残余胆固醇与心血管疾病风险研究进展
Research Progress on Residual Cholesterol and Cardiovascular Disease Risk
摘要: 近年来,针对低密度脂蛋白胆固醇水平(LDL-C)的药物治疗是动脉粥样硬化性心血管疾病预防和治疗的主要手段,但即使通过下调LDL-C水平仍然存在不良心血管事件发生风险。有研究表明残余胆固醇(remnant cholesterol, RC)可能是主要残余心血管风险的重要影响因素。本综述旨在将近年来对残余胆固醇的定义、计量方法、致动脉粥样硬化机制及证据、治疗方法等进展进行阐述。
Abstract: In recent years, drug therapy targeting low density lipoprotein cholesterol (LDL-C) level is the main means for the prevention and treatment of atherosclerotic cardiovascular disease. However, there is still a risk of adverse cardiovascular events even by reducing LDL-C level. Studies have shown that remnant cholesterol (RC) may be an important factor affecting the major residual cardiovascular risk. This review aims to elaborate on the definition, measurement methods, atherogenic mechanism and evidence, and treatment methods of residual cholesterol in recent years.
文章引用:唐安岑, 周成, 高燕. 残余胆固醇与心血管疾病风险研究进展[J]. 临床医学进展, 2024, 14(12): 1228-1233. https://doi.org/10.12677/acm.2024.14123209

1. 引言

心血管疾病( cardiovascular disease, CVD)在全世界范围内的发病率及死亡率仍很高,是人类卫生健康事业的严重负担[1],2023年《全球心血管疾病负担特别报告》中表示尽管全球年龄标准化心血管疾病死亡率较前下降34.9%,但实际心血管疾病死亡人数却仍呈上升趋势[2],其中动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease, ASCVD)是心血管疾病的重要亚型,LDL-C是动脉粥样硬化性心血管疾病的重要危险因素,研究[3]表明,尽管使用他汀类药物降低LDL-C水平后,仍然存在显著的残余心血管风险。新型血脂指标非高密度脂蛋白胆固醇(non-high-density lipoprotein cholesterol, non-HDL-C)、载脂蛋白B (apoB)、残余胆固醇(remnant cholesterol, RC)和脂蛋白(a) (lipoprotein (a), Lp[a])被作为CVD患者残余心血管风险的生物标志物[4],其中RC在近年来研究中发现其在致ASCVD中有着重要作用。

2. RC的定义

血脂在血液中与载脂蛋白相结合以脂蛋白的形式存在,富含甘油三酯的脂蛋白(TRL)包括乳糜微粒和极低密度脂蛋白,主要用于运输甘油三酯(triglyceride, TG),TG是TRL的核心成分。TRL在脂蛋白脂肪酶(lipoprotein lipase, LPL)及胆固醇酯转移蛋白(cholesterol ester transfer protein, CETP)作用下形成更小的残余脂蛋白,其富含胆固醇,这些残余脂蛋白中的胆固醇含量为RC。与分子结构较大的TRL不同,通过LPL介导的脂解作用从TRL中除去TG后剩余的RC由于尺寸更小而能够进入血管内皮中发挥着致动脉粥样硬化作用[5]。RC包括在禁食条件下肝脏中合成的极低密度脂蛋白(very low-density lipoprotein, VLDL)及中间密度脂蛋白(intermediate density lipoprotein, IDL)中的胆固醇含量。在非禁食条件下,RC还包括由肠道产生的乳糜微粒(chylomicron, CM)中存在的胆固醇含量[6]

3. RC的计算与测量

目前,临床上常用公式RC = TC − HDL-C − LDL-C来计算血清RC水平,LDL-C通常用Friedewald方程计算,该方程假定甘油三酯与极低密度脂蛋白胆固醇(VLDL-C)的固定比例为5:1,然而实际上两者的比值由于个体差异是变化的且难以解释,一种新方法[7]使用甘油三酯:VLDL-C比值的可调因子进行LDL-C的估计,这种方法在高甘油三酯存在的情况下对LDL-C水平估计更具真实性,但更建议直接测量LDL-C [8]。研究[9] 表明,在临床实践中使用计算RC代替直接测量来评估实际RC是可行的。另外还可通过超速离心、聚丙烯酰胺凝胶电泳分离脂蛋白、核磁共振光谱和直接自动分析直接测量RC,上述方法由于不够经济简便而尚未在临床中广泛应用。在一项关于哥本哈根人群的前瞻性研究[10]中发现,直接测量的RC与计算的RC相比,可以更准确地识别被忽略的心肌梗死高风险患者。因此还需开发更简便有效并标准化的RC测量方法在临床工作中应用推广。

4. RC致动脉粥样硬化的机制

TRL残余物的尺寸较小,可以通过跨内皮细胞的胞转作用进入动脉壁内并不断积聚,形成胆固醇沉积,单核细胞–巨噬细胞及平滑肌细胞进入动脉壁内摄取脂质形成泡沫细胞最终导致斑块形成,当不稳定斑块破裂时可形成血栓。与低密度脂蛋白(low density lipoprotein, LDL)相比,RC更容易诱导巨噬细胞形成泡沫细胞[11],LDL颗粒受酶促和非酶促机制的氧化形成氧化LDL (oxLDL),oxLDL激活内皮细胞来上调粘附分子和趋化因子,引发无菌炎症反应,促使单核细胞进入动脉壁分化为巨噬细胞有效摄取LDL颗粒形成泡沫细胞,LDL在通过其他几种修饰包括酶降解或聚集后也是被巨噬细胞摄取,而RC不需要结构修饰即触发摄取[12]。此外,RC可诱导产生细胞因子(TNF-α)、白细胞介素(IL) (IL-1、IL-6、IL-8)和促动脉粥样硬化粘附分子导致血管内皮功能障碍和炎症,通过纤溶酶原激活物抑制剂1激活凝血级联反应[13]。这些致动脉粥样硬化血栓形成特性在高RC患者发生主要心血管不良事件(major adverse cardiovascular event, MACE) (包括心血管死亡、非致死性心肌梗死、需要再入院的不稳定型心绞痛、冠状动脉血运重建或非致死性卒中等复合终点)中起重要作用。

5. RC和心血管事件

一项纳入6901名西班牙老年心血管高危人群观察性队列研究发现,TG和non-HDL-C每增加10 mg/dL将增加4%和5%的MACE发生风险,而RC每增加10 mg/dL会使MACE发生风险升高21%。该研究同时发现在低LDL-C水平条件下高RC患者发生MACE的风险更高[11]。另一项纳入未患有ASCVD的17,532名个体研究[14]发现在LDL-C和RC两者水平不一致时,高RC/低LDL-C组与ASCVD风险增加相关(HR 1.21, 95% CI 1.08~1.34),升高的RC与ASCVD相关,独立于传统危险因素、LDL-C和apoB水平。韩国一项基于全国人群的观察性研究[15]发现,高LDL-C (≥3.4 mmol/L)和高RC (≥0.8 mmol/L)水平的个体发生CVD风险最高(HR 1.266, 95% CI 1.243~1.289),其次为仅高RC组(HR 1.102, 95% CI 1.087~1.118)、仅高LDL-C组(HR 1.098, 95% CI 1.083~1.113)。这为研究新靶向降脂治疗以降低心血管残余风险提供了新方向。

一项分别纳入哥本哈根一般人群(n = 106,937)和哥本哈根城市心脏研究人群(n = 13,974)的大型前瞻性队列研究[16]中发现,在哥本哈根一般人群研究中,RC水平 ≥ 1.5 mmol/L (58 mg/dL)与<0.5 mmol/L (19 mg/dL)的个体相比,外周动脉疾病、心肌梗死和缺血性卒中的风险分别增加4.8倍、4.2倍和1.8倍,在哥本哈根城市心脏研究人群中的风险分别增加4.9倍、2.6倍和2.1倍。研究[17]纳入650名急性缺血性卒中(AIS)患者和598名健康个体作为对照进行回顾性分析表明RC是AIS的一个独立风险因素,但RC水平和AIS风险之间呈非线性关系。

一项来自社区人群中RC与颅内动脉粥样硬化疾病(intracranial atherosclerotic disease, ICAD)的相关性研究[18]发现RC水平升高与ICAD相关,独立于LDL-C和传统危险因素,是ICAD独立预测因子,这为缺血性卒中的预防提供了思路。

有关RC对2型糖尿病(type 2 diabetes, T2D)患者发生CVD的研究,Huh等[19]对韩国1,956,452名T2D患者进行平均8.15年的随访,共发生了50,120例(2.56%)心肌梗死和73,231例(3.74%)缺血性卒中,证明在没有ASCVD病史的T2D患者中,RC是心肌梗死和卒中的危险因素,独立于传统的危险因素和血清LDL-C浓度。同时,在T2D患病时间较长的患者中,RC水平较高的患者发生的CVD风险更高。另一项研究[20]发现在校正传统的心血管危险因素后,RC每水平增加1个标准差,T2D患者发生与MACE风险增加7% (HR = 1.07, 95% CI 1.02~1.12, P = 0.004)。无论LDL-C水平(>100 or ≤100 mg/dL)如何,残余脂质风险(RC ≥ 31 mg/dL)都是T2D患者发生MACE的预测因子(HR = 1.37, 95% CI 1.09~1.73, P = 0.007; HR= 1.22, 95% CI 1.04~1.41, P = 0.015)。进一步通过访视RC水平变异性分析发现RC水平变化与完全调整模型中的MACE相关,提示不同就诊间的RC水平变异性有助于识别心血管风险较高的患者。

关于RC的不同地区研究,Doi等[21]根据流行病学观察研究和遗传孟德尔随机化研究结果表明RC升高与ASCVD风险增加存在因果关系,他们纳入2591例日本人、47,183例韩国人、48,646例中国人和6747例哥本哈根人群的空腹血脂样本发现,日本、韩国和中国东亚人群的LDL-C平均水平低于欧洲人,东亚人群和欧洲人RC平均水平差异较小,约为0.8 mmol/L (30 mg/dL)。另外纳入1917例日本人和6747例哥本哈根人群研究发现两地区LDL-C和RC水平的分布相似,LDL-C呈正态分布,RC呈偏态分布。

6. 降低RC的治疗方法

脂质代谢是一个复杂且动态的过程。LDL-C是ASCVD的公认危险因素,也是目前临床上ASCVD一级和二级预防干预的主要目标,但仍需进一步研究降低心血管事件残余风险。降脂治疗常通过纠正不良饮食习惯、改善不健康的生活方式及药物治疗来实现对CVD的一、二级预防。坚持健康的生活饮食习惯是降脂治疗的基石,包括戒烟限酒(≤10 g/d)、运动减重、减少胆固醇的摄入(<300 mg/d)、每日摄入适量碳水化合物(占每日总能量摄入的45%~55%)及膳食纤维(25~40 g/d),另外包括用于治疗血脂异常的膳食补充剂和功能性食品[22]

目前临床常用的降脂药物,如他汀类药物、贝特类药物、omega-3脂肪酸(OM3FAs)及PCSK9抑制剂等,都对降低RC水平有一定的作用[5]。TRL及其残余物的脂质团在血管内经历着动态代谢过程,TRL的清除包括LpL对甘油三酯的脂解作用和肝脏对其残余物的清除两个相关过程。当TRL的过量生产或脂解过程被限制都有助于RC的形成,其中TRL的脂解过程受LpL表达和TRL上apoCII (一种激活剂)、apoCIII (一种抑制剂)及apoAV、血管生成素样3、4和8 (ANGPTL3、4和8)、脂肪酶成熟因子-1 (LMF1)和糖基磷脂酰肌醇锚定的高密度脂蛋白结合蛋白(GPIHBP1)的调节,其中apoCIII和ANGPTL3已经成为关键的治疗靶点。ANGPTL3是肝脏产生的糖蛋白,抑制脂蛋白脂肪酶和内皮脂肪酶。来自遗传学和临床研究的数据表明,较低的ANGPTL3水平与较低的血浆LDL-C、TG和其他脂蛋白相关。用单克隆抗体Evinacumab对ANGPTL3进行药物灭活,可使LDL-C降低50%,即使在纯合子家族性高胆固醇血症(HoFH)患者中也是如此[23]。普洛扎西兰(Plozasiran)是一种靶向apoCIII的RNA干扰剂[24],佐达西兰(Zodasiran)一种针对ANGPTL3的RNA干扰治疗药物[25],两者可用于治疗混合型高脂血症。

7. 展望

近年来RC作为评估心血管残余风险指标越来越受到人们的关注,越来越多的研究证实RC对ASCVD风险的影响,新的研究[26]表明RC升高是高血压的独立危险因素,监测RC水平并实施干预以降低RC可能对预防高血压有潜在益处。这些观察结果尚未得到明确的解释,但为进一步研究奠定了基础。目前临床尚无明确的临界值规定作为ASCVD风险的评估,还需更加简便有效的RC测量方式在临床工作中推广。此外,还需要进一步研究新型药物对RC水平的控制并通过临床试验来评估RC降低对心血管事件的疗效。

NOTES

*通讯作者。

参考文献

[1] Mensah, G.A., Fuster, V., Murray, C.J.L., Roth, G.A., Mensah, G.A., Abate, Y.H., et al. (2023) Global Burden of Cardiovascular Diseases and Risks, 1990-2022. Journal of the American College of Cardiology, 82, 2350-2473.
https://doi.org/10.1016/j.jacc.2023.11.007
[2] Mensah, G.A., Fuster, V. and Roth, G.A. (2023) A Heart-Healthy and Stroke-Free World. Journal of the American College of Cardiology, 82, 2343-2349.
https://doi.org/10.1016/j.jacc.2023.11.003
[3] Sampson, U.K., Fazio, S. and Linton, M.F. (2011) Residual Cardiovascular Risk Despite Optimal LDL Cholesterol Reduction with Statins: The Evidence, Etiology, and Therapeutic Challenges. Current Atherosclerosis Reports, 14, 1-10.
https://doi.org/10.1007/s11883-011-0219-7
[4] Averna, M., Stroes, E., Ogura, M., Postadzhiyan, A., Cercek, M., Calabrò, P., et al. (2017) How to Assess and Manage Cardiovascular Risk Associated with Lipid Alterations beyond LDL. Atherosclerosis Supplements, 26, 16-24.
https://doi.org/10.1016/s1567-5688(17)30021-1
[5] Wang, L., Zhang, Q., Wu, Z. and Huang, X. (2024) A Significant Presence in Atherosclerotic Cardiovascular Disease: Remnant Cholesterol: A Review. Medicine, 103, e38754.
https://doi.org/10.1097/md.0000000000038754
[6] Baratta, F., Cocomello, N., Coronati, M., Ferro, D., Pastori, D., Angelico, F., et al. (2023) Cholesterol Remnants, Triglyceride-Rich Lipoproteins and Cardiovascular Risk. International Journal of Molecular Sciences, 24, Article 4268.
https://doi.org/10.3390/ijms24054268
[7] Martin, S.S., Blaha, M.J., Elshazly, M.B., Toth, P.P., Kwiterovich, P.O., Blumenthal, R.S., et al. (2013) Comparison of a Novel Method vs the Friedewald Equation for Estimating Low-Density Lipoprotein Cholesterol Levels from the Standard Lipid Profile. JAMA, 310, 2061-2068.
https://doi.org/10.1001/jama.2013.280532
[8] Lütjohann, D., Klör, H. and Stellaard, F. (2023) Measurement of Serum Low Density Lipoprotein Cholesterol and Triglyceride-Rich Remnant Cholesterol as Independent Predictors of Atherosclerotic Cardiovascular Disease: Possibilities and Limitations. Nutrients, 15, Article 2202.
https://doi.org/10.3390/nu15092202
[9] Chen, J., Kuang, J., Tang, X., Mao, L., Guo, X., Luo, Q., et al. (2020) Comparison of Calculated Remnant Lipoprotein Cholesterol Levels with Levels Directly Measured by Nuclear Magnetic Resonance. Lipids in Health and Disease, 19, Article No. 132.
https://doi.org/10.1186/s12944-020-01311-w
[10] Varbo, A. and Nordestgaard, B.G. (2021) Directly Measured vs. Calculated Remnant Cholesterol Identifies Additional Overlooked Individuals in the General Population at Higher Risk of Myocardial Infarction. European Heart Journal, 42, 4833-4843.
https://doi.org/10.1093/eurheartj/ehab293
[11] Ginsberg, H.N., Packard, C.J., Chapman, M.J., Borén, J., Aguilar-Salinas, C.A., Averna, M., et al. (2021) Triglyceride-rich Lipoproteins and Their Remnants: Metabolic Insights, Role in Atherosclerotic Cardiovascular Disease, and Emerging Therapeutic Strategies—A Consensus Statement from the European Atherosclerosis Society. European Heart Journal, 42, 4791-4806.
https://doi.org/10.1093/eurheartj/ehab551
[12] Borén, J., Chapman, M.J., Krauss, R.M., Packard, C.J., Bentzon, J.F., Binder, C.J., et al. (2020) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease: Pathophysiological, Genetic, and Therapeutic Insights: A Consensus Statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 41, 2313-2330.
https://doi.org/10.1093/eurheartj/ehz962
[13] Castañer, O., Pintó, X., Subirana, I., Amor, A.J., Ros, E., Hernáez, Á., et al. (2020) Remnant Cholesterol, Not LDL Cholesterol, Is Associated with Incident Cardiovascular Disease. Journal of the American College of Cardiology, 76, 2712-2724.
https://doi.org/10.1016/j.jacc.2020.10.008
[14] Quispe, R., Martin, S.S., Michos, E.D., Lamba, I., Blumenthal, R.S., Saeed, A., et al. (2021) Remnant Cholesterol Predicts Cardiovascular Disease Beyond LDL and APOB: A Primary Prevention Study. European Heart Journal, 42, 4324-4332.
https://doi.org/10.1093/eurheartj/ehab432
[15] Lee, S.J., Kim, S.E., Go, T.H., Kang, D.R., Jeon, H.S., Kim, Y.I., Cho, D.H., Park, Y.J., Lee, J.H., Lee, J.W., Youn, Y.J., Kim, S.H., Kim, J.Y. and Ahn, S.G. (2023) Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Incident Cardiovascular Disease among Koreans: A National Population-Based Study. European Journal of Preventive Cardiology, 30, 1142-1150.
[16] Wadström, B.N., Wulff, A.B., Pedersen, K.M., Jensen, G.B. and Nordestgaard, B.G. (2021) Elevated Remnant Cholesterol Increases the Risk of Peripheral Artery Disease, Myocardial Infarction, and Ischaemic Stroke: A Cohort-Based Study. European Heart Journal, 43, 3258-3269.
https://doi.org/10.1093/eurheartj/ehab705
[17] Feng, Q., Li, H., Zhang, R., Sun, L., Zhang, S., Chen, Y., et al. (2024) Elevated Remnant Cholesterol Is a Risk Factor for Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107773.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107773
[18] Zhang, P., Zhang, Z., Li, D., Han, R., Li, H., Ma, J., et al. (2023) Association of Remnant Cholesterol with Intracranial Atherosclerosis in Community-Based Population: The ARIC Study. Journal of Stroke and Cerebrovascular Diseases, 32, Article ID: 107293.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107293
[19] Huh, J.H., Han, K., Cho, Y.K., Roh, E., Kang, J.G., Lee, S.J., et al. (2022) Remnant Cholesterol and the Risk of Cardiovascular Disease in Type 2 Diabetes: A Nationwide Longitudinal Cohort Study. Cardiovascular Diabetology, 21, Article No. 228.
https://doi.org/10.1186/s12933-022-01667-6
[20] Fu, L., Tai, S., Sun, J., Zhang, N., Zhou, Y., Xing, Z., et al. (2022) Remnant Cholesterol and Its Visit-to-Visit Variability Predict Cardiovascular Outcomes in Patients with Type 2 Diabetes: Findings from the ACCORD Cohort. Diabetes Care, 45, 2136-2143.
https://doi.org/10.2337/dc21-2511
[21] Doi, T., Langsted, A. and Nordestgaard, B.G. (2023) Lipoproteins, Cholesterol, and Atherosclerotic Cardiovascular Disease in East Asians and Europeans. Journal of Atherosclerosis and Thrombosis, 30, 1525-1546.
https://doi.org/10.5551/jat.rv22013
[22] Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. (2020) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. European Heart Journal, 41, 111-188.
[23] Mohamed, F., Mansfield, B.S. and Raal, F.J. (2022) ANGPTL3 as a Drug Target in Hyperlipidemia and Atherosclerosis. Current Atherosclerosis Reports, 24, 959-967.
https://doi.org/10.1007/s11883-022-01071-1
[24] Ballantyne, C.M., Vasas, S., Azizad, M., Clifton, P., Rosenson, R.S., Chang, T., et al. (2024) Plozasiran, an RNA Interference Agent Targeting APOC3, for Mixed Hyperlipidemia. New England Journal of Medicine, 391, 899-912.
https://doi.org/10.1056/nejmoa2404143
[25] Rosenson, R.S., Gaudet, D., Hegele, R.A., Ballantyne, C.M., Nicholls, S.J., Lucas, K.J., et al. (2024) Zodasiran, an Rnai Therapeutic Targeting ANGPTL3, for Mixed Hyperlipidemia. New England Journal of Medicine, 391, 913-925.
https://doi.org/10.1056/nejmoa2404147
[26] Guo, D., Gao, J., Wang, X., Chen, Z., Gao, Q., Chen, Y., et al. (2024) Remnant Cholesterol and Risk of Incident Hypertension: A Population-Based Prospective Cohort Study. Hypertension Research, 47, 1157-1166.
https://doi.org/10.1038/s41440-023-01558-7