控制图方案。

基金项目

陕西省自然科学基础研究计划资助项目(2024JC-ZDXM-23);长安大学中央高校基本科研业务费专项基金资助项目(310812163504)。

NOTES

*通讯作者。

参考文献

[1] Zhang, T., He, Z., Zhao, X. and Qu, L. (2021) Joint Monitoring of Post-Sales Online Review Processes Based on a Distribution-Free EWMA Scheme. Computers & Industrial Engineering, 158, Article 107372.
https://doi.org/10.1016/j.cie.2021.107372
[2] 李龙辉, 商艳芬, 刘彦利, 等. 考虑手术分类协变量的风险调整EWMA控制图[J]. 工业工程与管理, 2023, 28(6): 193-20.
[3] Sanusi, R.A., Chong, Z.L., Mukherjee, A. and Xie, M. (2020) Distribution-Free Hybrid Schemes for Process Surveillance with Application in Monitoring Chlorine Content of Water. Chemometrics and Intelligent Laboratory Systems, 206, Article 104099.
https://doi.org/10.1016/j.chemolab.2020.104099
[4] Mukherjee, A. (2017) Distribution-Free Phase-II Exponentially Weighted Moving Average Schemes for Joint Monitoring of Location and Scale Based on Subgroup Samples. The International Journal of Advanced Manufacturing Technology, 92, 101-116.
https://doi.org/10.1007/s00170-016-9977-2
[5] 殷艳娜, 徐剑, 温馨. 基于多变异源EWMA控制的区域物流体系均衡预警方法研究[J]. 工业工程与管理, 2022, 27(1): 124-131.
[6] Qiu, P. (2018) Some Perspectives on Nonparametric Statistical Process Control. Journal of Quality Technology, 50, 49-65.
https://doi.org/10.1080/00224065.2018.1404315
[7] Koutras, M.V. and Triantafyllou, I.S. (2020) Distribution-Free Methods for Statistical Process Monitoring and Control. Springer.
https://doi.org/10.1007/978-3-030-25081-2
[8] 朱永忠, 王室壹. 监控过程方差无参数多变量CUSUM控制图设计[J]. 统计与决策, 2021, 37(5): 49-53.
[9] 项冬冬, 濮晓龙. 联合监控位置和尺度参数控制图综述[J]. 数理统计与管理, 2020, 39(2): 274-288.
[10] Lepage, Y. (1971) A Combination of Wilcoxon’s and Ansari-Bradley’s Statistics. Biometrika, 58, 213-217.
https://doi.org/10.1093/biomet/58.1.213
[11] Mukherjee, A. and Chakraborti, S. (2011) A Distribution‐Free Control Chart for the Joint Monitoring of Location and Scale. Quality and Reliability Engineering International, 28, 335-352.
https://doi.org/10.1002/qre.1249
[12] Chowdhury, S., Mukherjee, A. and Chakraborti, S. (2014) Distribution‐Free Phase II CUSUM Control Chart for Joint Monitoring of Location and Scale. Quality and Reliability Engineering International, 31, 135-151.
https://doi.org/10.1002/qre.1677
[13] Mukherjee, A. and Marozzi, M. (2016) Distribution-Free Lepage Type Circular-Grid Charts for Joint Monitoring of Location and Scale Parameters of a Process. Quality and Reliability Engineering International, 33, 241-274.
https://doi.org/10.1002/qre.2002
[14] Naveed, M., Azam, M., Khan, N. and Aslam, M. (2018) Design of a Control Chart Using Extended EWMA Statistic. Technologies, 6, Article 108.
https://doi.org/10.3390/technologies6040108
[15] Talordphop, K., Areepong, Y. and Sukparungsee, S. (2023) Design and Analysis of Extended Exponentially Weighted Moving Average Signed-Rank Control Charts for Monitoring the Process Mean. Mathematics, 11, Article 4482.
https://doi.org/10.3390/math11214482
[16] Montgomery, D.C. (2007) Introduction to Statistical Quality Control. John Wiley & Sons.