|
[1]
|
Frampton, J., Ortengren, A.R. and Zeitler, E.P. (2023) Arrhythmias after Acute Myocardial Infarction. The Yale Journal of Biology and Medicine, 96, 83-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kapur, N.K., Thayer, K.L. and Zweck, E. (2020) Cardiogenic Shock in the Setting of Acute Myocardial Infarction. Methodist DeBakey Cardiovascular Journal, 16, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kaltsas, E., Chalikias, G. and Tziakas, D. (2018) The Incidence and the Prognostic Impact of Acute Kidney Injury in Acute Myocardial Infarction Patients: Current Preventive Strategies. Cardiovascular Drugs and Therapy, 32, 81-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chalikias, G., Serif, L., Kikas, P., Thomaidis, A., Stakos, D., Makrygiannis, D., et al. (2019) Long-Term Impact of Acute Kidney Injury on Prognosis in Patients with Acute Myocardial Infarction. International Journal of Cardiology, 283, 48-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mezhonov, E., Vialkina, I., Vakulchik, K. and Shalaev, S. (2021) Acute Kidney Injury in Patients with ST-Segment Elevation Acute Myocardial Infarction: Predictors and Outcomes. Saudi Journal of Kidney Diseases and Transplantation, 32, 318-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Asanuma, H. (2021) Early Detection of Acute Kidney Injury Can Further Improve the Prognosis of Acute Myocardial Infarction. JACC: Asia, 1, 382-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Arampatzis, S., Chalikias, G., Devetzis, V., Konstantinides, S., Huynh-Do, U. and Tziakas, D. (2017) C-Terminal Fragment of Agrin (CAF) Levels Predict Acute Kidney Injury after Acute Myocardial Infarction. BMC Nephrology, 18, Article No. 202. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Pei, Y., Chen, W., Mao, X. and Zhu, J. (2020) Serum Cystatin C, Klotho, and Neutrophil Gelatinase-Associated Lipocalin in the Risk Prediction of Acute Kidney Injury after Acute Myocardial Infarction. Cardiorenal Medicine, 10, 374-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Vyshnevska, I., Kopytsya, M., Hilоva, Y., Protsenko, E. and Petyunina, O. (2020) Biomarker SST2 as an Early Predictor of Acute Renal Injury in Patients with ST-Segment Elevation Acute Myocardial Infarction. Georgian Medical News, No. 302, 53-58.
|
|
[10]
|
Pei, Y., Miu, M., Mao, X., Chen, W. and Zhu, J. (2023) α-klotho: An Early Risk-Predictive Biomarker for Acute Kidney Injury in Patients with Acute Myocardial Infarction. International Journal of Clinical Practice, 2023, Article ID: 8244545. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Luo, E., Wang, D., Yan, G., Qiao, Y., Liu, B., Hou, J., et al. (2019) High Triglyceride-Glucose Index Is Associated with Poor Prognosis in Patients with Acute ST-Elevation Myocardial Infarction after Percutaneous Coronary Intervention. Cardiovascular Diabetology, 18, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, H., Wang, L., Zhou, X., Wang, H., Hao, X., Du, Z., et al. (2024) Triglyceride-glucose Index Correlates with the Occurrence and Prognosis of Acute Myocardial Infarction Complicated by Cardiogenic Shock: Data from Two Large Cohorts. Cardiovascular Diabetology, 23, Article No. 337. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hu, Y., Wang, X., Xiao, S., Sun, N., Huan, C., Wu, H., et al. (2022) A Clinical Nomogram Based on the Triglyceride-Glucose Index to Predict Contrast-Induced Acute Kidney Injury after Percutaneous Intervention in Patients with Acute Coronary Syndrome with Diabetes Mellitus. Cardiovascular Therapeutics, 2022, Article ID: 5443880. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, J., Dong, Z., Wu, H., Liu, Y., Chen, Y., Li, S., et al. (2023) The Triglyceride-Glucose Index Is Associated with Atherosclerosis in Patients with Symptomatic Coronary Artery Disease, Regardless of Diabetes Mellitus and Hyperlipidaemia. Cardiovascular Diabetology, 22, Article No. 224. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Palevsky, P.M., Liu, K.D., Brophy, P.D., Chawla, L.S., Parikh, C.R., Thakar, C.V., et al. (2013) KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for Acute Kidney Injury. American Journal of Kidney Diseases, 61, 649-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Jin, Z. and Zhang, K. (2023) Association between Triglyceride-Glucose Index and AKI in ICU Patients Based on MIMICIV Database: A Cross-Sectional Study. Renal Failure, 45, Article ID: 2238830. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, W. and Yang, Z. (2024) Association between the Triglyceride Glucose Index and the Risk of Acute Kidney Injury in Critically Ill Patients with Hypertension: Analysis of the MIMIC-IV Database. Frontiers in Endocrinology, 15, Article ID: 1437709. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yang, Z., Gong, H., Kan, F. and Ji, N. (2023) Association between the Triglyceride Glucose (TyG) Index and the Risk of Acute Kidney Injury in Critically Ill Patients with Heart Failure: Analysis of the MIMIC-IV Database. Cardiovascular Diabetology, 22, Article No. 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, S., Mei, Q., Guo, L., Yang, X., Luo, W., Qu, X., et al. (2022) Association between Triglyceride-Glucose Index and Atrial Fibrillation: A Retrospective Observational Study. Frontiers in Endocrinology, 13, Article ID: 1047927. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Aktas, H., Inci, S., Gul, M., Gencer, S. and Yildirim, O. (2023) Increased Triglyceride-Glucose Index Predicts Contrast-Induced Nephropathy in Non-Diabetic NSTEMI Patients: A Prospective Study. Journal of Investigative Medicine, 71, 838-844. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chang, W., Liu, C., Huang, Y., Wu, J., Tsai, W., Hung, K., et al. (2023) Diagnostic Efficacy of the Triglyceride-Glucose Index in the Prediction of Contrast-Induced Nephropathy Following Percutaneous Coronary Intervention. Frontiers in Endocrinology, 14, Article ID: 1282675. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Qiu, H., Zhu, Y., Shen, G., Wang, Z. and Li, W. (2023) A Predictive Model for Contrast-Induced Acute Kidney Injury after Percutaneous Coronary Intervention in Elderly Patients with ST-Segment Elevation Myocardial Infarction. Clinical Interventions in Aging, 18, 453-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, L., Chang, J., Buckley, A.F. and Spurney, R.F. (2019) Knockout of TRPC6 Promotes Insulin Resistance and Exacerbates Glomerular Injury in Akita Mice. Kidney International, 95, 321-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hayashi, K., Kanda, T., Homma, K., Tokuyama, H., Okubo, K., Takamatsu, I., et al. (2002) Altered Renal Microvascular Response in Zucker Obese Rats. Metabolism, 51, 1553-1561. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hale, L.J. and Coward, R.J.M. (2013) The Insulin Receptor and the Kidney. Current Opinion in Nephrology and Hypertension, 22, 100-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N. and Häring, H. (2016) The Impact of Insulin Resistance on the Kidney and Vasculature. Nature Reviews Nephrology, 12, 721-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sarafidis, P.A. and Grekas, D.M. (2007) Insulin Resistance and Oxidant Stress: An Interrelation with Deleterious Renal Consequences? Journal of the CardioMetabolic Syndrome, 2, 139-142. [Google Scholar] [CrossRef] [PubMed]
|