CRISPR-Cas系统在病原微生物检测中的应用
Application of CRISPR-Cas System in Pathogenic Microorganism Detection
摘要: 快速、灵敏和特异性地检测病原微生物,在临床诊断和传染病控制中具有重要意义。早期准确检测是快速控制疫区疫情的有效措施,尤其是在缺乏有效治疗和疫苗的情况下。聚合酶链式反应(PCR)作为常用的核酸检测技术和疾病诊断的“金标准”,有着高灵敏度的优势,但同时也存在以牺牲特异性为代价的现象。酶联免疫吸附试验(ELISA)是一种快速、特异性强的蛋白质和小分子诊断工具。然而,灵敏度低和样品预处理复杂的操作步骤极大地限制了该方法现场检测的应用。因此,快速、灵敏和特异性的检测技术成为了急需解决的要点,随着技术的应用和发展,基于CRISPR-Cas的生物传感系统的优异性能在开发病原微生物诊断技术方面引起了人们的关注。本文综述了CRISPR/Cas系统在病原微生物检测的作用机制及原理,总结了新型检测技术的优缺点并对应用发展前景进行展望。
Abstract: Rapid, sensitive, and specific detection of pathogenic microorganisms is crucial for clinical diagnosis and infectious disease control. Early and accurate detection is an effective measure to quickly control epidemic outbreaks, especially in the absence of effective treatments and vaccines. Polymerase Chain Reaction (PCR) is a commonly used nucleic acid testing technology and the “gold standard” for disease diagnosis with high sensitivity. However, it often sacrifices specificity. Enzyme-Linked Immunosorbent Assay (ELISA) is a rapid and highly specific diagnostic tool for proteins and small molecules. Nevertheless, its low sensitivity and complex sample preprocessing steps greatly limit its application in on-site testing. Therefore, the development of rapid, sensitive, and specific detection technologies has become an urgent need. With the application and advancement of technology, the excellent performance of CRISPR-Cas based biosensing systems has attracted attention in the development of pathogenic microorganism diagnostic techniques. This article reviews the mechanisms and principles of CRISPR/Cas systems in pathogenic microorganism detection, summarizes the advantages and disadvantages of novel detection technologies, and provides an outlook on their future applications.
文章引用:莫秋菊, 李欢, 韦唯. CRISPR-Cas系统在病原微生物检测中的应用[J]. 临床医学进展, 2024, 14(12): 1254-1261. https://doi.org/10.12677/acm.2024.14123213

1. CRISPR-Cas生物系统的技术背景

CRISPR/Cas系统:一种最初在细菌和古细菌中发现的独特基因组元件,作为一种适应性免疫系统来防御噬菌体或其他外源核酸的入侵。该系统包括一个称为成簇规则间隔短回文重复序列(CRISPR)的短重复DNA阵列和一种由CRISPR表达的CRISPR相关蛋白(Cas)。CRISPR/Cas生物传感系统将靶核酸的序列信息转化为可检测的信号,如荧光和比色值。该系统用于病原体检测和基因分型、癌症突变检测和单核苷酸多态性(SNP)鉴定[1]

2. CRISPR-Cas系统的原理

大多数古菌及微生物为了防御外源病毒DNA或RNA的入侵,在降解吞噬外源性物质的过程中将外源病毒DNA或RNA进行降解切割,并捕获外来遗传物质的片段,经过一系列免疫反应将其整合到CRISPR基因座中。CRISPR基因座包含一系列CRISPR阵列、CRISPR相关(Cas)蛋白基因和由不同间隔物分离的直接重复序列[2]。这种免疫防御机制系统被称为成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)关联蛋白(CRISPR/Cas)系统。外源物质入侵后,CRISPR-Cas基因座将触发“适应–表达–干扰”的三阶段免疫反应,以破坏噬菌体在宿主细胞中的入侵[3]。根据干扰阶段使用的Cas效应器的数量,CRISPR-Cas系统可分为两类。I类涉及执行切割过程的多个Cas效应器复合体。II类只需要一种Cas蛋白。根据它们的特征,CRISPR-Cas系统类别可以分为不同的类型,并且这些类型进一步分为与特定Cas蛋白相对应的亚型。最近的研究表明,I、III和IV型属于I类,而II、V和VI型属于II类[4]。如今,CRISPR-Cas系统提供了一种全新的一种生物传感方法,由于其能够区分靶核酸上的单碱基错配及其与其他生物技术的兼容性[5],一系列Cas效应器同时具有(顺式–切割)和非特异性核酸降解活性(trans-解理)。II类Cas引导RNA (gRNA)复合体,其中II型Cas9、V型Cas12a、VI型Cas13a和V型Cas14广泛用于靶向和切割特异性DNA/RNA [6]

2.1. Cas9特性

Cas9是一种单翻转双RNA引导的II型DNA切割蛋白。Cas9处理前体trans-激活RNA (tracrRNA)在结合dsDNA之前,在RNase III的帮助下形成CRISPR RNA (crRNA)复合物[7]。在dsDNA作为催化底物的情况下,Cas9首先搜索PAM的序列,然后识别种子区,在靶dsDNA和间隔区之间形成Watson-Crick碱基对[8]。RuvC和HNH结构域将切割靶链(TS)和在PAM的上游3-nt处的非靶链(NTS),以引入具有钝端的双链断裂的(DSB) [9],裂解产物仍与Cas蛋白结合。

2.2. Cas12a特性

Cas12a是具有单个核酸酶结构域(RuvC)的单个RNA引导效应器。它可以处理前体crRNA (pre-crRNA),产生成熟的crRNA,引导Cas蛋白与靶DNA结合。Cas12a-crRNA相互作用触发Cas12a的构象转换以暴露RuvC的活性位点[10]。如果dsDNA在其3'末端包含富T PAM序列,与crRNA的间隔区完全匹配,它将与crRNA形成R环。NTS将被放置在RuvC的活性位点上进行切割[11]。切割后,Cas12a允许裂解产物的释放和RuvC活性位点的再暴露。Cas12a及其trans-活性可以在不需要特定序列的情况下切割附近的ssDNA [12]

2.3. Cas13特性

Cas13具备两者顺式–以及trans-对单链RNA (ssRNA)的切割活性。Cas13a能够切割和修剪前crRNA以产生成熟的crRNA [13]。一旦Cas13a与(前)crRNA相互作用,以识别具有3'原间隔区侧翼位点序列(PFS, a/U/C)的RNA,它将经历构象变化。当间隔物中心的种子区域与目标完美匹配时,它将进一步延伸到整个间隔物以形成双工。Cas13a不具有特定的切割位点,但显示出对侧翼位点U的切割偏好。

2.4. Cas14特性

作为CRISPR效应器的一个全新成员,Cas14与II类系统中的其他Cas蛋白(通常分子大小为100e200kDa)相比,Cas14更小仅40~70 kDa。与Cas9一样,Cas14由tracrRNA:crRNA双链或sgRNA引导。Cas14能够在不需要PAM序列的情况下识别外来DNA [14]。此外,Cas14将靶向ssDNA切割到间隔区–原间隔区双链区之外,其侧支切割效率随着ssDNA的延伸而增加。Cas14的种子区位于间隔物的内部区域,类似于Cas13a。Cas14作为CRISPR效应器的一个全新成员,可以作为一种很有前途的诊断和生物传感工具[15]

3. 不同CRISPR/Cas生物传感系统的优缺点

3.1. CRISPR/Cas生物传感系统的优点

CRISPR/Cas生物传感系统中的大多数生物传感器具有对单碱基变异的超高分辨率,并且不需要专用仪器就能够以单碱基分辨率测定aM水平的miRNA [16]。Cas9可以用PAM序列精确地切割靶基因,使其作为精确的分子剪刀来释放切割的DNA片段用于下游反应。dCas9很可能作为识别靶标并与靶标杂交的适体。dsDNA和PAM序列是Cas9 sgRNA复合物的形成都是必需条件。Cas12-14对ssDNA和ssRNA具有多重翻转侧支切割活性。因此,现有的检测方法通常通过结合各种核酸扩增策略(如RPA和LAMP),在诊断方案的终点使用Cas12-14作为信号放大器。

3.2. CRISPR/Cas生物传感系统的缺点

由CRISPR RNA引导的CRISPR效应物如Cas9和Cas12能够在任何期望的位置上识别和切割,但前提条件是与靶dsDNA相邻的PAM序列(例如,用于靶dsDNA的NGG)才能达到识别并进行切割。另外CRISPR/Cas生物传感系统在进行基于SNP的区分和其它短序列检测时,可能存在较少的选择,其中可能难以满足每个Cas效应子的特异性PAM的要求[17]。基于Cas9的NASBACC方法需要PAM序列中的突变来精确区分病原体基因型[18]。在基于Cas12的生物传感中,指导序列的长度以及指导序列内突变位点的位置可以显著影响用于区分单碱基差异的信噪比[19]类似地,原型间隔区侧翼位点(PFS)也影响Cas13a介导的靶向靶向的功效。对于非核酸检测,主要的挑战在于如何将非核酸靶标转化为Cas-gRNA二元复合物的DNA或RNA。整合的生物分子,如功能核酸、抗体和细菌异构转录因子等,由于受体的可用性有限且特异性相对较低,基于CRISPR-Cas的生物传感器的性能需要进一步提高[20]。目前,没有基于CRISPR/Cas的生物传感系统可以满足实时、体内或单细胞检测[1]

4. CRISPR-Cas系统在各类病原微生物检测中的应用

4.1. 用于检测埃博拉病毒(EBOV)

EBOV是一种ssRNA病毒,属于丝状病毒科[21],可导致埃博拉病毒病(EVD),致死率高[22]。早期诊断和治疗对于控制EBOV至关重要。RT-PCR [23]和ELISA [24]通常用于检测EBOV,但现场测试一直受到限制。[25]开发了可编程的CRISPR响应智能材料,并应用可调聚丙烯酰胺(PA)-DNA水凝胶设计了微流体纸基分析装置(mPAD)。此设备具有拓扑排列的亲水区域的多层结构。特异性dsDNA的存在激活了Cas12a以切割第二层中的ssDNA交联体,从而抑制了具有PA-DNA凝胶前体的水凝胶的形成。缓冲液流经整个装置,可以在染料存在的情况下进行视觉检测。同时,通过5分钟的比色长度测量的缓冲液流速与目标浓度呈负相关。使用RT-RPA和mPAD检测到少至11aM的基因组RNA。此外,无线射频识别(RFID)模块被纳入mPAD中用于数据处理。基于CRISPR-Cas的mPAD有望用于床旁诊断,并在便携性、灵敏度和低成本方面表现出优异的性能。

4.2. 用于检测寨卡病毒(ZIKV)

(ZIKV)是一种包膜ssRNA黄病毒。它可以通过伊蚊种类、性行为和围产期输血传播[24]。感染后会导致新生儿小头畸形[25] [26]和其他神经系统疾病[27]。由于其早期非特异性症状,感染ZIKV的人可能被误诊为登革热等其他发热性疾病[28]。因此,开发高选择性、高灵敏和低成本的生物测定方法和生物传感器对ZIKV感染的临床诊断具有重要意义[29]。张等人利用Cas13的反式切割活性,开发了一种基于Cas13的生物传感平台,称为特异性高灵敏度酶报告子解锁(SHERLOCK) [30]。通过逆转录重组酶聚合酶扩增(RT-RPA)或RPA扩增RNA或dsDNA。接着是T7转录过程,RNA产物最终会激活Cas13产生荧光信号。SHERLOCK能够检测患者血清或尿液样本中的~2aM ZIKA病毒,并区分ZIKV和DENV。此外,SHERLOCK可以通过在crRNA的间隔区引入单一的合成错配来实现高特异性,从而可以检测单基因突变。

4.3. 用于检测新型冠状病毒

新型冠状病毒导致2019新冠肺炎在全球爆发[31]。根据世界卫生组织公布的统计数据,全球有4000多万例病例和110万例死亡[32]。核酸检测在新冠肺炎早期诊断中至关重要[33] [34]。逆转录聚合酶链式反应(RT-PCR)是最常用的方法,但从样品运输到实验室检测需要几个小时的周转时间[21]。因此,迫切需要在护理点环境中提供足够灵敏、快速和低成本诊断的其他方法。美国食品药品监督管理局(FDA)授权了一种称为STOP (SHERLOCK一次性检测)新冠肺炎的检测方法[35]。STOPCovid可以通过结合LAMP和嗜热菌将两步SHERLOCK转化为一种反应耐热菌Cas12b (Aac-Cas12b)酶。LAMP扩增的严重急性呼吸系统综合征冠状病毒2型RNA可以激活AacCas12b切割FAM生物素标记的ssDNA报告分子。STOPCovid分别在70分钟和40分钟内实现横向流读数和荧光读数[34]。使用鼻咽拭子,STOPCovid具有97%的敏感性和100%的特异性。为了进一步简化RNA提取,使用基于磁珠的纯化在15分钟内提高RNA产量[36],可以检测到多达33个拷贝/mL。

4.4. 用于检测人乳头瘤病毒(HPV)

人乳头瘤病毒(HPV)是一种dsDNA病毒,与多种恶性疾病和癌症有关[37]。在已确定的120种HPV类型中有13种高危HPV类型,即HPV16、18、31、33、35、39、45、51、52、56、58、59和68。HPV16和18型占宫颈癌癌症病例的70% [38]。目前的DNA检测试剂盒不能有效地识别所有致癌的HPV类型。王等[39]开发了一种称为ctPCR (Cas9-sgRNA-PCR)的方法,该方法利用Cas9-sgRNA复合体进行PCR检测和对HPV DNA分型。首次用通用引物PCR1扩增出人乳头状瘤病毒双链DNA。随后,靶向类型的HPV dsDNA将进行Cas9切割,产生的dsDNA可以用特异性引物通过PCR2进一步扩增,并通过琼脂糖凝胶电泳进行检测。此方法可以检测到多达40个拷贝/mL的DNA。与需要扩增步骤的ctPCR1.0不同,ctPCR2.0使用了反向PCR [40]。ctPCR3.0还被开发用于在整个过程中不开管的情况下一步均匀检测HPV DNA [41]。特定HPV亚型的DNA靶标首先被两个Cas9 sgRNA复合体切割,这两个复合体不能用作以下qPCR扩增的模板。因此,qPCR的结果显示阈值循环值(Ct)显著增加。通过检测不同亚型和宫颈中的HPV16和HPV18,验证了ctPCR的可行性和特异性。

4.5. 用于检测耐甲西林金黄色葡萄球菌

耐甲氧西林金黄色葡萄球菌是最重要的多重耐药病原体之一,对多种抗生素具有耐药性。耐甲氧西林金黄色葡萄球菌可引起严重感染,如菌血症、肺炎、心内膜炎和骨骼感染[42]。与易感甲氧西林相比金黄色葡萄球菌(MSSA)感染,MRSA感染致使发病率和死亡率的风险更高[43]。耐甲氧西林金黄色葡萄球菌感染通常是由抗生素的过度使用和滥用以及缺乏新药引起的[44]。Guka等人[45]开发了一种简单、灵敏、快速的方法,称为(CRISPR)介导的DNA荧光原位杂交(FISH),用于检测MRSA。dCas9 sgRNA复合物用作识别元件,SYBR Green I (SG I)用作dsDNA染色的报告基因。sgRNA的易编程性使dCas9 sgRNA能够选择性地与MRSA基因结合[18]。然后在添加SG I之前通过磁体分离杂交的复合物。该方法能够检测低至10 CFU/mL的MRSA裂解物。

4.6. 用于检测大肠杆菌

大肠杆菌,是最重要的致病菌之一,通常与食源性疾病有关,从而对人类健康构成严重威胁[46]。大肠杆菌可能导致出血性结肠炎、出血性腹泻和肾衰竭等感染[47]。大肠杆菌即使剂量很低,也可能感染水、果汁、牛奶、水果和蔬菜[48]。Sun等人开发了一种Cas9触发的两步等温扩增方法,用于大肠杆菌金属有机骨架UiO66荧光猝灭剂检测O157H7 [49]。在靶dsDNA存在的情况下,一对Cas9-sgRNA复合物被激活,在dsDNA的NTS上引入两个断裂,触发新链的合成和延伸。一旦产生SDA产物,就进行RCA反应以产生长ssDNA与DNA探针杂交,从而记录荧光信号。这种方法能够检测大肠杆菌O157:H7,浓度为40 CFU∙mL−1具有较高的选择性。此外,在泉水、脱脂牛奶和橙汁等实际样品中验证了该方法的稳定性和可行性。为了进一步提高灵敏度,Wang等人[50]报道了一种基于Cas9内切酶的扩增反应(Cas9nAR)来扩增基因组DNA片段◦具有HNH活性的Cas9酶(Cas9n)在PAM序列的下游引入缺口。第一个电路被设计为从基因组DNA中获得ssDNA序列;利用第二个回路来扩增从回路一释放的有缺口的ssDNA。经过多次启动、延伸、缺口和置换循环,Cas9可以检测到低至0.1拷贝/mL的DNA。

5. 结论和展望

综上所述,生物传感应用中最常用的CRISPR家族包括Cas9、Cas12a/b、Cas13、 Cas14。随着各种CRISPR-Cas系统工具箱的扩展,分子诊断领域出现了新的曙光。虽然大多数生物传感系统仍处于概念验证阶段,但大部分的系统已经成功地证明了高灵敏度、超分辨率特异性的开发潜力。随着全球病例的增加,病原微生物核酸检测在控制传染病传播方面继续发挥着关键作用,通过将冻干试剂和基于微流体的试剂盒集成到基于CRISPR的诊断技术中,预计可以建立一些有前景的生物传感工具,用于低成本、高选择性、少拷贝灵敏度和可见信号的现场检测。RISPR-Cas系统的工具箱将不断扩大,可以预见,开发强大的CRISPR-Cas系统,并有望成为病原微生物检测的替代方法。

NOTES

*通讯作者。

参考文献

[1] Li, Y., Li, S., Wang, J. and Liu, G. (2019) CRISPR/Cas Systems Towards Next-Generation Biosensing. Trends in Biotechnology, 37, 730-743.
https://doi.org/10.1016/j.tibtech.2018.12.005
[2] Jansen, R., van Embden, J.D.A., Gaastra, W. and Schouls, L.M. (2002) Identification of Genes That Are Associated with DNA Repeats in Prokaryotes. Molecular Microbiology, 43, 1565-1575.
https://doi.org/10.1046/j.1365-2958.2002.02839.x
[3] Zhang, Y., Wu, Y., Wu, Y., Chang, Y. and Liu, M. (2021) CRISPR-Cas Systems: From Gene Scissors to Programmable Biosensors. TrAC Trends in Analytical Chemistry, 137, Article 116210.
https://doi.org/10.1016/j.trac.2021.116210
[4] Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., et al. (2015) Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell, 60, 385-397.
https://doi.org/10.1016/j.molcel.2015.10.008
[5] Hille, F., Richter, H., Wong, S.P., Bratovič, M., Ressel, S. and Charpentier, E. (2018) The Biology of CRISPR-Cas: Backward and Forward. Cell, 172, 1239-1259.
https://doi.org/10.1016/j.cell.2017.11.032
[6] Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., et al. (2015) An Updated Evolutionary Classification of CRISPR-Cas Systems. Nature Reviews Microbiology, 13, 722-736.
https://doi.org/10.1038/nrmicro3569
[7] Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., et al. (2011) CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Nature, 471, 602-607.
https://doi.org/10.1038/nature09886
[8] Anders, C., Niewoehner, O., Duerst, A. and Jinek, M. (2014) Structural Basis of PAM-Dependent Target DNA Recognition by the Cas9 Endonuclease. Nature, 513, 569-573.
https://doi.org/10.1038/nature13579
[9] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337, 816-821.
https://doi.org/10.1126/science.1225829
[10] Dong, D., Ren, K., Qiu, X., Zheng, J., Guo, M., Guan, X., et al. (2016) The Crystal Structure of Cpf1 in Complex with CRISPR RNA. Nature, 532, 522-526.
https://doi.org/10.1038/nature17944
[11] Yamano, T., Nishimasu, H., Zetsche, B., Hirano, H., Slaymaker, I.M., Li, Y., et al. (2016) Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 165, 949-962.
https://doi.org/10.1016/j.cell.2016.04.003
[12] Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439.
https://doi.org/10.1126/science.aar6245
[13] East-Seletsky, A., O’Connell, M.R., Knight, S.C., Burstein, D., Cate, J.H.D., Tjian, R., et al. (2016) Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection. Nature, 538, 270-273.
https://doi.org/10.1038/nature19802
[14] Liu, L., Li, X., Ma, J., Li, Z., You, L., Wang, J., et al. (2017) The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell, 170, 714-726.e10.
https://doi.org/10.1016/j.cell.2017.06.050
[15] Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., et al. (2018) Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science, 362, 839-842.
https://doi.org/10.1126/science.aav4294
[16] Wang, G., Tian, W., Liu, X., Ren, W. and Liu, C. (2020) New CRISPR-Derived MicroRNA Sensing Mechanism Based on Cas12a Self-Powered and Rolling Circle Transcription-Unleashed Real-Time crRNA Recruiting. Analytical Chemistry, 92, 6702-6708.
https://doi.org/10.1021/acs.analchem.0c00680
[17] Li, S., Cheng, Q., Wang, J., Li, X., Zhang, Z., Gao, S., et al. (2018) CRISPR-Cas12a-Assisted Nucleic Acid Detection. Cell Discovery, 4, Article No. 20.
https://doi.org/10.1038/s41421-018-0028-z
[18] Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., et al. (2016) Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165, 1255-1266.
https://doi.org/10.1016/j.cell.2016.04.059
[19] Li, L., Li, S. and Wang, J. (2018) CRISPR-Cas12b-Assisted Nucleic Acid Detection Platform. bioRxiv.
https://doi.org/10.1101/362889
[20] Li, J., Yang, S., Zuo, C., Dai, L., Guo, Y. and Xie, G. (2020) Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sensors, 5, 970-977.
https://doi.org/10.1021/acssensors.9b02305
[21] Feldmann, H., Nichol, S.T., Klenk, H., Peters, C.J. and Sanchez, A. (1994) Characterization of Filoviruses Based on Differences in Structure and Antigenicity of the Virion Glycoprotein. Virology, 199, 469-473.
https://doi.org/10.1006/viro.1994.1147
[22] Gire, S.K., Goba, A., Andersen, K.G., Sealfon, R.S.G., Park, D.J., Kanneh, L., et al. (2014) Genomic Surveillance Elucidates Ebola Virus Origin and Transmission during the 2014 Outbreak. Science, 345, 1369-1372.
https://doi.org/10.1126/science.1259657
[23] Sanchez, A., Ksiazek, T.G., Rollin, P.E., Miranda, M.E.G., Trappier, S.G., Khan, A.S., et al. (1999) Detection and Molecular Characterization of Ebola Viruses Causing Disease in Human and Nonhuman Primates. The Journal of Infectious Diseases, 179, S164-S169.
https://doi.org/10.1086/514282
[24] Sullivan, N.J., Sanchez, A., Rollin, P.E., Yang, Z. and Nabel, G.J. (2000) Development of a Preventive Vaccine for Ebola Virus Infection in Primates. Nature, 408, 605-609.
https://doi.org/10.1038/35046108
[25] Rasmussen, S.A., Jamieson, D.J., Honein, M.A. and Petersen, L.R. (2016) Zika Virus and Birth Defects—Reviewing the Evidence for Causality. New England Journal of Medicine, 374, 1981-1987.
https://doi.org/10.1056/nejmsr1604338
[26] Brasil, P., Pereira, J.P., Moreira, M.E., Ribeiro Nogueira, R.M., Damasceno, L., Wakimoto, M., et al. (2016) Zika Virus Infection in Pregnant Women in Rio de Janeiro. New England Journal of Medicine, 375, 2321-2334.
https://doi.org/10.1056/nejmoa1602412
[27] Smith, D.W. and Mackenzie, J. (2016) Zika Virus and Guillain-Barré Syndrome: Another Viral Cause to Add to the List. The Lancet, 387, 1486-1488.
https://doi.org/10.1016/s0140-6736(16)00564-x
[28] Waggoner, J.J., Gresh, L., Vargas, M.J., Ballesteros, G., Tellez, Y., Soda, K.J., et al. (2016) Viremia and Clinical Presentation in Nicaraguan Patients Infected with Zika Virus, Chikungunya Virus, and Dengue Virus. Clinical Infectious Diseases, 63, 1584-1590.
https://doi.org/10.1093/cid/ciw589
[29] Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., et al. (2016) Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165, 1255-1266.
https://doi.org/10.1016/j.cell.2016.04.059
[30] Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/c2c2. Science, 356, 438-442.
https://doi.org/10.1126/science.aam9321
[31] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733.
https://doi.org/10.1056/nejmoa2001017
[32] Centers for Disease Control and Prevention (2020) Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus Centers for Disease Control and Prevention.
[33] Feng, W., Newbigging, A.M., Le, C., Pang, B., Peng, H., Cao, Y., et al. (2020) Molecular Diagnosis of COVID-19: Challenges and Research Needs. Analytical Chemistry, 92, 10196-10209.
https://doi.org/10.1021/acs.analchem.0c02060
[34] Carter, L.J., Garner, L.V., Smoot, J.W., Li, Y., Zhou, Q., Saveson, C.J., et al. (2020) Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Central Science, 6, 591-605.
https://doi.org/10.1021/acscentsci.0c00501
[35] Joung, J., Ladha, A., Saito, M., Segel, M., Bruneau, R., Huang, M.W., et al. (2020) Point-of-Care Testing for COVID-19 Using SHERLOCK Diagnostics. MedRxiv.
https://doi.org/10.1101/2020.05.04.20091231
[36] Joung, J., Ladha, A., Saito, M., Kim, N., Woolley, A.E., Segel, M., et al. (2020) Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 383, 1492-1494.
https://doi.org/10.1056/nejmc2026172
[37] zur Hausen, H. (2002) Papillomaviruses and Cancer: From Basic Studies to Clinical Application. Nature Reviews Cancer, 2, 342-350.
https://doi.org/10.1038/nrc798
[38] Muñoz, N., Bosch, F.X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K.V., et al. (2003) Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer. New England Journal of Medicine, 348, 518-527.
https://doi.org/10.1056/nejmoa021641
[39] Wang, Q., Zhang, B., Xu, X., Long, F. and Wang, J. (2018) CRISPR-Typing PCR (ctPCR), a New Cas9-Based DNA Detection Method. Scientific Reports, 8, Article No. 14126.
https://doi.org/10.1038/s41598-018-32329-x
[40] Zhang, B., Wang, Q., Xu, X., Xia, Q., Long, F., Li, W., et al. (2018) Detection of Target DNA with a Novel Cas9/sgRNAs-Associated Reverse PCR (CARP) Technique. Analytical and Bioanalytical Chemistry, 410, 2889-2900.
https://doi.org/10.1007/s00216-018-0873-5
[41] Zhang, B., Xia, Q., Wang, Q., Xia, X. and Wang, J. (2018) Detecting and Typing Target DNA with a Novel CRISPR-Typing PCR (ctPCR) Technique. Analytical Biochemistry, 561, 37-46.
https://doi.org/10.1016/j.ab.2018.09.012
[42] Pantosti, A. (2012) Methicillin-Resistant Staphylococcus Aureus Associated with Animals and Its Relevance to Human Health. Frontiers in Microbiology, 3, Article 127.
https://doi.org/10.3389/fmicb.2012.00127
[43] Boucher, H., Miller, L.G. and Razonable, R.R. (2010) Serious Infections Caused by Methicillin‐Resistant Staphylococcus aureus. Clinical Infectious Diseases, 51, S183-S197.
https://doi.org/10.1086/653519
[44] Brumfitt, W. and Hamilton-Miller, J. (1989) Methicillin-Resistant Staphylococcus aureus. New England Journal of Medicine, 320, 1188-1196.
https://doi.org/10.1056/nejm198905043201806
[45] Guk, K., Keem, J.O., Hwang, S.G., Kim, H., Kang, T., Lim, E., et al. (2017) A Facile, Rapid and Sensitive Detection of MRSA Using a CRISPR-Mediated DNA FISH Method, Antibody-Like Dcas9/sgRNA Complex. Biosensors and Bioelectronics, 95, 67-71.
https://doi.org/10.1016/j.bios.2017.04.016
[46] Kaper, J.B., Nataro, J.P. and Mobley, H.L.T. (2004) Pathogenic Escherichia Coli. Nature Reviews Microbiology, 2, 123-140.
https://doi.org/10.1038/nrmicro818
[47] Ostroff, S.M., Tarr, P.I., Neill, M.A., Lewis, J.H., Hargrett-Bean, N. and Kobayashi, J.M. (1989) Toxin Genotypes and Plasmid Profiles as Determinants of Systemic Sequelae in Escherichia coli O157:H7 Infections. Journal of Infectious Diseases, 160, 994-998.
https://doi.org/10.1093/infdis/160.6.994
[48] Nataro, J.P. and Kaper, J.B. (1998) Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11, 142-201.
https://doi.org/10.1128/cmr.11.1.142
[49] Sun, X., Wang, Y., Zhang, L., Liu, S., Zhang, M., Wang, J., et al. (2020) CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157:H7 Detection Based on a Metal-Organic Framework Platform. Analytical Chemistry, 92, 3032-3041.
https://doi.org/10.1021/acs.analchem.9b04162
[50] Wang, T., Liu, Y., Sun, H., Yin, B. and Ye, B. (2019) An RNA‐Guided Cas9 Nickase‐Based Method for Universal Isothermal DNA Amplification. Angewandte Chemie International Edition, 58, 5382-5386.
https://doi.org/10.1002/anie.201901292