LCBDE术后复发性胆总管结石的诊治现状
Current Status of Diagnosis and Treatment of Recurrent Common Bile Duct Stones after LCBDE
摘要: 胆总管结石是胆道系统疾病中的常见类型。腹腔镜胆总管切开取石术(Laparoscopic Common Bile Duct Exploration, LCBDE)作为一种微创手术技术,因其创伤小、恢复迅速、疼痛较轻和住院时间短等优点,已成为胆总管结石治疗的首选方案之一。然而,即便采用了LCBDE,胆总管结石的复发风险仍然存在。为了全面了解LCBDE术后胆总管结石(Common Bile Duct Stones, CBDS)的复发情况,并降低其复发率,本文将对复发性胆结石的危险因素、诊断检查方法、治疗策略以及预防措施等方面进行综述。
Abstract: Common Bile Duct Stones (CBDS) is a common type of biliary system disease. Laparoscopic Common Bile Duct Exploration (LCBDE), as a minimally invasive surgical technique, has become the first choice for the treatment of common bile duct stones due to its advantages of small trauma, rapid recovery, mild pain and short hospitalization time. One of the preferred options. However, even with LCBDE, the risk of recurrence of choledocholithiasis remains. In order to comprehensively understand the recurrence of CBDS after LCBDE and reduce its recurrence rate, this article will review the risk factors, diagnostic examination methods, treatment strategies and preventive measures of recurrent CBDS.
文章引用:龚科瑞. LCBDE术后复发性胆总管结石的诊治现状[J]. 临床医学进展, 2024, 14(12): 1097-1105. https://doi.org/10.12677/acm.2024.14123191

1. 引言

胆总管结石(CBDS)是胆道系统疾病中的一种常见类型,指胆总管内形成的固态物质,通常由胆固醇、胆色素、钙盐等成分构成。这些结石可能导致胆管阻塞,进而引起胆汁淤积,并引发包括胆管炎和胆汁性肝硬化在内的多种并发症。胆总管结石的发病率在不同地区有所差异,亚洲和拉丁美洲地区的发病率相对较高[1]。其发病机制复杂,涉及遗传、代谢、饮食习惯等多种因素。结石的形成与胆固醇、胆色素等成分的代谢失调密切相关。遗传因素以及代谢综合征等疾病也可能增加结石形成的风险[2]。此外,不良生活方式,如高脂肪、高胆固醇饮食、缺乏运动和肥胖,也与胆总管结石的发生紧密相关[3]

自1989年腹腔镜胆囊切除术(LC)普及以来,腹腔镜技术得到了显著的发展,其中包括腹腔镜胆总管探查及取石术(LCBDE)。这种微创手术技术手术成功率较高,且患者创伤小、术后恢复迅速,并发症发生率低,现已成为肝外胆管结石清除的常规手段[4]。尽管腹腔镜技术已日益成熟,LCBDE术后胆总管结石的复发风险仍然存在。据报告,LCBDE术后复发率可高达11.4% [5]。目前,针对复发性CBDS尚无特定的诊疗指南或共识。有文献将胆总管结石取石术后一年内发生的复发定义为早期复发,而一年后发生的复发则被视为晚期复发[6]

本文就复发性CBDS的危险因素、检查方法、治疗策略、预防措施等方面的研究进展进行概述。

2. 危险因素

2.1. 解剖结构因素

2.1.1. 胆总管成角

胆汁淤积是胆道结石形成的关键促发因素之一,胆总管成角会导致胆汁淤积,胆汁积聚,进而加剧结石的形成与再发。因此胆总管成角被视为是胆总管结石复发的独立危险因素[7]。Eun等[8]研究表明,胆管锐角 < 145˚是复发性胆管结石的独立危险因素。

2.1.2. 胆道术后胆总管扩张

胆总管取石术中尤其是内镜逆行胆胰管造影(Endoscopic Retrograde Cholangiopancreatography, ERCP)球囊取石,会使得胆道扩张直径变大,若合并慢性炎症,胆道壁弹性下降,胆管内压力升高、胆汁流动变缓会导致胆汁淤积。因此胆道术后的胆总管扩张是复发性胆总管结石的危险因素之一。有研究[9]发现胆总管直径 ≥ 1.5 cm是复发性胆总管结石的独立危险因素。在临床实践中,这些解剖结构上的异常,诸如胆总管成角或扩张,显著提升了结石复发的风险,并可能诱发一系列并发症,包括胆管炎和胰腺炎。为了精确诊断这些情况,我们可以采用一些影像学手段,如计算机断层扫描(CT)、磁共振成像(MRI)或胆道造影。基于此,我们建议患者定期进行影像学检查,以持续监控胆管的健康状况。对于经历胆道手术的患者,特别需要加强术后的随访工作,以便能够及早发现并妥善处理胆总管扩张等相关问题。

2.2. 结石因素

2.2.1. 胆固醇结石

在胆固醇胆囊结石的发病机制中胆汁淤滞发挥着重要作用,因为胆固醇过饱和胆汁在胆囊中保留足够长的时间,为胆固醇晶体的成核和沉淀提供时间,并保留晶体以使其生长成结石。原发性CBDS与肝脏中胆固醇合成的限速酶羟甲基辅酶A还原酶(HMG-CoA还原酶)的增加有关,JL等[10]在其中一些患者的肝脏中发现了胆固醇降解为胆汁酸的限速酶7a羟化酶的浓度降低,由于个人的饮食习惯和每个人体内酶的状态,胆固醇结石可能是CBDS复发的危险因素[8]

2.2.2. 结石数量

目前研究普遍认同,多发胆总管结石是胆总管取石术后结石复发的重要危险因素。Eun等[8]一项纳入894例患者的研究表明,胆总管结石数量 ≥ 2的患者比胆总管结石数量 < 2的患者更易复发胆总管结石。Zhang [11]等研究发现,胆总管结石数量 > 3是复发性胆总管结石的独立危险因素。其原因可能有以下几点:1. 多发性结石会占据更多的胆管空间,导致胆汁流动受阻,形成胆汁淤滞,形成新的结石。2. 多发性结石可能改变胆汁的化学成分,例如增加胆汁中胆固醇或胆汁酸盐的浓度,从而促进结石的形成。3. 结石在胆管中移动或去除过程中可能造成胆道的损伤或炎症反应,导致胆道狭窄。4. 多发性结石可能暗示了患者体内存在结石形成的特定风险因素,如遗传、代谢异常或胆道系统先天异常,这些因素可能在结石被移除后依然存在,导致结石复发。

2.2.3. 结石直径

结石直径过大也是复发性胆总管结石的危险因素之一。Dong [11]等研究发现结石直径 ≥ 0.85是复发性胆总管结石的独立危险因素。其原因可能与结石在胆管中移动或在取石过程中造成胆道的损伤或炎症反应有关。结石的数量与直径与并发症的发生风险以及手术的复杂性有密切关系。在临床诊断中,我们常借助超声、CT、MRI或胆道造影等影像学技术来进行结石的诊断。针对胆固醇结石的高风险个体,我们建议采取积极的生活方式调整,包括增强体力活动、采纳低脂饮食等健康习惯。一旦结石被确诊,手术治疗是降低并发症潜在风险的首要决策。

2.3. 人群因素

2.3.1. 年龄

年龄是LCBDE术后胆总管结石复发相关的独立危险因素,PM等[12]研究发现年龄 ≥ 65岁以上的患者比年龄 < 65岁的患者更易复发胆结石。

2.3.2. 高摄碘人群

Li等[13]一项纳入2734例参与者的研究表明,尿碘水平升高与胆结石风险增加之间存在关联。尿碘水平是反映体内碘状态的指标,提示过量碘摄入可能与胆结石形成风险上升有关。其原因可能与碘摄入过量导致的甲状腺功能减退和甲状腺功能亢进有关。Kube I等人发现,甲状腺功能减退会增加原发胆汁酸的疏水性,从而增加胆结石的发病率[14]。Wang Y等人发现,甲状腺功能减退和甲状腺功能亢进都可以通过不同的机制促进胆结石的发展[15]。Nakano S等人得出结论,甲状腺功能亢进症导致的体重快速下降会导致胆结石的形成[16]。同时高水平的碘摄入也会影响血糖、血压和脂质代谢[17] [18],并可能导致胆结石的发展[19]。这些因素可能增加结石形成和并发症的风险。因此对于高龄和高碘饮食人群,应加强健康教育,注意饮食调整,定期体检。

2.4. 手术有关因素

2.4.1. 既往胆道手术史

既往胆道手术史(如胆管探查和T管引流)会损伤胆管壁并形成疤痕,导致胆管狭窄和胆汁排泄不良。同时,粘连可能导致胆管成角影响胆汁流动,从而引起结石复发[20]

2.4.2. 多次ERCP手术

ERCP治疗胆总管结石的常规方法包括内镜括约肌切开术(endoscopic sphincterotomy, EST)、内镜下乳头球囊扩张术(endoscopic papillaryballoon dilatation, EPBD)、内镜下乳头小切开联合内镜下乳头球囊扩张术(EST-EPBD)。多次的ERCP手术会加重Oddi括约肌的损伤,增加胆道逆行感染的机会,从而导致胆结石的复发[21]。对于既往胆道手术史或多次ERCP手术患者,应加强术后管理,密切随访,及时发现和处理胆道问题。

2.5. 微生物相关因素

微生物群

Fang等[22]研究发现十二指肠微生物群在胆石症中处于失衡状态。十二指肠微生物群可能是胆汁微生物群的主要来源,并与胆石症的形成和复发密切相关。肠球菌、梭杆菌、大肠杆菌和克雷伯菌可能与胆石症的复发有关。Tan等[23]研究报道复发性胆总管结石患者的胆汁微生物群存在显著的聚类现象。与稳定患者相比,复发性疾病患者的胆汁中梭杆菌属和奈瑟菌属的相对丰度(分别为56.61% ± 14.81% vs 3.47% ± 1.10%,8.95% ± 3.42% vs 0.69% ± 0.32%)显著增高,且乳杆菌属缺失。胆汁微生物群的功能预测表明,转录和代谢能力的丧失可能导致复发性胆总管结石。

2.6. 复发次数因素

多次复发

Park等[24]对46,181例胆总管结石患者进行了平均4.2年的随访,发现5228名患者(11.3%)首次复发胆总管结石。复发率第一次低,第二次和第三次高,分别为23.4%和33.4%。可以看出,复发率与复发次数成正比。Deng等[6]对477名复发性胆总管结石患者进行了随访研究,发现第二次复发的复发率高达19.5%,第三次或更多次复发的复发率高达44.07%。其可能的原因是多次的手术治疗加重了Oddi括约肌的损伤,导致胆管严重受损,形成了瘢痕,导致胆管狭窄,从而引起胆结石的复发。

3. 检查方法

胆总管结石的诊断通常依赖于多种影像学检查,包括超声检查、计算机断层扫描(CT)、磁共振胆胰管成像(MRCP)、经皮肝穿刺胆管造影(PTC)、放射性核素胆道扫描和内镜逆行胆胰管造影(ERCP)。叶等[25]的研究发现,在97名接受MRCP检查的患者中,58例被诊断为胆总管结石,诊断准确率为59.79%。在105名接受CT检查的患者中,69例被诊断为胆总管结石,诊断准确率为65.71%。而在96名接受B超检查的患者中,仅37例被诊断为胆总管结石,诊断准确率为38.54%。慕等[26]的研究指出,MRCP在检测直径 > 9毫米的结石以及直径 ≤ 9毫米的结石方面,其检出率均显著高于腹部CT扫描。这一差异表明,MRCP能够更精确地评估结石的直径。相比之下,腹部CT扫描主要提供横断面图像,在识别小结石时效率较低,且容易发生漏诊。

4. 治疗策略

4.1. 经皮经肝胆道镜手术(PTCS)

传统治疗胆总管结石的方法包括胆总管切开术、部分肝切除术及肝移植[27]。然而,由于胆管结石的解剖结构复杂且可视性差,残余结石往往难以彻底清除[28]。这种状况常导致术后复发、胆管炎症、多种手术并发症,以及较高的死亡率[29]。经皮经肝胆道镜手术(PTCS)在1968年首次被记录为一种创新的碎石技术[30]。目前,PTCS通过胆道镜的直接可视化技术提取结石,展现出更高的准确率、更低的残余结石率和较小的创伤。Wang等人的研究[31]表明,PTCS的复发率仅为9%,使其成为治疗难治性胆总管结石的理想选择。

4.2. 腹腔镜胆总管探查及取石术(LCBDE)

腹腔镜胆总管切开取石术(LCBDE)是一种微创手术技术,通过腹腔镜在患者腹部实施小切口,进行腹腔探查,以确定是否存在腹水、肝脏、胃等器官的占位性病变。手术过程中,术者会切开胆总管,并采用网篮取石、液电或激光碎石、取石钳等方法取出结石。根据术中情况,可能会放置T管或进行一期缝合。与传统的开放手术相比,LCBDE具有创伤小、恢复快、疼痛轻、住院时间短等显著优势,这些特点使得它成为胆总管结石治疗的首选方法之一[4]。随着腹腔镜技术的持续进步,LCBDE的操作难度正在降低,手术成功率也在不断提高。该手术适用于大多数胆总管结石患者,尤其是那些合并胆管炎、胰腺炎等并发症的患者。然而,对于一些复杂的胆道疾病,如肝内胆管结石,LCBDE可能不适用,或者需要与其他手术方法联合使用[4]

4.3. 内镜逆行胰胆管造影(ERCP)

在1974年,Kawai等人的研究[32]首次报告了内镜逆行胰胆管造影(ERCP)用于碎石术的应用。这一方法逐渐成为胆结石治疗的主要手段之一。ERCP的优势在于其微创性,无需剖腹手术或体表切口,显著增强了患者的美容满意度,并允许患者在术后3~5天内出院,从而降低了医疗成本。然而,ERCP的操作要求较高的技术水平和结石形态判断,且可能对奥迪括约肌造成永久性损伤,导致肠道和胆道反流,因此,在为患者选择治疗方案时,需要权衡其利弊。LCBDE术可以在一次手术中同时解决胆总管结石和胆囊切除等问题,而ERCP则通常需要额外手术来完成治疗,是一个多步骤的流程,往往需要多个科室的协作。ERCP的成功率受到多种因素的影响,包括结石的大小、位置以及手术者的专业能力。在ERCP失败的情况下,经皮经肝胆道镜手术(PTCS)成为一种替代治疗方案。尽管如此,ERCP技术的应用范围仍在不断扩展,这一趋势可能与老年患者数量的增加有关,他们往往难以承受麻醉、手术创伤和术后感染的风险,因此,患者对ERCP这种微创治疗方法的接受度不断提高,尤其是在无症状胆结石患者群体中接受度更高[33]。ERCP后胰腺炎(PEP)是术后最常见且严重的并发症之一。对于没有禁忌症的患者,在ERCP前后应立即常规性地通过直肠给药100毫克双氯芬酸或吲哚美辛。对于那些ERCP后胰腺炎风险较高的患者,放置5-Fr的预防性胰腺支架是一个值得考虑的措施[34]

4.4. 人工智能(AI)

近年来,AI的进步对ERCP产生了显著影响。在消化内镜领域,AI技术已广泛应用于食管癌治疗[35]、癌症早期筛查[36]、肠镜检查以及结直肠息肉识别[37] [38]等多个领域。研究提出,可通过人工神经网络(ANN)模型预测哪些患者适合进行ERCP手术[39]。这包括对患者体检数据进行权重调整和数据清洗等预处理步骤,然后将数据整理成适合训练ANN模型的数据集。此外,一个计算机辅助诊断(CAD)系统已被开发,用于评估和分类ERCP中结石取出的难度[40]。这些人工智能工具协助医生更精确地评估手术风险、预测预后和选择治疗方案,而不仅仅是依赖传统的CBDS预测模型[41]。急性胰腺炎(AP)是ERCP的常见并发症,其发病率在3.5%~9.7%之间,高危患者甚至可达14.7% [42]。为降低AP的发生率,研究人员利用机器学习(ML)对CBDS患者的数据进行建模,以预测术后AP的发生。他们还采用SHapley Additive exPlanation (SHAP)方法来解释AP预测结果及其相关指标的意义[43]。这种方法提高了预测的准确性,使医生能够更有效地为患者制定个性化治疗方案。AI技术在CBDS的诊疗中展现出显著的优势。AI利用深度学习算法,能够对CT、MRI和PET-CT等影像学数据进行深入分析,从而显著提升对疾病的诊断能力。AI模型具备分析海量患者数据的能力,能够预测疾病进展和预后,进而帮助医生制定更为有效的治疗策略。同时,AI还能持续监控患者的治疗效果,及时发现疾病复发或进展的信号。然而,AI技术的局限性也不容忽视。首先,数据依赖性是AI模型的一大挑战,其训练需要大量的高质量数据,而相关数据可能有限且难以获取。其次,算法偏差也是一个问题,如果训练数据存在偏差,AI模型在诊断或预测时也可能产生偏差。技术上的局限性表现在AI处理复杂、非标准化影像和病理数据时的困难。此外,伦理和法律问题,如患者隐私和数据安全,也是AI在医疗领域应用中必须面对的挑战。临床接受度方面,医生和患者可能对AI辅助诊断和治疗持有保留态度,这需要时间通过教育和经验来提高。尽管存在这些局限性,人工智能技术在CBDS诊疗中的优势尤其在辅助诊断、个性化治疗和预后预测方面是显而易见的。为了克服这些挑战,需要进一步的研究和技术的改进。通过提升数据质量、减少算法偏差并解决技术难题,AI有潜力在未来为CBDS患者提供更加精准和高效的诊疗服务。

5. 预防措施

熊去氧胆酸(UDCA)作为肝保护性药物,长期在胆汁淤积症治疗中占据核心地位[44] [45]。众多研究表明,UDCA能有效缓解成年患者的胆汁淤积症状,并因其安全性而受到青睐[46]。Yuan等[47]的研究纳入了100例胆总管结石患者,结果显示,使用UDCA组的结石复发率(13.21%)显著低于未使用UDCA组(44.68%),术后使用UDCA被认定为预防结石复发的因素(OR: 0.07; 95% CI: 0.08~0.09)。研究者认为,UDCA能溶解胆固醇结石,并通过降低胆汁中胆固醇浓度来预防结石的形成与复发。Huang等[48]的研究发现,UDCA能改善胆汁淤积儿童的症状(风险比1.24,95% CI 1.18至1.29),并降低血清丙氨酸氨基转移酶、总胆红素、直接胆红素和总胆酸水平。然而,也有研究[49]报道了4例因UDCA导致的反复胆管炎病例,其中停用UDCA后治疗效果显著。Emoto等[50]的研究指出,对于近端小肠狭窄的克罗恩病患者,应谨慎使用口服UDCA。尽管具体机制尚不明确,UDCA在预防胆总管结石术后复发方面具有潜力,但其使用仍需谨慎。

6. 总结

本文从危险因素、检查方法、治疗策略、预防措施等多个方面对复发性胆总管结石的诊治现状进行了全面综述。文章不仅总结了可能导致复发性胆总管结石形成的危险因素,临床中常用的检查与治疗手段,还探讨了人工智能在该领域的应用,为未来的研究发展方向提供了参考。同时,如何有效预防复发性胆总管结石的产生,也是LCBDE术后防止胆结石复发的关键议题。我们建议,在加强LCBDE术后患者对复发性胆结石预防措施的同时,对于合并多种危险因素的患者,应增加对其的随访频率,以便更早地发现并处理复发性胆总管结石。

参考文献

[1] Wang, X., Yu, W., Jiang, G., Li, H., Li, S., Xie, L., et al. (2024) Global Epidemiology of Gallstones in the 21st Century: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 22, 1586-1595.
https://doi.org/10.1016/j.cgh.2024.01.051
[2] Jaruvongvanich, V., Sanguankeo, A. and Upala, S. (2016) Significant Association between Gallstone Disease and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Digestive Diseases and Sciences, 61, 2389-2396.
https://doi.org/10.1007/s10620-016-4125-2
[3] Wang, Y., Lu, J., Wen, N., Nie, G., Peng, D., Xiong, X., et al. (2022) The Role of Diet and Nutrition Related Indicators in Biliary Diseases: An Umbrella Review of Systematic Review and Meta-Analysis. Nutrition & Metabolism, 19, Article No. 51.
https://doi.org/10.1186/s12986-022-00677-1
[4] Das, S., Jha, A.K. and Kumar, M. (2023) Laparoscopic Common Bile Duct Exploration in Cases of Common Bile Duct Stones: Can LCBDE Replace ERCP as First Line Treatment. The American Journal of Surgery, 226, Article 290.
https://doi.org/10.1016/j.amjsurg.2023.03.006
[5] 姚康, 童朝刚. LC联合LCBDE+T管引流术后胆总管结石复发的相关危险因素分析[J]. 医学信息(上旬刊), 2022, 35(5): 98-100, 120.
[6] Deng, F., Zhou, M., Liu, P., Hong, J., Li, G., Zhou, X., et al. (2019) Causes Associated with Recurrent Choledocholithiasis Following Therapeutic Endoscopic Retrograde Cholangiopancreatography: A Large Sample Sized Retrospective Study. World Journal of Clinical Cases, 7, 1028-1037.
https://doi.org/10.12998/wjcc.v7.i9.1028
[7] Wen, N., Wang, Y., Cai, Y., Nie, G., Yang, S., Wang, S., et al. (2023) Risk Factors for Recurrent Common Bile Duct Stones: A Systematic Review and Meta-analysis. Expert Review of Gastroenterology & Hepatology, 17, 937-947.
https://doi.org/10.1080/17474124.2023.2242784
[8] Yoo, E.S., Yoo, B.M., Kim, J.H., Hwang, J.C., Yang, M.J., Lee, K.M., et al. (2018) Evaluation of Risk Factors for Recurrent Primary Common Bile Duct Stone in Patients with Cholecystectomy. Scandinavian Journal of Gastroenterology, 53, 466-470.
https://doi.org/10.1080/00365521.2018.1438507
[9] Song, M.E., Chung, M.J., Lee, D., Oh, T.G., Park, J.Y., Bang, S., et al. (2016) Cholecystectomy for Prevention of Recurrence after Endoscopic Clearance of Bile Duct Stones in Korea. Yonsei Medical Journal, 57, 132-137.
https://doi.org/10.3349/ymj.2016.57.1.132
[10] Thistle, J.L. (1998) Pathophysiology of Bile Duct Stones. World Journal of Surgery, 22, 1114-1118.
https://doi.org/10.1007/s002689900529
[11] Wang, H., He, Y., Dong, S., Zhong, W., Tao, P., Yang, S., et al. (2023) Recurrence of Common Bile Duct Stones after Choledocholithotomy in Elderly Patients: Risk Factor Analysis and Clinical Prediction Model Development. Frontiers in Medicine, 10, Article 1239902.
https://doi.org/10.3389/fmed.2023.1239902
[12] Parra-Membrives, P., Martínez-Baena, D., Lorente-Herce, J.M., Jiménez-Riera, G. and Sánchez-Gálvez, M.Á. (2019) Recurrencia de coledocolitiasis tras exploración laparoscópica de la vía biliar principal. Cirugía Española, 97, 336-342.
https://doi.org/10.1016/j.ciresp.2019.02.012
[13] Li, Y., Wang, M., Du, W., Qi, L., Liu, X. and Fan, X. (2024) The Correlation between Urinary Iodine Levels and Gallstone Risk: Elevated Iodine Intake Linked to Gallstone Occurrence. Frontiers in Nutrition, 11, Article 1412814.
https://doi.org/10.3389/fnut.2024.1412814
[14] Kube, I., Tardio, L.B., Hofmann, U., Ghallab, A., Hengstler, J.G., Führer, D., et al. (2021) Hypothyroidism Increases Cholesterol Gallstone Prevalence in Mice by Elevated Hydrophobicity of Primary Bile Acids. Thyroid, 31, 973-984.
https://doi.org/10.1089/thy.2020.0636
[15] Wang, Y., Yu, X., Zhao, Q., Zheng, S., Qing, W., Miao, C., et al. (2016) Thyroid Dysfunction, Either Hyper or Hypothyroidism, Promotes Gallstone Formation by Different Mechanisms. Journal of Zhejiang University-SCIENCE B, 17, 515-525.
https://doi.org/10.1631/jzus.b1500210
[16] Nakano, S., Suzuki, M., Haruna, H., Yamataka, A. and Shimizu, T. (2019) Gallstone Formation Due to Rapid Weight Loss through Hyperthyroidism. Journal of Pediatric Endocrinology and Metabolism, 32, 1395-1398.
https://doi.org/10.1515/jpem-2019-0149
[17] Liu, J., Liu, L., Jia, Q., Zhang, X., Jin, X. and Shen, H. (2019) Effects of Excessive Iodine Intake on Blood Glucose, Blood Pressure, and Blood Lipids in Adults. Biological Trace Element Research, 192, 136-144.
https://doi.org/10.1007/s12011-019-01668-9
[18] Shen, X., Yang, L., Liu, Y., Zhang, X., Cai, P., Huang, J., et al. (2023) Associations between Urinary Iodine Concentration and the Prevalence of Metabolic Disorders: A Cross-Sectional Study. Frontiers in Endocrinology, 14, Article 1153462.
https://doi.org/10.3389/fendo.2023.1153462
[19] Zhang, Y., Sun, L., Wang, X. and Chen, Z. (2022) The Association between Hypertension and the Risk of Gallstone Disease: A Cross-Sectional Study. BMC Gastroenterology, 22, Article No. 138.
https://doi.org/10.1186/s12876-022-02149-5
[20] Wu, Y., Xu, C.J. and Xu, S.F. (2021) Advances in Risk Factors for Recurrence of Common Bile Duct Stones. International Journal of Medical Sciences, 18, 1067-1074.
https://doi.org/10.7150/ijms.52974
[21] Li, S., Su, B., Chen, P. and Hao, J. (2018) Risk Factors for Recurrence of Common Bile Duct Stones after Endoscopic Biliary Sphincterotomy. Journal of International Medical Research, 46, 2595-2605.
https://doi.org/10.1177/0300060518765605
[22] Liu, F., Wang, Z., Li, M., Zhang, X., Cai, F., Wang, X., et al. (2024) Characterization of Biliary and Duodenal Microbiota in Patients with Primary and Recurrent Choledocholithiasis. Health Information Science and Systems, 12, Article No. 29.
https://doi.org/10.1007/s13755-023-00267-2
[23] Li, Y., Tan, W., Wu, J., Huang, Z., Shang, Y., Liang, B., et al. (2022) Microbiologic Risk Factors of Recurrent Choledocholithiasis Post-Endoscopic Sphincterotomy. World Journal of Gastroenterology, 28, 1257-1271.
https://doi.org/10.3748/wjg.v28.i12.1257
[24] Park, B.K., Seo, J.H., Jeon, H.H., Choi, J.W., Won, S.Y., Cho, Y.S., et al. (2017) A Nationwide Population-Based Study of Common Bile Duct Stone Recurrence after Endoscopic Stone Removal in Korea. Journal of Gastroenterology, 53, 670-678.
https://doi.org/10.1007/s00535-017-1419-x
[25] 叶万平, 曾安祥, 曾德辉, 等. ERCP、MRCP、CT、B超对胆总管结石的诊断价值分析[J]. 中外医疗, 2020, 39(34): 187-189.
[26] 李宁, 慕明堂. MRCP与腹部CT检查在肝外胆结石中的临床价值比较[J]. 深圳中西医结合杂志, 2023, 33(3): 64-66.
[27] Breidert, M., Weber, M. and Wildi, S. (2020) Unusual Aspect of a Choledocholithiasis. Gastroenterology, 159, 1660-1661.
https://doi.org/10.1053/j.gastro.2020.05.072
[28] Williams, E.J., Green, J., Beckingham, I., Parks, R., Martin, D. and Lombard, M. (2008) Guidelines on the Management of Common Bile Duct Stones (CBDs). Gut, 57, 1004-1021.
https://doi.org/10.1136/gut.2007.121657
[29] Caddy, G.R. and Tham, T.C.K. (2006) Symptoms, Diagnosis and Endoscopic Management of Common Bile Duct Stones. Best Practice & Research Clinical Gastroenterology, 20, 1085-1101.
https://doi.org/10.1016/j.bpg.2006.03.002
[30] Mo, L., Hwang, M., Yueh, S., Yang, J. and Lin, C. (1988) Percutaneous Transhepatic Choiedochoscopic Electrohydraulic Lithotripsy (PTCS-EHL) of Common Bile Duct Stones. Gastrointestinal Endoscopy, 34, 122-125.
https://doi.org/10.1016/s0016-5107(88)71276-6
[31] Wang, P., Sun, B., Huang, B., Xie, J., Liu, Y., Zhu, C., et al. (2016) Comparison between Percutaneous Transhepatic Rigid Cholangioscopic Lithotripsy and Conventional Percutaneous Transhepatic Cholangioscopic Surgery for Hepatolithiasis Treatment. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 26, 54-59.
https://doi.org/10.1097/sle.0000000000000222
[32] Yildirim, A.E. (2019) Optimal Dilation Time for Combined Small Endoscopic Sphincterotomy and Balloon Dilation for Common Bile Duct Stones: A Multicentre, Single-Blinded, Randomised Controlled Trial. The Turkish Journal of Gastroenterology, 30, 662-663.
https://doi.org/10.5152/tjg.2019.240519
[33] Wandling, M.W., Hungness, E.S., Pavey, E.S., Stulberg, J.J., Schwab, B., Yang, A.D., et al. (2016) Nationwide Assessment of Trends in Choledocholithiasis Management in the United States from 1998 to 2013. JAMA Surgery, 151, 1125-1130.
https://doi.org/10.1001/jamasurg.2016.2059
[34] Aabakken, L., Karlsen, T., Albert, J., Arvanitakis, M., Chazouilleres, O., Dumonceau, J., et al. (2017) Role of Endoscopy in Primary Sclerosing Cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy, 49, 588-608.
https://doi.org/10.1055/s-0043-107029
[35] Hussein, M., Everson, M. and Haidry, R. (2021) Esophageal Squamous Dysplasia and Cancer: Is Artificial Intelligence Our Best Weapon? Best Practice & Research Clinical Gastroenterology, 52, Article ID: 101723.
https://doi.org/10.1016/j.bpg.2020.101723
[36] Arribas Anta, J. and Dinis-Ribeiro, M. (2021) Early Gastric Cancer and Artificial Intelligence: Is It Time for Population Screening? Best Practice & Research Clinical Gastroenterology, 52, Article ID: 101710.
https://doi.org/10.1016/j.bpg.2020.101710
[37] Piccirelli, S., Milluzzo, S.M., Bizzotto, A., Cesaro, P., Pecere, S. and Spada, C. (2021) Small Bowel Capsule Endoscopy and Artificial Intelligence: First or Second Reader? Best Practice & Research Clinical Gastroenterology, 52, Article ID: 101742.
https://doi.org/10.1016/j.bpg.2021.101742
[38] Antonelli, G., Badalamenti, M., Hassan, C. and Repici, A. (2021) Impact of Artificial Intelligence on Colorectal Polyp Detection. Best Practice & Research Clinical Gastroenterology, 52, Article ID: 101713.
https://doi.org/10.1016/j.bpg.2020.101713
[39] Jovanovic, P., Salkic, N.N. and Zerem, E. (2014) Artificial Neural Network Predicts the Need for Therapeutic ERCP in Patients with Suspected Choledocholithiasis. Gastrointestinal Endoscopy, 80, 260-268.
https://doi.org/10.1016/j.gie.2014.01.023
[40] Huang, L., Xu, Y., Chen, J., Liu, F., Wu, D., Zhou, W., et al. (2022) An Artificial Intelligence Difficulty Scoring System for Stone Removal during ERCP: A Prospective Validation. Endoscopy, 55, 4-11.
https://doi.org/10.1055/a-1850-6717
[41] Sun, X. (2003) Prospective Study of Scoring System in Selective Intraoperative Cholangiography during Laparoscopic Cholecystectomy. World Journal of Gastroenterology, 9, 865-867.
https://doi.org/10.3748/wjg.v9.i4.865
[42] Dumonceau, J., Kapral, C., Aabakken, L., Papanikolaou, I.S., Tringali, A., Vanbiervliet, G., et al. (2019) ERCP-Related Adverse Events: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy, 52, 127-149.
https://doi.org/10.1055/a-1075-4080
[43] Archibugi, L., Ciarfaglia, G., Cárdenas-Jaén, K., Poropat, G., Korpela, T., Maisonneuve, P., et al. (2023) Machine Learning for the Prediction of Post-ERCP Pancreatitis Risk: A Proof-of-Concept Study. Digestive and Liver Disease, 55, 387-393.
https://doi.org/10.1016/j.dld.2022.10.005
[44] Kriegermeier, A. and Green, R. (2020) Pediatric Cholestatic Liver Disease: Review of Bile Acid Metabolism and Discussion of Current and Emerging Therapies. Frontiers in Medicine, 7, Article 149.
https://doi.org/10.3389/fmed.2020.00149
[45] Paumgartner, G. and Beuers, U. (2002) Ursodeoxycholic Acid in Cholestatic Liver Disease: Mechanisms of Action and Therapeutic Use Revisited. Hepatology, 36, 525-531.
https://doi.org/10.1053/jhep.2002.36088
[46] Ward, A., Brogden, R.N., Heel, R.C., Speight, T.M. and Avery, G.S. (1984) Ursodeoxycholic Acid: A Review of Its Pharmacological Properties and Therapeutic Efficacy. Drugs, 27, 95-131.
https://doi.org/10.2165/00003495-198427020-00001
[47] Yuan, W., Zhang, Z., Pan, Q., Mao, B. and Yuan, T. (2024) Risk Factors for Recurrence of Common Bile Duct Stones after Surgical Treatment and Effect of Ursodeoxycholic Acid Intervention. World Journal of Gastrointestinal Surgery, 16, 103-112.
https://doi.org/10.4240/wjgs.v16.i1.103
[48] Huang, L., Li, S., Chen, J., Zhu, Y., Lan, K., Zeng, L., et al. (2023) Efficacy and Safety of Ursodeoxycholic Acid in Children with Cholestasis: A Systematic Review and Meta-Analysis. PLOS ONE, 18, e0280691.
https://doi.org/10.1371/journal.pone.0280691
[49] Akiyama, S., Imamura, T., Tamura, T., Koizumi, Y., Koyama, R., Takeuchi, K., et al. (2014) Recurrent Common Bile Duct Stones Composed of Ursodeoxycholic Acid: A Report of Four Cases. Internal Medicine, 53, 2489-2492.
https://doi.org/10.2169/internalmedicine.53.2886
[50] Matsui, H., Yoshida, T., Homma, S., Ichikawa, N., Emoto, S., Miyaoka, Y., et al. (2021) Ursodeoxycholic Acid Triggers Primary Enterolith Growth in a Crohn’s Disease Patient with Jejunal Stenosis. Journal of the Anus, Rectum and Colon, 5, 433-438.
https://doi.org/10.23922/jarc.2021-017