复发性阿弗他溃疡生物标志物的研究进展
Research Progress on Biomarkers of Recurrent Aphthous Ulcer
摘要: 复发性阿弗他溃疡(recurrent aphthous ulcer, RAU)是最常见的口腔黏膜溃疡类疾病。到目前为止,RAU病因及发病机制尚未完全阐明,在RAU患者唾液及血液中可检测到多个系统相关的生物标志物的变化,提示这些标志物可能在RAU的发生发展中起到重要的作用。因此本文就近年来国内外RAU相关的各系统生物标志物及相应机制的研究进展作一综述。
Abstract: Recurrent aphthous ulcer (RAU) is the most common oral mucosal ulcer disease. So far, the etiology and pathogenesis of RAU have not been fully elucidated, and changes in multiple system-related biomarkers can be detected in the saliva and blood of RAU patients, suggesting that these markers may play an important role in the occurrence and development of RAU. Therefore, this article reviews the research progress of biomarkers and corresponding mechanisms of RAU related systems at home and abroad in recent years.
文章引用:吴坤霜, 秦琳琳, 王萍. 复发性阿弗他溃疡生物标志物的研究进展[J]. 临床医学进展, 2024, 14(12): 1078-1087. https://doi.org/10.12677/acm.2024.14123189

1. 引言

复发性阿弗他溃疡(recurrent aphthous ulcer, RAU),也称复发性阿弗他性口炎(recurrent aphthous stomatitis, RAU)是口腔黏膜最常见的溃疡类疾病,RAU分为轻型(MiRAS)、重型(MaRAS)和疱疹型(HU)溃疡三型,表现为反复发作的圆形或椭圆形溃疡,溃疡表面覆盖黄色假膜、周围有红晕带、中央凹陷、疼痛明显[1]。RAU可分为发作期(前驱期–溃疡期)、愈合期、间歇期。RAU发病率较高,人群中至少10%~25%患有此病,在年轻人中可高达25%,终生患病率高达36.5% [2] [3]。溃疡通常位于唇、颊黏膜和舌头上,高度角化黏膜如上腭部和牙龈则相对较少受累。

目前认为RAU的发生与多种致病因素相关,包括免疫因素、遗传因素、系统性疾病因素、感染因素、环境因素及其他因素,如氧自由基、微循环状态异常等[1]。除了针对RAU特征性的表现而做出临床诊断,众多学者研究发现RAU患者唾液及血液中许多致病相关生物标志物的表达。其生物标志物涉及了多个系统,如神经系统,免疫系统,内分泌系统等,本文将与RAU发病密切相关的各个系统的生物标志物作一综述。

2. 免疫系统标志物

2.1. 细胞因子

大量研究提示免疫因素是RAU最重要的发病机制。研究发现RAU患者存在细胞免疫功能的下降和T淋巴细胞亚群失衡,这表明了T淋巴细胞在RAU的发病中可能起到了重要的作用[4]。抗原对黏膜角质形成细胞的初始刺激会诱导T淋巴细胞活化,导致各种细胞因子的级联释放以及淋巴细胞和中性粒细胞的迁移[5],引起机体细胞毒性反应,从而导致口腔溃疡。辅助性T细胞分为1型(Th1)、2型(Th2)和17型(Th17)细胞,在免疫过程中可分泌一系列的细胞因子,包括白细胞介素(IL)、干扰素(IFN)和肿瘤坏死因子(TNF)等,这些细胞因子是免疫反应的主要介质。Th1细胞产生介导细胞毒性免疫反应的促炎细胞因子,例如白细胞介素(IL-1、IL-2、IL-8、IL-12)、肿瘤坏死因子α (TNF-α)和干扰素γ (IFN-γ)。Th2细胞释放多种抗炎细胞因子,如IL-4、IL-5、IL-6、IL-10和IL-13,促进B细胞功能并参与体液免疫。IL-17A主要由Th17细胞分泌,发挥强大的促炎作用,诱导炎症细胞的浸润和组织损伤[6]。这些细胞因子在调节细胞分化、增殖、迁移和相互作用中起关键作用,它们决定免疫激活和耐受性[7]。在RAU患者中可观察到异常的Th1/2/17细胞因子谱。

Fangjun Teng通过荟萃分析发现,相较于健康对照组,RAU患者唾液中IL-2、IL-6、TNF-α的浓度显著增高,而IL-10、IFN-γ无明显差异;血液中IL-6、TNF-α、IFN-γ显著增高,而IL-2无明显差异,血液中IL-10的浓度降低[8]。IL-2可刺激其他促炎细胞因子的分泌,如IL-1、IL-12、TNF-α和IFN-γ [9]。IL-6可以通过刺激辅助性T细胞和细胞毒性T细胞的增殖来促进IL-2的分泌。IL-6的浓度过高会激活多种免疫反应,加剧口腔黏膜的炎症,并使口腔溃疡进一步加重[10]。TNF-α促进促炎细胞因子的释放并抑制抗炎细胞因子。在前驱期,TNF-α刺激口腔黏膜的基底细胞表达出I类和II类MHC抗原。T淋巴细胞通过识别口腔黏膜基底细胞表面的I类和II类MHC抗原,产生细胞毒性反应并导致口腔溃疡[11]。因此有学者认为唾液及血清TNF-α应作为RAU可靠的诊断标志物[12]。IL-10可抑制辅助性T细胞向Th1细胞的分化、炎症细胞的迁移和细胞因子的释放,因此IL-10可防止口腔溃疡的产生[13]

Kemal Ozyurt研究发现RAU患者的IL-1、IL-13、IL-17、IL-18、IFN-γ血清水平高于健康对照[14]。而另有一项研究显示两组之间的唾液IL-1水平没有显著差异[15]。Fangjun Teng的研究中发现RAU组与对照组之间IL-13血清水平和IL-17A唾液及血清水平无显著差异[8]。IL-1在中性粒细胞激活中起到重要作用,可能引起溃疡局部的炎症反应和组织损伤[16]。IL-13可促进B细胞分裂,还可诱导巨噬细胞上的II类MHC抗原表达;IFN-γ由T细胞和NK细胞在免疫刺激下产生,它有许多免疫调节作用,是巨噬细胞活化和组织细胞上II类分子的最有效诱导剂[17]。IL-17A是一种促炎细胞因子,主要由Th17细胞产生。IL-17A通过诱导其他炎性细胞因子和趋化因子的表达,介导炎性细胞的浸润和组织损伤,具有很强的促炎作用[6]。研究显示RAU组和对照组之间的血清IL-17A差异无统计学意义[18]。另有一项研究表明,在健康对照或RAU患者的上皮中未发现IL-17A阳性细胞;相反,IL-17C在RAU病变中高表达[19]。此外,还发现IL-17F突变与RAU的易感性有关[20]

2.2. 免疫球蛋白

在RAU的各个时期,可检测到免疫球蛋白(immunoglobulin, Ig)的特异性分泌。IgA是在外部分泌物(包括唾液和眼泪)中发现的主要免疫球蛋白亚型。口腔黏膜感染时,唾液分泌型免疫球蛋白(secretory immunoglobulin A, SIgA)比血清抗体更早被检测到,并负责抵御许多传染性、环境过敏原和致癌物质[21]。实验证明RAU溃疡期的SIgA分泌显著增多,SIgA与RAU的病变机制之间存在很强的相关性,可用作评估黏膜免疫状态的参数[22]。Outschoorn 等人认为IgG亚类的改变可能反映了自身免疫中潜在的免疫调节功能障碍,而且这些IgG亚类的改变是疾病特异性的表现[23]。如RAU溃疡期中所有IgG亚类均升高,在间歇期,RAU患者的IgG1和IgG4恢复到正常值,而IgG2、IgG仍然升高[24]

2.3. 补体

补体是一种血清蛋白质,活化后具有酶活性、可介导免疫应答和炎症反应。补体系统包括C1~C9,MBL/FCN,B因子等。补体C3和C4在血清中的含量高于其他补体分子,二者在完成补体系统的多种功能中具有十分重要的作用。Natalia Lewkowicz研究发现溃疡期和间歇期RAU患者血清中C3c、C4和MBL的浓度较对照组升高[25]。而邹俐琳的研究显示RAU患者血清中C3、C4的水平与健康对照组相比无显著差异[26]。补体系统对RAU的影响尚未完全明确。补体系统的激活可能对外周血中性粒细胞产生影响。一些补体成分,如C3a、C5a、C3b和MBL具有激活中性粒细胞或免疫系统其他细胞的能力[27]。此外,MBL可导致补体系统凝集素通路的激活。

2.4. 表皮生长因子

唾液表皮生长因子(EGF)主要由颌下腺、十二指肠合成,唾液EGF是一种重要的细胞保护剂,并通过调节上皮细胞的增殖、生长和迁移来维持组织稳态,从而帮助维持口腔黏膜的完整性,它还可诱发血管生成,并在组织再生和愈合中起关键作用[28],在维持口腔健康和改善口腔溃疡方面起着关键作用。Paria Motahari通过荟萃分析发现RAU患者溃疡期及间歇期唾液EGF水平显著低于健康对照组,并认为唾液EGF水平的降低在RAU的发展中起着重要作用[29]。在RAU患者中,低水平的唾液EGF可能导致口腔黏膜更易发生溃疡,并间接增加抗原表达,这可能会刺激或改变免疫机制[30]。Wright等人发现黏膜发生溃疡后,会形成新的细胞系,这些细胞系能够分泌EGF并促进上皮生长、血管生成和加速溃疡愈合[31]

3. 神经系统标志物

3.1. 儿茶酚胺类物质

随着医学模式的转化,RAU患者的心理环境逐渐引起重视。情绪和心理因素会影响口腔黏膜疾病的发生和进展[32]。精神压力可引起自主神经系统由副交感神经控制转变为交感神经控制以及下丘脑–垂体–肾上腺轴(HPA)的改变,心理应激反应通过HPA轴激活自主神经系统释放儿茶酚胺(Catecholamines, CA),包括多巴胺(dopamine, DA)、肾上腺素(adrenaline, A)和去甲肾上腺素(no radrenaline, NA) [33]。而这些神经递质作用于机体组织时,可引起相应的身心疾病,如RAU [34]。精神压力还会引起其他因子的释放,如血管紧张素II、各种细胞因子和炎症介质,它们作用于HPA轴的各种成分,并增强其活性[35]。有实验证明RAU患者体内的儿茶酚胺类物质水平比对照组明显升高[36],儿茶酚胺类物质被认为是RAU患者的神经系统标志物。

3.2. 唾液α-淀粉酶

下丘脑–垂体–肾上腺系统(HPA)和交感–肾上腺髓质系统(SM)是两个神经内分泌系统,当面对压力时会被激活。唾液α-淀粉酶(salivary amylase,SAA)由唾液腺产生,其主要功能是启动碳水化合物等大分子的消化。唾液腺接受交感神经和副交感神经支配,副交感神经刺激会导致大量唾液的释放,这些唾液较稀且有机成分含量低,交感神经刺激导致小分子物质的释放,此时释放的主要是α-淀粉酶。唾液α-淀粉酶的变化表明应激期间SM系统的激活[37]。因此,唾液α-淀粉酶被认为是压力和焦虑的标志物[38]。研究显示RAU患者唾液α-淀粉酶分泌比对照组显著增加[39]。精神压力作为RAU的诱发因素,SAA可用于评估RAU患者心理应激状态及负面情绪的标志物。

4. 内分泌系统

4.1. 皮质醇

压力可激活HPA轴使机体内分泌系统产生相应的变化,进而分泌皮质醇(Cortisol)。皮质醇被用作评估压力的指标[40]。有研究认为RAU的发生与患者焦虑和抑郁状态有关,但与唾液皮质醇水平的改变无关[41]。不同的是,Nadendla LK的研究表明RAU患者的平均唾液皮质醇水平比对照组显著升高[42]。皮质醇是一种通过肾上腺皮质分泌的糖皮质激素,作用于炎症和免疫反应[43]。皮质醇水平的升高,会使机体内各种稳态机制失调,并改变口腔黏膜的局部免疫反应。皮质醇主要作用于细胞免疫,同时抑制B淋巴细胞的聚集和活化,如减少淋巴细胞浸润、抑制淋巴细胞和胸腺细胞群的分裂、减少局部肥大细胞的增殖和分化、减少一氧化氮和血小板活化因子的产生、稳定溶酶体并降低吞噬作用。皮质醇可抑制花生四烯酸(几种炎症介质的关键前体)的合成和释放,并减少γ干扰素和白细胞介素的产生,进而可能促进RAU的发展[44]

4.2. 脱氢表雄酮

脱氢表雄酮(Dehydroepiandrosterone, DHEA)是人体内最丰富的循环类固醇,是强效雄激素和雌激素的前体。DHEA由肾上腺皮质、性腺和中枢神经系统释放[45]。该类固醇似乎可以调节免疫反应,其血清浓度的降低与多种生理功能的降低有关[46]。在正常生理过程中,DHEA与皮质醇同步释放,并拮抗该激素的多种有害作用,在抑郁症、焦虑症、糖尿病、系统性红斑狼疮等多种疾病中可发现皮质醇水平升高而DHEA水平降低[40]。研究显示RAU患者的唾液皮质醇和DHEA水平相较于对照组无明显的差异[43]。不同的是,Vandana S等人认为RAU患者的唾液皮质醇和DHEA平均水平升高,并且具有统计学意义;唾液皮质醇和DHEA可作为评估RAU患者压力的生物标志物[44]。RAU患者机体的皮质醇和DHEA水平仍需大量的样本进行研究。

4.3. 鸢尾素

鸢尾素(irisin)是近年来新发现的脂肪肌因子,可以由肌肉运动时分泌或者由脂肪组织分泌[47],因此被纳入脂肪肌因子家族。D.U. Altay首次证明RAU患者的唾液鸢尾素水平较对照组升高,并发现在监测RAU的变化时鸢尾素的唾液水平变化比IF-γ更加敏感和特异,因此认为鸢尾素可作为RAU的炎症生物标志物[48]。鸢尾素在RAU中的作用是将脂肪组织巨噬细胞从促炎状态转变为抗炎状态,并增加促炎细胞因子的产生,例如IL-2、IL-5、IL-6、IL-8和TNF-α,同时减少抗炎细胞因子IL-10和转化生长因子-β (TGF-β)的产生[49]

5. 抗氧化系统

氧化应激(oxidative stress)是RAU致病因素之一。氧化应激是许多疾病发生的根本原因,可导致严重全身和口腔疾病并发症[50]。当氧化剂和抗氧化剂之间的平衡发生改变时,氧化还原电位会发生相应的变化,进而形成氧化应激,可导致细胞损伤和炎症过程。机体的内源性和外源性防御机制可对抗氧化应激,这些机制大多能够防止活性氧(Reactive oxygen species, ROS)可能造成的损害,这种防御系统被称为抗氧化系统(antioxidant system),抗氧化防御系统可防止自由基的形成并减少细胞损伤。针对氧化应激及抗氧化系统在RAU中的作用机制,目前提出了两种假说:其一,RAU触发氧化应激状态;其二,氧化剂及抗氧化剂之间的平衡失调促进RAU的发生及发展[51]。Tugrul S等人实验发现RAU患者组的总氧化状态和氧化应激指数值较对照组显著升高,而总抗氧化状态值显著降低,首次证明了RAU与氧化状态增加之间的关系[52]。此外,Estornut C等对血清及唾液中20多种RAU相关氧化标志物进行了系统评价,如谷胱甘肽过氧化物酶(GSH-Px),过氧化氢酶(CAT)和丙二醛(MDA)等,结果显示RAU患者唾液和血液样本中氧化标志物水平显著增加以及抗氧化防御水平显著降低[53]。因此,可在RAU患者康复后对其氧化状态进行评估,这意味着在评估某种治疗方法用于治疗RAU时,氧化状态或许可以作为其治疗效果的指标。

6. 维生素

6.1. 维生素D

维生素D (Vitamin D, VD)是一种类固醇激素,不仅可在钙磷稳态和骨代谢中发挥作用,还可影响免疫系统的功能。研究发现VD缺乏可能在RAU的发病机制中起作用[54]。具体机制多认为是VD通过激活免疫系统进一步引起RAU的发生发展,其生物学效应过程是通过激活的维生素D受体(VDR)的介导,在大多数免疫细胞中可发现维生素D受体,如抗原呈递细胞(APC)和T细胞[55]。VD会改变免疫细胞因子谱:Th1细胞因子的产生减少,而Th2类型的产生增加。VD可以通过调节炎性细胞因子(如IL-2、IL-6、IL-8、IL-17和TNF-α)来调节免疫系统的功能[56]。VD水平降低可能会导致这些细胞因子失调的微环境,从而导致RAU的严重程度增加并阻碍溃疡病变的自然愈合[57]。因此,通过补充维生素D来预防和治疗RAU似乎是可行的,未来需要具体的干预实验来评估其效用。

6.2. 维生素B

维生素B复合物是一组八种化合物(B1、B2、B3、B5、B6、B7、B9和B12),它们是细胞代谢活动和正常功能所必需的。维生素B9 (叶酸)与B12 (钴胺素)缺乏常见于巨幼红细胞性贫血。由于叶酸参与保持DNA的完整性,低叶酸含量饮食也可能增加唇腭裂、口腔癌和咽癌的风险。而钴胺素不足可引起一系列的口腔黏膜疾病,包括舌炎、口角炎、复发性口腔溃疡、口腔念珠菌病、弥漫性红斑性黏膜炎和口腔黏膜白色病变[58]。叶酸和钴胺素引起RAU的具体机制尚未完全清楚。有学者认为口腔上皮细胞更新依赖于叶酸及钴胺素,因叶酸和钴胺素是DNA合成中的辅酶因子[59]。有研究显示RAU患者血清钴胺素和红细胞叶酸水平较对照组显著降低[60]。Taleb R综合多项钴胺素治疗RAU的实验,总结相应的用法用量,并认为其治疗方法有相当的优势:可显著减少患者疼痛,缩短当前阿弗他溃疡的持续时间并防止复发[61]。增加或补充维生素B12和叶酸的膳食摄入量可能对预防RAU发作有一定的价值。

6.3. 维生素A,C,E

Yunus Saral研究发现相较于对照组,RAU患者血液及唾液中氧化应激增高,同时抗氧化维生素(A、C和 E)水平显着降低[62]。Heidar Khademi未在两组中发现唾液和血清抗氧化维生素(A、C和E)水平之间有显著差异[63]。维生素E (α-生育酚)是细胞膜和亚细胞器中的主要脂质抗氧化剂,它能直接与自由基反应,通过清除硫代巴比妥酸反应物质来中断脂质过氧化。维生素C (抗坏血酸)是一种重要的水溶性维生素,与维生素E具有协同作用,当维生素E转变为生育酚而失去抗氧化能力时,维生素C可以将生育酚自由基(α-生育酚的一种氧化形式)还原为α-生育酚[64]

7. 微量元素

微量元素与体内其他元素反应形成关键分子并参与各种重要的化学反应,各种免疫和炎症变化会影响体内微量元素的分布。RAU患者体内的微量元素含量可能会出现相应的变化,包括锌、硒、铜、铁等。研究表明RAU 患者的血清铁水平和锌血清水平显著低于健康人[65]。另有一项研究显示RAU患者血液中铁、镁、磷、钙与健康人无明显差异[66]。生物体内铁(Fe)含量降低时免疫反应会降低,在长期缺铁时也可观察到上皮细胞的变化,例如口干、萎缩性舌炎和脱发。锌(Zn)是一种重要的微量元素,也是人体必需营养素之一。其充当300多种酶的辅助因子,在细胞生长繁殖、胶原蛋白合成和伤口愈合中起着至关重要的作用[67]。锌缺乏会导致一系列的功能障碍,如舌炎、指甲营养不良、免疫力下降[68]。研究表明低血清锌水平与RAU的发生之间存在显著关联[69]。究其原因,锌不仅起到抗氧化剂的作用,而且还是一种抗炎剂。锌离子治疗可能有助于平衡氧化还原电位,并调节T淋巴细胞和B淋巴细胞功能,使其维持正常的免疫和抵抗感染功能[70]。硒(Se)同锌一样具有抗氧化作用,而过量的铜(Cu)会诱发氧化应激,从而导致慢性炎症。因此有学者认为氧化应激可能会引起RAU患者微量元素失衡,而Cu水平、Cu/Se和Cu/Zn比率升高可能引发脂质过氧化,导致血液抗氧化能力下降和炎症反应增加,如此循环之下可能会引起坏死性溃疡,所以血清Cu/Zn比率可能是RAU患者营养状况和氧化应激的有力标志物[71]。更有研究认为锌治疗可以有效减少RAU的发生、减轻疼痛并加快愈合时间[72]

8. 小结

综上所述,RAU的病因及发病机制较为复杂,其生物标志物种类繁多,而目前的研究未能完全阐明相关的生物标志物及相应机制,尚需学术界通过扩大样本量及丰富实验方法来更加深入探索,通过研究RAU相关生物标志物的变化为临床诊断及治疗思路提供相应的依据,从而为临床医师提供更有效的治疗方法,在促进溃疡愈合的同时缩短病程以及减轻患者痛苦,减轻身体及精神上的困扰,提高患者的生活质量。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Porter, S.R., Scully, C. and Pedersen, A. (1998) Recurrent Aphthous Stomatitis. Critical Reviews in Oral Biology & Medicine, 9, 306-321.
https://doi.org/10.1177/10454411980090030401
[2] Darjani, A., Joukar, F., Naghipour, M., Asgharnezhad, M. and Mansour-Ghanaei, F. (2020) Lifetime Prevalence of Recurrent Aphthous Stomatitis and Its Related Factors in Northern Iranian Population: The PERSIAN Guilan Cohort Study. Clinical Oral Investigations, 25, 711-718.
https://doi.org/10.1007/s00784-020-03611-y
[3] Kleinman, D.V., Swango, P.A. and Pindborg, J.J. (1994) Epidemiology of Oral Mucosal Lesions in United States Schoolchildren: 1986‐87. Community Dentistry and Oral Epidemiology, 22, 243-253.
https://doi.org/10.1111/j.1600-0528.1994.tb01815.x
[4] Saikaly, S.K., Saikaly, T.S. and Saikaly, L.E. (2018) Recurrent Aphthous Ulceration: A Review of Potential Causes and Novel Treatments. Journal of Dermatological Treatment, 29, 542-552.
https://doi.org/10.1080/09546634.2017.1422079
[5] Albanidou-Farmaki, E., Markopoulos, A.K., Kalogerakou, F. and Antoniades, D.Z. (2007) Detection, Enumeration and Characterization of T Helper Cells Secreting Type 1 and Type 2 Cytokines in Patients with Recurrent Aphthous Stomatitis. The Tohoku Journal of Experimental Medicine, 212, 101-105.
https://doi.org/10.1620/tjem.212.101
[6] Song, X. and Qian, Y. (2013) The Activation and Regulation of IL-17 Receptor Mediated Signaling. Cytokine, 62, 175-182.
https://doi.org/10.1016/j.cyto.2013.03.014
[7] Kamradt, T. and Mitchison, N.A. (2001) Tolerance and Autoimmunity. New England Journal of Medicine, 344, 655-664.
https://doi.org/10.1056/nejm200103013440907
[8] Teng, F. and Jin, Q. (2024) Evaluation of Cytokine Expressions in Patients with Recurrent Aphthous Stomatitis: A Systematic Review and Meta-analysis. PLOS ONE, 19, e0305355.
https://doi.org/10.1371/journal.pone.0305355
[9] Chiang, C., Yu-Fong Chang, J., Wang, Y., Wu, Y., Wu, Y. and Sun, A. (2019) Recurrent Aphthous Stomatitis—Etiology, Serum Autoantibodies, Anemia, Hematinic Deficiencies, and Management. Journal of the Formosan Medical Association, 118, 1279-1289.
https://doi.org/10.1016/j.jfma.2018.10.023
[10] Yamamoto, T., Yoneda, K., Ueta, E. and Osaki, T. (1994) Serum Cytokines, Interleukin-2 Receptor, and Soluble Intercellular Adhesion Molecule-1 in Oral Disorders. Oral Surgery, Oral Medicine, Oral Pathology, 78, 727-735.
https://doi.org/10.1016/0030-4220(94)90087-6
[11] Savage, N.W., Seymour, G.J. and Kruger, B.J. (1986) Expression of Class I and Class II Major Histocompatibility Complex Antigens on Epithelial Cells in Recurrent Aphthous Stomatitis. Journal of Oral Pathology & Medicine, 15, 191-195.
https://doi.org/10.1111/j.1600-0714.1986.tb00605.x
[12] Surboyo, M.D.C., Boedi, R.M., Hariyani, N., Santosh, A.B.R., Manuaba, I.B.P.P., Cecilia, P.H., et al. (2022) The Expression of TNF-α in Recurrent Aphthous Stomatitis: A Systematic Review and Meta-analysis. Cytokine, 157, Article ID: 155946.
https://doi.org/10.1016/j.cyto.2022.155946
[13] Miyamoto Jr, N.T., Borra, R.C., Abreu, M., Weckx, L.L.M. and Franco, M. (2008) Immune‐Expression of HSP27 and IL‐10 in Recurrent Aphthous Ulceration. Journal of Oral Pathology & Medicine, 37, 462-467.
https://doi.org/10.1111/j.1600-0714.2008.00665.x
[14] Ozyurt, K., Çelik, A., Sayarlıoglu, M., Colgecen, E., Incı, R., Karakas, T., et al. (2014) Serum Th1, Th2 and Th17 Cytokine Profiles and α‐Enolase Levels in Recurrent Aphthous Stomatitis. Journal of Oral Pathology & Medicine, 43, 691-695.
https://doi.org/10.1111/jop.12182
[15] Novak, T., Hamedi, M., Bergmeier, L.A., Fortune, F. and Hagi-Pavli, E. (2021) Saliva and Serum Cytokine Profiles during Oral Ulceration in Behçet’s Disease. Frontiers in Immunology, 12, Article 724900.
https://doi.org/10.3389/fimmu.2021.724900
[16] Şahln, Ş., Lawrence, R., Direskeneli, H., Hamuryudan, V., Yazici, H. and Akoĝlu, T. (1996) Monocyte Activity in Behçet’s Disease. Rheumatology, 35, 424-429.
https://doi.org/10.1093/rheumatology/35.5.424
[17] Aridogan, B.C., Yildirim, M., Baysal, V., Inaloz, H.S., Baz, K. and Kaya, S. (2003) Serum Levels of IL‐4, IL‐10, IL‐12, IL‐13 and IFN‐γ in Behçet’s Disease. The Journal of Dermatology, 30, 602-607.
https://doi.org/10.1111/j.1346-8138.2003.tb00442.x
[18] Shen, C., Ye, W., Gong, L., Lv, K., Gao, B. and Yao, H. (2021) Serum Interleukin‐6, Interleukin‐17a, and Tumor Necrosis Factor‐α in Patients with Recurrent Aphthous Stomatitis. Journal of Oral Pathology & Medicine, 50, 418-423.
https://doi.org/10.1111/jop.13158
[19] Al‐Samadi, A., Kouri, V., Salem, A., Ainola, M., Kaivosoja, E., Barreto, G., et al. (2013) IL‐17c and Its Receptor IL‐17RA/IL-17RE Identify Human Oral Epithelial Cell as an Inflammatory Cell in Recurrent Aphthous Ulcer. Journal of Oral Pathology & Medicine, 43, 117-124.
https://doi.org/10.1111/jop.12095
[20] Zare Bidoki, A., Massoud, A., Najafi, S., Mohammadzadeh, M. and Rezaei, N. (2018) Autosomal Dominant Deficiency of the Interleukin-17f in Recurrent Aphthous Stomatitis: Possible Novel Mutation in a New Entity. Gene, 654, 64-68.
https://doi.org/10.1016/j.gene.2018.02.041
[21] Kilian, M., Reinholdt, J., Lomholt, H., Poulsen, K. and Frandsen, E.V.G. (1996) Biological Significance of Iga1 Proteases in Bacterial Colonization and Pathogenesis: Critical Evaluation of Experimental Evidence. APMIS, 104, 321-338.
https://doi.org/10.1111/j.1699-0463.1996.tb00724.x
[22] de Oliveira Martinez, K., Mendes, L.L. and Alves, J.B. (2007) Secretory a Immunoglobulin, Total Proteins and Salivary Flow in Recurrent Aphthous Ulceration. Brazilian Journal of Otorhinolaryngology, 73, 323-328.
https://doi.org/10.1016/s1808-8694(15)30075-6
[23] Outschoorn, I., Rowley, M.J., Cook, A.D. and Mackay, I.R. (1993) Subclasses of Immunoglobulins and Autoantibodies in Autoimmune Diseases. Clinical Immunology and Immunopathology, 66, 59-66.
https://doi.org/10.1006/clin.1993.1008
[24] Sistig, S., Vučićević‐Boras, V., Lukač, J. and Kusić, Z. (2002) Salivary Iga and Igg Subclasses in Oral Mucosal Diseases. Oral Diseases, 8, 282-286.
https://doi.org/10.1034/j.1601-0825.2002.20844.x
[25] Lewkowicz, N., Lewkowicz, P., Kurnatowska, A., Banasik, M., Glowacka, E., Cedzyński, M., et al. (2003) Innate Immune System Is Implicated in Recurrent Aphthous Ulcer Pathogenesis. Journal of Oral Pathology & Medicine, 32, 475-481.
https://doi.org/10.1034/j.1600-0714.2003.00181.x
[26] 邹俐琳, 王文梅, 刘雅菁, 等. 顽固性复发性阿弗他溃疡患者外周血Th17细胞与免疫球蛋白及补体水平的变化[J]. 上海口腔医学, 2017, 26(5): 521-525.
[27] Cedzyñski, M. and Swierzko, A.S. (2000) Mannose-Binding Lectin, a Molecule Important in Innate Immunity. Central European Journal of Immunology, 25, 1-6.
[28] Hardwicke, J., Schmaljohann, D., Boyce, D. and Thomas, D. (2008) Epidermal Growth Factor Therapy and Wound Healing—Past, Present and Future Perspectives. The Surgeon, 6, 172-177.
https://doi.org/10.1016/s1479-666x(08)80114-x
[29] Motahari, P., Fathollahzadeh, D. and Alipour, A.S. (2023) Alivary Vascular Endothelial Growth Factor and Epidermal Growth Factor Levels in Patients with Recurrent Aphthous Stomatitis: A Meta-Analysis. Journal of Dentistry, 24, 277-284.
[30] Wu-Wang, C.Y., Patel, M., Feng, J., Milles, M. and Wang, S.L. (1995) Decreased Levels of Salivary Prostaglandin E2 and Epidermal Growth Factor in Recurrent Aphthous Stomatitis. Archives of Oral Biology, 40, 1093-1098.
https://doi.org/10.1016/0003-9969(95)00095-x
[31] Wright, N.A., Pike, C. and Elia, G. (1990) Induction of a Novel Epidermal Growth Factor-Secreting Cell Lineage by Mucosal Ulceration in Human Gastrointestinal Stem Cells. Nature, 343, 82-85.
https://doi.org/10.1038/343082a0
[32] Suresh, K., Shenai, P., Chatra, L., Ronad, Y., Bilahari, N., Pramod, R., et al. (2015) Oral Mucosal Diseases in Anxiety and Depression Patients: Hospital Based Observational Study from South India. Journal of Clinical and Experimental Dentistry, 7, e95-e99.
https://doi.org/10.4317/jced.51764
[33] Kumar, N., Panchaksharappa, M. and Annigeri, R. (2016) Psychosomatic Disorders: An Overview for Oral Physician. Journal of Indian Academy of Oral Medicine and Radiology, 28, 24-29.
https://doi.org/10.4103/0972-1363.189979
[34] Quaedflieg, C.W.E.M. and Schwabe, L. (2017) Memory Dynamics under Stress. Memory, 26, 364-376.
https://doi.org/10.1080/09658211.2017.1338299
[35] Tsigos, C. and Chrousos, G.P. (2002) Hypothalamic-Pituitary-Adrenal Axis, Neuroendocrine Factors and Stress. Journal of Psychosomatic Research, 53, 865-871.
https://doi.org/10.1016/s0022-3999(02)00429-4
[36] 洪晨, 王文梅, 王翔, 等. 复发性阿弗他溃疡患者心理因素及血浆儿茶酚胺水平变化[J]. 上海口腔医学, 2018, 27(1): 48-51.
[37] Chatterton, R.T., Vogelsong, K.M., Lu, Y., Ellman, A.B. and Hudgens, G.A. (1996) Salivary α‐Amylase as a Measure of Endogenous Adrenergic Activity. Clinical Physiology, 16, 433-448.
https://doi.org/10.1111/j.1475-097x.1996.tb00731.x
[38] Nater, U.M. and Rohleder, N. (2009) Salivary α-Amylase as a Non-Invasive Biomarker for the Sympathetic Nervous System: Current State of Research. Psychoneuroendocrinology, 34, 486-496.
https://doi.org/10.1016/j.psyneuen.2009.01.014
[39] Kirthana Kunikullaya, U., et al. (2017) Stress as a Cause of Recurrent Aphthous Stomatitis and Its Correlation with Salivary Stress Markers. The Chinese Journal of Physiology, 60, 226-230.
https://doi.org/10.4077/cjp.2017.baf462
[40] Koray, M., Dülger, O., Ak, G., Horasanli, S., Üçok, A., Tanyeri, H., et al. (2003) The Evaluation of Anxiety and Salivary Cortisol Levels in Patients with Oral Lichen Planus. Oral Diseases, 9, 298-301.
https://doi.org/10.1034/j.1601-0825.2003.00960.x
[41] Rezaei, F., Aminian, M. and Raygani, A. (2017) Evaluation of Salivary Cortisol Changes and Psychological Profiles in Patients with Recurrent Aphthous Stomatitis. Contemporary Clinical Dentistry, 8, 259-263.
https://doi.org/10.4103/ccd.ccd_165_17
[42] Nadendla, L., Meduri, V., Paramkusam, G. and Pachava, K. (2015) Relationship of Salivary Cortisol and Anxiety in Recurrent Aphthous Stomatitis. Indian Journal of Endocrinology and Metabolism, 19, 56-59.
https://doi.org/10.4103/2230-8210.131768
[43] Michel, A.R., Luz, C., Wudarcki, S., et al. (2015) Cortisol and Dehydroepiandrosterone Salivary Levels, Stress and Anxiety in Patients with Recurrent Aphthous Stomatitis. Revista Odonto Ciência, 30, 120-125.
[44] Vandana, S., Kavitha, B. and Sivapathasundharam, B. (2019) Salivary Cortisol and Dehydroepiandrosterone as Oral Biomarkers to Determine Stress in Patients with Recurrent Aphthous Stomatitis. Journal of Oral and Maxillofacial Pathology, 23, 213-217.
https://doi.org/10.4103/jomfp.jomfp_282_18
[45] Kroboth, P.D., Salek, F.S., Pittenger, A.L., Fabian, T.J. and Frye, R.F. (1999) DHEA and DHEA‐S: A Review. The Journal of Clinical Pharmacology, 39, 327-348.
https://doi.org/10.1177/00912709922007903
[46] Hazeldine, J., Arlt, W. and Lord, J.M. (2010) Dehydroepiandrosterone as a Regulator of Immune Cell Function. The Journal of Steroid Biochemistry and Molecular Biology, 120, 127-136.
https://doi.org/10.1016/j.jsbmb.2009.12.016
[47] Liu, S., Cui, F., Ning, K., Wang, Z., Fu, P., Wang, D., et al. (2022) Role of Irisin in Physiology and Pathology. Frontiers in Endocrinology, 13, Article 962968.
https://doi.org/10.3389/fendo.2022.962968
[48] Altay, D.U., Korkmaz, M., Ergun, S., Korkmaz, H. and Noyan, T. (2021) Salivary Irisin: Potential Inflammatory Biomarker in Recurrent Apthous Stomatitis Patients. European Review for Medical and Pharmacological Sciences, 25, 2252-2259.
[49] Chaudhry, S.Z. and Ghafoor, S. (2023) Adipokines: Diagnostic and Prognostic Markers for Oral Diseases. Journal of the Pakistan Medical Association, 73, 858-862.
https://doi.org/10.47391/jpma.4737
[50] Vertuani, S., Angusti, A. and Manfredini, S. (2004) The Antioxidants and Pro-Antioxidants Network: An Overview. Current Pharmaceutical Design, 10, 1677-1694.
https://doi.org/10.2174/1381612043384655
[51] Akintoye, S.O. and Greenberg, M.S. (2014) Recurrent Aphthous Stomatitis. Dental Clinics of North America, 58, 281-297.
https://doi.org/10.1016/j.cden.2013.12.002
[52] Tugrul, S., Koçyiğit, A., Doğan, R., Eren, S.B., Senturk, E., Ozturan, O., et al. (2015) Total Antioxidant Status and Oxidative Stress in Recurrent Aphthous Stomatitis. International Journal of Dermatology, 55, e130-e135.
https://doi.org/10.1111/ijd.13101
[53] Estornut, C., Rinaldi, G., Carceller, M.C., Estornut, S. and Pérez-Leal, M. (2024) Systemic and Local Effect of Oxidative Stress on Recurrent Aphthous Stomatitis: Systematic Review. Journal of Molecular Medicine, 102, 453-463.
https://doi.org/10.1007/s00109-024-02434-8
[54] Al-Maweri, S.A., Al-Qadhi, G., Halboub, E., Alaizari, N., Almeslet, A., Ali, K., et al. (2023) Vitamin D Deficiency and Risk of Recurrent Aphthous Stomatitis: Updated Meta-Analysis with Trial Sequential Analysis. Frontiers in Nutrition, 10, Article 1132191.
https://doi.org/10.3389/fnut.2023.1132191
[55] Adorini, L., Penna, G., Giarratana, N., Roncari, A., Amuchastegui, S., Daniel, K.C., et al. (2004) Dendritic Cells as Key Targets for Immunomodulation by Vitamin D Receptor Ligands. The Journal of Steroid Biochemistry and Molecular Biology, 89, 437-441.
https://doi.org/10.1016/j.jsbmb.2004.03.013
[56] Adorini, L. (2002) Immunomodulatory Effects of Vitamin D Receptor Ligands in Autoimmune Diseases. International Immunopharmacology, 2, 1017-1028.
https://doi.org/10.1016/s1567-5769(02)00049-8
[57] Al-Amad, S.H. and Hasan, H. (2019) Vitamin D and Hematinic Deficiencies in Patients with Recurrent Aphthous Stomatitis. Clinical Oral Investigations, 24, 2427-2432.
https://doi.org/10.1007/s00784-019-03102-9
[58] Pontes, H.A., Neto, N.C., Ferreira, K.B., Fonseca, F.P., Vallinoto, G.M., Pontes, F.S. and Pinto Ddos Jr., S. (2009) Oral Manifestations of Vit-Amin B12 Deficiency: A Case Report. Journal of the Canadian Dental Association, 75, 533-537.
[59] Bolat, M., Chiriac, M.I., Trandafir, L., et al. (2016) Oral Manifestations of Nuritional Diseases in Children. Romanian Journal of Oral Rehabilitation, 8, 56-60.
[60] Khan, N.F., Saeed, M., Chaudhary, S. and Khan, N.F. (2013) Haematological Parameters and Recurrent Aphthous Stomatitis. Journal of College of Physicians and Surgeons Pakistan, 23, 124-127.
[61] Taleb, R., Hafez, B., El Kassir, N., El Achkar, H. and Mourad, M. (2020) Role of Vitamin B12 in Treating Recurrent Aphthous Stomatitis: A Review. International Journal for Vitamin and Nutrition Research, 92, 423-430.
https://doi.org/10.1024/0300-9831/a000684
[62] Saral, Y., Coskun, B.K., Ozturk, P., Karatas, F. and Ayar, A. (2005) Assessment of Salivary and Serum Antioxidant Vitamins and Lipid Peroxidation in Patients with Recurrent Aphthous Ulceration. The Tohoku Journal of Experimental Medicine, 206, 305-312.
https://doi.org/10.1620/tjem.206.305
[63] Tavangar, A., Khademi, H., Khozeimeh, F., Amini, S. and Ghalayani, P. (2014) The Serum and Salivary Level of Malondialdehyde, Vitamins A, E, and C in Patient with Recurrent Aphthous Stomatitis. Advanced Biomedical Research, 3, 246.
https://doi.org/10.4103/2277-9175.146366
[64] Li, X. and Zhang, Z. (2016) Assessment of Serum Malondialdehyde, Uric Acid, and Vitamins C and E Levels in Patients with Recurrent Aphthous Stomatitis. Journal of Dental Sciences, 11, 401-404.
https://doi.org/10.1016/j.jds.2016.06.002
[65] Torabinia, N., Asadi, S. and Tarrahi, M.J. (2024) The Relationship between Iron and Zinc Deficiency and Aphthous Stomatitis: A Systematic Review and Meta-Analysis. Advanced Biomedical Research, 13, 31.
https://doi.org/10.4103/abr.abr_41_22
[66] Koparal, M., Ege, B., Dogan, E.I., Kurt, M.Y. and Bayazıt, S. (2023) Evaluation of Biochemical Variables in Patients with Recurrent Aphthous Stomatitis. Journal of Stomatology, Oral and Maxillofacial Surgery, 124, Article ID: 101294.
https://doi.org/10.1016/j.jormas.2022.09.015
[67] Hassan, A., Sada, K., Ketheeswaran, S., Dubey, A.K. and Bhat, M.S. (2020) Role of Zinc in Mucosal Health and Disease: A Review of Physiological, Biochemical, and Molecular Processes. Cureus, 12, e8197.
https://doi.org/10.7759/cureus.8197
[68] Saper, R.B. and Rash, R. (2009) Zinc: An Essential Micronutrient. American Family Physician, 79, 768-772.
[69] Al-Maweri, S.A., Halboub, E., Al-Sharani, H.M., Shamala, A., Al-Kamel, A., Al-Wesabi, M., et al. (2021) Association between Serum Zinc Levels and Recurrent Aphthous Stomatitis: A Meta-Analysis with Trial Sequential Analysis. Clinical Oral Investigations, 25, 407-415.
https://doi.org/10.1007/s00784-020-03704-8
[70] Kim, J., Kim, S., Jeon, S., Hui, Z., Kim, Y., Im, Y., et al. (2015) Anti-Inflammatory Effects of Zinc in PMA-Treated Human Gingival Fibroblast Cells. Medicina Oral Patología Oral y Cirugia Bucal, 20, e180-e187.
https://doi.org/10.4317/medoral.19896
[71] Ozturk, P., Belge Kurutas, E. and Ataseven, A. (2013) Copper/Zinc and Copper/Selenium Ratios, and Oxidative Stress as Biochemical Markers in Recurrent Aphthous Stomatitis. Journal of Trace Elements in Medicine and Biology, 27, 312-316.
https://doi.org/10.1016/j.jtemb.2013.04.002
[72] Halboub, E., Al-Maweri, S.A., Parveen, S., Al-Wesabi, M., Al-Sharani, H.M., Al-Sharani, A., et al. (2021) Zinc Supplementation for Prevention and Management of Recurrent Aphthous Stomatitis: A Systematic Review. Journal of Trace Elements in Medicine and Biology, 68, Article ID: 126811.
https://doi.org/10.1016/j.jtemb.2021.126811