[1]
|
Wu, S., Yan, X., Tang, J., Tan, E., Luo, L., Tong, S., et al. (2024) Nitrogen Cycling in China Marginal Seas: Progress and Challenges. Marine Chemistry, 265, Article ID: 104421. https://doi.org/10.1016/j.marchem.2024.104421
|
[2]
|
Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., et al. (2013) The Global Nitrogen Cycle in the Twenty-First Century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, Article ID: 20130164. https://doi.org/10.1098/rstb.2013.0164
|
[3]
|
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., et al. (1993) Evidence for General Instability of Past Climate from a 250-Kyr Ice-Core Record. Nature, 364, 218-220. https://doi.org/10.1038/364218a0
|
[4]
|
Suddick, E.C., Whitney, P., Townsend, A.R. and Davidson, E.A. (2012) The Role of Nitrogen in Climate Change and the Impacts of Nitrogen-Climate Interactions in the United States: Foreword to Thematic Issue. Biogeochemistry, 114, 1-10. https://doi.org/10.1007/s10533-012-9795-z
|
[5]
|
陈宏, 王泓, 吴敏, 等. 淡水湿地生态系统中微生物驱动氮转化过程研究进展[J]. 水利学报, 2020, 51(2): 158-168.
|
[6]
|
Lu, Y., Li, Q. and Li, T. (2024) A Novel Hierarchical Network-Based Approach to Unveil the Complexity of Functional Microbial Genome. BMC Genomics, 25, Article No. 786. https://doi.org/10.1186/s12864-024-10692-6
|
[7]
|
Byun, E., Müller, C., Parisse, B., Napoli, R., Zhang, J., Rezanezhad, F., et al. (2024) A Global Dataset of Gross Nitrogen Transformation Rates across Terrestrial Ecosystems. Scientific Data, 11, Article No. 1022. https://doi.org/10.1038/s41597-024-03871-3
|
[8]
|
白姣杰, 孟岑, 李裕元, 等. 典型高原湖泊人类活动净氮磷输入时空变化及其影响因素——以云南星云湖为例[J]. 湖泊科学, 2024, 36(4): 1110-1122.
|
[9]
|
Barnes, M.A. and Turner, C.R. (2015) The Ecology of Environmental DNA and Implications for Conservation Genetics. Conservation Genetics, 17, 1-17. https://doi.org/10.1007/s10592-015-0775-4
|
[10]
|
Liu, R., Liu, Y., Gao, Y., Zhao, F. and Wang, J. (2023) The Nitrogen Cycling Key Functional Genes and Related Microbial Bacterial Community Α-Diversity Is Determined by Crop Rotation Plans in the Loess Plateau. Agronomy, 13, Article No. 1769. https://doi.org/10.3390/agronomy13071769
|
[11]
|
付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493.
|
[12]
|
Wang, H., Deng, N., Wu, D. and Hu, S. (2017) Quantitative Response Relationships between Net Nitrogen Transformation Rates and Nitrogen Functional Genes during Artificial Vegetation Restoration Following Agricultural Abandonment. Scientific Reports, 7, Article No. 7752. https://doi.org/10.1038/s41598-017-08016-8
|
[13]
|
Aryal, B., Gurung, R., Camargo, A.F., Fongaro, G., Treichel, H., Mainali, B., et al. (2022) Nitrous Oxide Emission in Altered Nitrogen Cycle and Implications for Climate Change. Environmental Pollution, 314, Article ID: 120272. https://doi.org/10.1016/j.envpol.2022.120272
|
[14]
|
Kuypers, M.M.M., Marchant, H.K. and Kartal, B. (2018) The Microbial Nitrogen-Cycling Network. Nature Reviews Microbiology, 16, 263-276. https://doi.org/10.1038/nrmicro.2018.9
|
[15]
|
McRose, D.L., Zhang, X., Kraepiel, A.M.L. and Morel, F.M.M. (2017) Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments. Frontiers in Microbiology, 8, Article No. 267. https://doi.org/10.3389/fmicb.2017.00267
|
[16]
|
Zehr, J.P., Jenkins, B.D., Short, S.M. and Steward, G.F. (2003) Nitrogenase Gene Diversity and Microbial Community Structure: A Cross‐System Comparison. Environmental Microbiology, 5, 539-554. https://doi.org/10.1046/j.1462-2920.2003.00451.x
|
[17]
|
Pjevac, P., Schauberger, C., Poghosyan, L., Herbold, C.W., van Kessel, M.A.H.J., Daebeler, A., et al. (2017) AmoA-Targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox Nitrospira in the Environment. Frontiers in Microbiology, 8, Article No. 1508. https://doi.org/10.3389/fmicb.2017.01508
|
[18]
|
Simon, J. and Klotz, M.G. (2013) Diversity and Evolution of Bioenergetic Systems Involved in Microbial Nitrogen Compound Transformations. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1827, 114-135. https://doi.org/10.1016/j.bbabio.2012.07.005
|
[19]
|
Schweiger, P.F. (2016) Nitrogen Isotope Fractionation during N Uptake via Arbuscular Mycorrhizal and Ectomycorrhizal Fungi into Grey Alder. Journal of Plant Physiology, 205, 84-92. https://doi.org/10.1016/j.jplph.2016.08.004
|
[20]
|
Falkinham, J. and Butala, N. (2018) Nitrate and Nitrite Reductase Activities of Mycobacterium Avium. International Journal of Mycobacteriology, 7, Article No. 328. https://doi.org/10.4103/ijmy.ijmy_118_18
|
[21]
|
Philippot, L., Hallin, S. and Schloter, M. (2007) Ecology of Denitrifying Prokaryotes in Agricultural Soil. In: Advances in Agronomy, Elsevier, 249-305. https://doi.org/10.1016/s0065-2113(07)96003-4
|
[22]
|
Saraiva, L.M., Vicente, J.B. and Teixeira, M. (2004) The Role of the Flavodiiron Proteins in Microbial Nitric Oxide Detoxification. In: Advances in Microbial Physiology, Elsevier, 77-129. https://doi.org/10.1016/s0065-2911(04)49002-x
|
[23]
|
Zumft, W.G. and Kroneck, P.M.H. (2006) Respiratory Transformation of Nitrous Oxide (N2O) to Dinitrogen by Bacteria and Archaea. In: Advances in Microbial Physiology, Elsevier, 107-227. https://doi.org/10.1016/s0065-2911(06)52003-x
|
[24]
|
Maia, L.B. and Moura, J.J.G. (2014) How Biology Handles Nitrite. Chemical Reviews, 114, 5273-5357. https://doi.org/10.1021/cr400518y
|
[25]
|
Khadka, R., Clothier, L., Wang, L., Lim, C.K., Klotz, M.G. and Dunfield, P.F. (2018) Evolutionary History of Copper Membrane Monooxygenases. Frontiers in Microbiology, 9, Article No. 2493. https://doi.org/10.3389/fmicb.2018.02493
|
[26]
|
何芳, 张丽梅, 申聪聪, 等. 青藏高原林地土壤的氮转化特征及其影响因素分析: 以祁连山和藏东南地区为例[J]. 环境科学, 2021, 42(5): 2449-2456.
|
[27]
|
Dai, Z., Yu, M., Chen, H., Zhao, H., Huang, Y., Su, W., et al. (2020) Elevated Temperature Shifts Soil N Cycling from Microbial Immobilization to Enhanced Mineralization, Nitrification and Denitrification across Global Terrestrial Ecosystems. Global Change Biology, 26, 5267-5276. https://doi.org/10.1111/gcb.15211
|
[28]
|
张晶, 林先贵, 尹睿. 参与土壤氮素循环的微生物功能基因多样性研究进展[J]. 中国生态农业学报, 2009, 17(5): 1029-1034.
|
[29]
|
Huang, J., Liu, X., Liu, J., Zhang, Z., Zhang, W., Qi, Y., et al. (2023) Changes of Soil Bacterial Community, Network Structure, and Carbon, Nitrogen and Sulfur Functional Genes under Different Land Use Types. Catena, 231, Article ID: 107385. https://doi.org/10.1016/j.catena.2023.107385
|
[30]
|
曹竞雄, 韦梦, 陈孟次, 等. 温度对厌氧条件下不同pH水稻土氮素矿化的影响[J]. 中国生态农业学报, 2014, 22(10): 1182-1189.
|
[31]
|
李嵘, 常瑞英. 土壤有机碳对外源氮添加的响应及其机制[J]. 植物生态学报, 2015, 39(10): 1012-1020.
|
[32]
|
潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5): 526-535.
|
[33]
|
Huang, W., Kuzyakov, Y., Niu, S., Luo, Y., Sun, B., Zhang, J., et al. (2023) Drivers of Microbially and Plant‐Derived Carbon in Topsoil and Subsoil. Global Change Biology, 29, 6188-6200. https://doi.org/10.1111/gcb.16951
|
[34]
|
周圆, 支丽玲 , 郑凯凯, 等. 城镇污水处理厂活性污泥反硝化速率的影响因素及优化运行研究[J]. 环境工程, 2020, 38(7): 100-108.
|
[35]
|
李健, 曲植, 张立鑫, 等. 添加碳源对不同pH水稻土中反硝化关键功能基因的影响[J]. 南京信息工程大学学报(自然科学版), 2022, 14(4): 473-483.
|
[36]
|
陶健宇, 杨劲松, 姚荣江, 等. 河套灌区土壤盐分对化肥氮素转化过程的影响研究[J]. 土壤, 2020, 52(4): 802-810.
|
[37]
|
王敬, 程谊, 蔡祖聪, 等. 长期施肥对农田土壤氮素关键转化过程的影响[J]. 土壤学报, 2016, 53(2): 292-304.
|
[38]
|
郭俊杰, 朱晨, 刘文波, 等. 不同施肥模式对土壤氮循环功能微生物的影响[J]. 植物营养与肥料学报, 2021, 27(5): 751-759.
|
[39]
|
Du, L., Zhong, H., Guo, X., Li, H., Xia, J. and Chen, Q. (2024) Nitrogen Fertilization and Soil Nitrogen Cycling: Unraveling the Links among Multiple Environmental Factors, Functional Genes, and Transformation Rates. Science of the Total Environment, 951, Article ID: 175561. https://doi.org/10.1016/j.scitotenv.2024.175561
|
[40]
|
Chen, Y., Li, Y., Qiu, T., He, H., Liu, J., Duan, C., et al. (2023) High Nitrogen Fertilizer Input Enhanced the Microbial Network Complexity in the Paddy Soil. Soil Ecology Letters, 6, Article ID: 230205. https://doi.org/10.1007/s42832-023-0205-3
|
[41]
|
Xu, D.H., Lakshmanan, P., et al. (2024) Mitigation Strategies for Soil Acidification Based on Optimal Nitrogen Management. Frontiers of Agricultural Science & Engineering, 11, 229-242.
|
[42]
|
Zhong, X., Zeng, Y., Wang, S., Sun, Z., Tang, Y. and Kida, K. (2020) Insight into the Microbiology of Nitrogen Cycle in the Dairy Manure Composting Process Revealed by Combining High-Throughput Sequencing and Quantitative PCR. Bioresource Technology, 301, Article ID: 122760. https://doi.org/10.1016/j.biortech.2020.122760
|
[43]
|
张博雅, 余珂. 微生物基因数据库在氮循环功能基因注释中的应用[J]. 微生物学通报, 2020, 47(9): 3021-3038.
|
[44]
|
Zehr, J.P. and Kudela, R.M. (2011) Nitrogen Cycle of the Open Ocean: From Genes to Ecosystems. Annual Review of Marine Science, 3, 197-225. https://doi.org/10.1146/annurev-marine-120709-142819
|
[45]
|
Kanehisa, M. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28, 27-30. https://doi.org/10.1093/nar/28.1.27
|
[46]
|
Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., et al. (2020) NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database, 2020, baaa062. https://doi.org/10.1093/database/baaa062
|
[47]
|
Fish, J.A., Chai, B., Wang, Q., Sun, Y., Brown, C.T., Tiedje, J.M., et al. (2013) Fungene: The Functional Gene Pipeline and Repository. Frontiers in Microbiology, 4, Article No. 291. https://doi.org/10.3389/fmicb.2013.00291
|
[48]
|
Bateman, A. (2004) The PFAM Protein Families Database. Nucleic Acids Research, 32, 138D-141. https://doi.org/10.1093/nar/gkh121
|
[49]
|
Khanal, A. and Lee, J. (2020) Functional Diversity and Abundance of Nitrogen Cycle-Related Genes in Paddy Soil. Applied Biological Chemistry, 63, Article No. 17. https://doi.org/10.1186/s13765-020-00500-6
|
[50]
|
张淼, 刘俊杰, 刘株秀, 等. 黑土区农田土壤氮循环关键过程微生物基因丰度的分布特征[J]. 土壤学报, 2022, 59(5): 1258-1269.
|
[51]
|
Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O’Connor, M.I., et al. (2018) Function and Functional Redundancy in Microbial Systems. Nature Ecology & Evolution, 2, 936-943. https://doi.org/10.1038/s41559-018-0519-1
|
[52]
|
Li, D., Zhang, J., Gruda, N.S., Wang, Z., Duan, Z., Müller, C., et al. (2023) The Regulation of Gross Nitrogen Transformation Rates in Greenhouse Soil Cultivated with Cucumber Plants under Elevated Atmospheric [CO2] and Increased Soil Temperature. Geoderma, 439, Article ID: 116680. https://doi.org/10.1016/j.geoderma.2023.116680
|
[53]
|
Mosley, O.E., Gios, E., Close, M., Weaver, L., Daughney, C. and Handley, K.M. (2022) Nitrogen Cycling and Microbial Cooperation in the Terrestrial Subsurface. The ISME Journal, 16, 2561-2573. https://doi.org/10.1038/s41396-022-01300-0
|
[54]
|
Levy-Booth, D.J., Prescott, C.E. and Grayston, S.J. (2014) Microbial Functional Genes Involved in Nitrogen Fixation, Nitrification and Denitrification in Forest Ecosystems. Soil Biology and Biochemistry, 75, 11-25. https://doi.org/10.1016/j.soilbio.2014.03.021
|
[55]
|
Wang, P., Li, J., Luo, X., Ahmad, M., Duan, L., Yin, L., et al. (2021) Biogeographical Distributions of Nitrogen‐Cycling Functional Genes in a Subtropical Estuary. Functional Ecology, 36, 187-201. https://doi.org/10.1111/1365-2435.13949
|
[56]
|
Cui, Y., Wang, X., Zhang, X., Ju, W., Duan, C., Guo, X., et al. (2020) Soil Moisture Mediates Microbial Carbon and Phosphorus Metabolism during Vegetation Succession in a Semiarid Region. Soil Biology and Biochemistry, 147, Article ID: 107814. https://doi.org/10.1016/j.soilbio.2020.107814
|
[57]
|
Yang, Z., Peng, C., Cao, H., Song, J., Gong, B., Li, L., et al. (2022) Microbial Functional Assemblages Predicted by the FAPROTAX Analysis Are Impacted by Physicochemical Properties, but C, N and S Cycling Genes Are Not in Mangrove Soil in the Beibu Gulf, China. Ecological Indicators, 139, Article ID: 108887. https://doi.org/10.1016/j.ecolind.2022.108887
|
[58]
|
Zhu, G., Song, X., Ju, X., Zhang, J., Müller, C., Sylvester-Bradley, R., et al. (2019) Gross N Transformation Rates and Related N2O Emissions in Chinese and UK Agricultural Soils. Science of the Total Environment, 666, 176-186. https://doi.org/10.1016/j.scitotenv.2019.02.241
|
[59]
|
Colloff, M.J., Wakelin, S.A., Gomez, D. and Rogers, S.L. (2008) Detection of Nitrogen Cycle Genes in Soils for Measuring the Effects of Changes in Land Use and Management. Soil Biology and Biochemistry, 40, 1637-1645. https://doi.org/10.1016/j.soilbio.2008.01.019
|
[60]
|
Lindsay, E.A., Colloff, M.J., Gibb, N.L. and Wakelin, S.A. (2010) The Abundance of Microbial Functional Genes in Grassy Woodlands Is Influenced More by Soil Nutrient Enrichment than by Recent Weed Invasion or Livestock Exclusion. Applied and Environmental Microbiology, 76, 5547-5555. https://doi.org/10.1128/aem.03054-09
|
[61]
|
Wang, Y., Ma, X., Zhou, S., Lin, X., Ma, B., Park, H., et al. (2016) Expression of the nirs, hzsa, and hdh Genes in Response to Nitrite Shock and Recovery in Candidatus Kuenenia Stuttgartiensis. Environmental Science & Technology, 50, 6940-6947. https://doi.org/10.1021/acs.est.6b00546
|
[62]
|
Sui, Q., Zheng, R., Zhang, J., Di, F., Zuo, F., Zhang, Y., et al. (2021) Successful Enrichment of Anammox Consortium in a Single-Stage Reactor at Full-Scale: The Difference in Response of Functional Genes and Transcriptional Expressions. Chemical Engineering Journal, 426, Article ID: 131935. https://doi.org/10.1016/j.cej.2021.131935
|
[63]
|
Yu, T. and Zhuang, Q. (2020) Modeling Biological Nitrogen Fixation in Global Natural Terrestrial Ecosystems. Biogeosciences, 17, 3643-3657. https://doi.org/10.5194/bg-17-3643-2020
|
[64]
|
Asaadi, A. and Arora, V.K. (2021) Implementation of Nitrogen Cycle in the CLASSIC Land Model. Biogeosciences, 18, 669-706. https://doi.org/10.5194/bg-18-669-2021
|
[65]
|
Zheng, X., Liu, C. and Han, S. (2008) Description and Application of a Model for Simulating Regional Nitrogen Cycling and Calculating Nitrogen Flux. Advances in Atmospheric Sciences, 25, 181-201. https://doi.org/10.1007/s00376-008-0181-7
|