[1]
|
He, L., Zhou, X., Huang, N., Li, H., Tian, J., Li, T., et al. (2017) AMPK Regulation of Glucose, Lipid and Protein Metabolism: Mechanisms and Nutritional Significance. Current Protein & Peptide Science, 18, 562-570. https://doi.org/10.2174/1389203717666160627071125
|
[2]
|
Wang, S.Z., Min, W.U., Chen, K.J., et al. (2019) Hawthorn Extract Al-Leviates Atherosclerosis through Regulating Inflammation and Apotosis Related Factors: An Experimental Study. Chinese Journal of Integrative Medicine, 25, 108-115.
|
[3]
|
Shatoor, A.S. and Al Humayed, S. (2019) The Protective Effect of Crataegus Aronia against High-Fat Diet-Induced Vascular Inflammation in Rats Entails Inhibition of the NLRP-3 Inflammasome Pathway. Cardiovascular Toxicology, 20, 82-99. https://doi.org/10.1007/s12012-019-09534-9
|
[4]
|
Li, L., Gao, P., Song, S., Yuan, Y., Liu, C., Huang, X., et al. (2015) Monoterpenes and Flavones from the Leaves of Crataegus Pinnatifida with Anticoagulant Activities. Journal of Functional Foods, 12, 237-245. https://doi.org/10.1016/j.jff.2014.11.012
|
[5]
|
祝新茗, 李沐阳, 王桂芹, 黄酮类化合物在水产动物营养上的研究进展[J]. 饲料工业, 2021, 42(16): 26-31.
|
[6]
|
Zhou, C., Huang, X., Gao, P., Li, F., Li, D., Li, L., et al. (2013) Two New Compounds from Crataegus Pinnatifida and Their Antithrombotic Activities. Journal of Asian Natural Products Research, 16, 169-174. https://doi.org/10.1080/10286020.2013.848429
|
[7]
|
Anuradha, R., Saraswati, M., Kumar, K.G. and Rani, S.H. (2014) Apoptosis of Beta Cells in Diabetes Mellitus. DNA and Cell Biology, 33, 743-748. https://doi.org/10.1089/dna.2014.2352
|
[8]
|
Oh, Y.S., Bae, G.D., Baek, D.J., Park, E. and Jun, H. (2018) Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells during Development of Type 2 Diabetes. Frontiers in Endocrinology, 9, Article No. 384. https://doi.org/10.3389/fendo.2018.00384
|
[9]
|
Sun, Y., Yang, J., Liu, W., Yao, G., Xu, F., Hayashi, T., et al. (2019) Attenuating Effect of Silibinin on Palmitic Acid-Induced Apoptosis and Mitochondrial Dysfunction in Pancreatic Β-Cells Is Mediated by Estrogen Receptor Alpha. Molecular and Cellular Biochemistry, 460, 81-92. https://doi.org/10.1007/s11010-019-03572-1
|
[10]
|
Mi, X., Choi, H.S., Perumalsamy, H., Shanmugam, R., Thangavelu, L., Balusamy, S.R., et al. (2022) Biosynthesis and Cytotoxic Effect of Silymarin-Functionalized Selenium Nanoparticles Induced Autophagy Mediated Cellular Apoptosis via Downregulation of PI3K/Akt/mTOR Pathway in Gastric Cancer. Phytomedicine, 99, Article 154014. https://doi.org/10.1016/j.phymed.2022.154014
|
[11]
|
van der Pol, A., van Gilst, W.H., Voors, A.A. and van der Meer, P. (2018) Treating Oxidative Stress in Heart Failure: Past, Present and Future. European Journal of Heart Failure, 21, 425-435. https://doi.org/10.1002/ejhf.1320
|
[12]
|
Muthumani, M. and Prabu, S.M. (2013) Silibinin Potentially Attenuates Arsenic-Induced Oxidative Stress Mediated Cardiotoxicity and Dyslipidemia in Rats. Cardiovascular Toxicology, 14, 83-97. https://doi.org/10.1007/s12012-013-9227-x
|
[13]
|
Kim, S., Kim, K., Yu, S., Seo, Y., Chun, S., Yu, H., et al. (2016) Silibinin Induces Mitochondrial Nox4-Mediated Endoplasmic Reticulum Stress Response and Its Subsequent Apoptosis. BMC Cancer, 16, Article No. 452. https://doi.org/10.1186/s12885-016-2516-6
|
[14]
|
Fallah, M., Davoodvandi, A., Nikmanzar, S., Aghili, S., Mirazimi, S.M.A., Aschner, M., et al. (2021) Silymarin (Milk Thistle Extract) as a Therapeutic Agent in Gastrointestinal Cancer. Biomedicine & Pharmacotherapy, 142, Article 112024. https://doi.org/10.1016/j.biopha.2021.112024
|
[15]
|
Kim, S., Choo, G., Yoo, E., Woo, J., Han, S., Lee, J., et al. (2019) Silymarin Induces Inhibition of Growth and Apoptosis through Modulation of the MAPK Signaling Pathway in AGS Human Gastric Cancer Cells. Oncology Reports, 42, 1904-1914. https://doi.org/10.3892/or.2019.7295
|
[16]
|
Wu, T., Liu, W., Guo, W. and Zhu, X. (2016) Silymarin Suppressed Lung Cancer Growth in Mice via Inhibiting Myeloid-Derived Suppressor Cells. Biomedicine & Pharmacotherapy, 81, 460-467. https://doi.org/10.1016/j.biopha.2016.04.039
|
[17]
|
Yassin, N.Y.S., AbouZid, S.F., El-Kalaawy, A.M., Ali, T.M., Almehmadi, M.M. and Ahmed, O.M. (2022) Silybum Marianum Total Extract, Silymarin and Silibinin Abate Hepatocarcinogenesis and Hepatocellular Carcinoma Growth via Modulation of the HGF/c-Met, WNT/β-Catenin, and PI3K/Akt/mTOR Signaling Pathways. Biomedicine & Pharmacotherapy, 145, Article 112409. https://doi.org/10.1016/j.biopha.2021.112409
|
[18]
|
Tönnies, E. and Trushina, E. (2017) Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 57, 1105-1121. https://doi.org/10.3233/jad-161088
|
[19]
|
Lee, J., Jo, D., Park, D., Chung, H.Y. and Mattson, M.P. (2014) Adaptive Cellular Stress Pathways as Therapeutic Targets of Dietary Phytochemicals: Focus on the Nervous System. Pharmacological Reviews, 66, 815-868. https://doi.org/10.1124/pr.113.007757
|
[20]
|
Shen, L., Liu, L., Li, X. and Ji, H. (2019) Regulation of Gut Microbiota in Alzheimer’s Disease Mice by Silibinin and Silymarin and Their Pharmacological Implications. Applied Microbiology and Biotechnology, 103, 7141-7149. https://doi.org/10.1007/s00253-019-09950-5
|
[21]
|
Tong, T.C., Hernandez, M., Richardson, W.H., Betten, D.P., Favata, M., Riffenburgh, R.H., et al. (2007) Comparative Treatment of Α-Amanitin Poisoning with N-Acetylcysteine, Benzylpenicillin, Cimetidine, Thioctic Acid, and Silybin in a Murine Model. Annals of Emergency Medicine, 50, 282-288. https://doi.org/10.1016/j.annemergmed.2006.12.015
|
[22]
|
Lalani, S., Masomian, M. and Poh, C.L. (2021) Functional Insights into Silymarin as an Antiviral Agent against Enterovirus A71 (EV-A71). International Journal of Molecular Sciences, 22, Article No. 8757. https://doi.org/10.3390/ijms22168757
|
[23]
|
Nguyen, T.T., Trinh, N., Tran, H.N., Tran, H.T., Le, P.Q., Ngo, D., et al. (2021) Improving Silymarin Oral Bioavailability Using Silica-Installed Redox Nanoparticle to Suppress Inflammatory Bowel Disease. Journal of Controlled Release, 331, 515-524. https://doi.org/10.1016/j.jconrel.2020.10.042
|
[24]
|
Paul, S., Arya, A., Gangwar, A., Bhargava, K. and Ahmad, Y. (2016) Size Restricted Silymarin Suspension Evokes Integrated Adaptive Response against Acute Hypoxia Exposure in Rat Lung. Free Radical Biology and Medicine, 96, 139-151. https://doi.org/10.1016/j.freeradbiomed.2016.04.020
|
[25]
|
Vostálová, J., Tinková, E., Biedermann, D., Kosina, P., Ulrichová, J. and Rajnochová Svobodová, A. (2019) Skin Protective Activity of Silymarin and Its Flavonolignans. Molecules, 24, Article No. 1022. https://doi.org/10.3390/molecules24061022
|
[26]
|
Pientaweeratch, S., Panapisal, V. and Tansirikongkol, A. (2016) Antioxidant, Anti-Collagenase and Anti-Elastase Activities of Phyllanthus Emblica, Manilkara Zapota and Silymarin: An in Vitro Comparative Study for Anti-Aging Applications. Pharmaceutical Biology, 54, 1865-1872. https://doi.org/10.3109/13880209.2015.1133658
|
[27]
|
Yang, J., Sun, Y., Xu, F., Liu, W., Mai, Y., Hayashi, T., et al. (2018) Silibinin Ameliorates Amylin-Induced Pancreatic Β-Cell Apoptosis Partly via Upregulation of GLP-1R/PKA Pathway. Molecular and Cellular Biochemistry, 452, 83-94. https://doi.org/10.1007/s11010-018-3414-9
|
[28]
|
Liu, P., Cui, L., Liu, B., Liu, W., Hayashi, T., Mizuno, K., et al. (2020) Silibinin Ameliorates STZ-Induced Impairment of Memory and Learning by Up-Regulating Insulin Signaling Pathway and Attenuating Apoptosis. Physiology & Behavior, 213, Article 112689. https://doi.org/10.1016/j.physbeh.2019.112689
|
[29]
|
Wang, H., Li, Y., Li, A., Yan, F., Li, Z., Liu, Z., et al. (2017) Erratum to: Forskolin Induces Hyperphosphorylation of Tau Accompanied by Cell Cycle Reactivation in Primary Hippocampal Neurons. Molecular Neurobiology, 55, 707-708. https://doi.org/10.1007/s12035-017-0415-8
|
[30]
|
Bartoli, M., Abouhish, H., Jadeja, R., et al. (2022) Anti-Senescence Properties of the Flavone Silymarin in the Diabetic Retina Involve Direct Inhibition of the Histone Deacetylase 6 (HDAC6). Investigative Ophthalmology & Visual Science, 63, Article No. 4117.
|
[31]
|
Peng, H., Sun, Y., Hao, J., Lu, C., Bi, M. and Song, E. (2019) Neuroprotective Effects of Overexpressed Microrna-200a on Activation of Glaucoma-Related Retinal Glial Cells and Apoptosis of Ganglion Cells via Downregulating Fgf7-Mediated MAPK Signaling Pathway. Cellular Signalling, 54, 179-190. https://doi.org/10.1016/j.cellsig.2018.11.006
|
[32]
|
Shen, Y., Zhao, H., Wang, Z., Guan, W., Kang, X., Tai, X., et al. (2019) Silibinin Declines Blue Light-Induced Apoptosis and Inflammation through MEK/ERK/CREB of Retinal Ganglion Cells. Artificial Cells, Nanomedicine, and Biotechnology, 47, 4059-4065. https://doi.org/10.1080/21691401.2019.1671430
|
[33]
|
Abrass, C.K. (1995) Diabetic Nephropathy. Mechanisms of Mesangial Matrix Expansion. Western Journal of Medicine, 162, 318-321.
|
[34]
|
赵欣, 戚慧贞. 水飞蓟素的药理作用[J]. 山东医药, 2006, 46(2): 57.
|
[35]
|
韦良开, 白心亮, 李瑞, 等. 水飞蓟的生物学功能及其在畜牧业中的应用研究进展[J]. 动物营养学报, 2021, 33(9): 4882-4889.
|
[36]
|
苟庚午, 蒋明, 文华, 等. 饲料中添加水飞蓟素对吉富罗非鱼生长性能、肝脏脂肪代谢酶和抗氧化能力的影响[J]. 水产学报, 2016, 40(9): 1309-1320.
|
[37]
|
刘明, 刘熙鹏, 李淳, 等. 水飞蓟素通过调控miR-124-3p/WEE1轴影响胶质瘤细胞恶性生长的机制研究[J]. 中国医科大学学报, 2024, 53(2): 142-148.
|
[38]
|
余小虎, 朱金水, 邱夏地, 等. 水飞蓟素联合二甲双胍治疗肥胖型非酒精性脂肪肝的临床研究[J]. 实用肝脏病杂志, 2005, 8(5): 269-271.
|
[39]
|
梁梦秋, 李磊, 孟艳秋, 等. 水飞蓟宾防治糖尿病及其并发症的作用机制研究进展[J]. 中国药房, 2023, 34(7): 887-891.
|
[40]
|
史向国, 钟大放, 张逸凡, 等. 反相高效液相色谱法测定大鼠血浆中水飞蓟宾的浓度[J]. 沈阳药科大学学报, 2001, 18(2): 113-115.
|
[41]
|
翟硕, 李娜, 陈蓓宁, 等. 水飞蓟在治疗慢性肝炎中的研究进展[J]. 中国临床药理学与治疗学, 2019, 24(5): 573-579.
|
[42]
|
Suguro, R., Pang, X., Yuan, Z., Chen, S., Zhu, Y. and Xie, Y. (2020) Combinational Applicaton of Silybin and Tangeretin Attenuates the Progression of Non-Alcoholic Steatohepatitis (NASH) in Mice via Modulating Lipid Metabolism. Pharmacological Research, 151, Article 104519. https://doi.org/10.1016/j.phrs.2019.104519
|
[43]
|
Federico, A., Dallio, M., Masarone, M., Gravina, A.G., Di Sarno, R., Tuccillo, C., et al. (2019) Evaluation of the Effect Derived from Silybin with Vitamin D and Vitamin E Administration on Clinical, Metabolic, Endothelial Dysfunction, Oxidative Stress Parameters, and Serological Worsening Markers in Nonalcoholic Fatty Liver Disease Patients. Oxidative Medicine and Cellular Longevity, 2019, 1-12. https://doi.org/10.1155/2019/8742075
|
[44]
|
Grasselli, E., Baldini, F., Vecchione, G., Oliveira, P., Sardo, V., Voci, A., et al. (2019) Excess Fructose and Fatty Acids Trigger a Model of Non-Alcoholic Fatty Liver Disease Progression in Vitro: Protective Effect of the Flavonoid Silybin. International Journal of Molecular Medicine, 44, 705-712. https://doi.org/10.3892/ijmm.2019.4234
|