|
[1]
|
Li, Y., Li, S., Wang, J. and Liu, G. (2019) CRISPR/Cas Systems Towards Next-Generation Biosensing. Trends in Biotechnology, 37, 730-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jansen, R., van Embden, J.D.A., Gaastra, W. and Schouls, L.M. (2002) Identification of Genes That Are Associated with DNA Repeats in Prokaryotes. Molecular Microbiology, 43, 1565-1575. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, Y., Wu, Y., Wu, Y., Chang, Y. and Liu, M. (2021) CRISPR-Cas Systems: From Gene Scissors to Programmable Biosensors. TrAC Trends in Analytical Chemistry, 137, Article 116210. [Google Scholar] [CrossRef]
|
|
[4]
|
Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., et al. (2015) Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell, 60, 385-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hille, F., Richter, H., Wong, S.P., Bratovič, M., Ressel, S. and Charpentier, E. (2018) The Biology of CRISPR-Cas: Backward and Forward. Cell, 172, 1239-1259. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., et al. (2015) An Updated Evolutionary Classification of CRISPR-Cas Systems. Nature Reviews Microbiology, 13, 722-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., et al. (2011) CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Nature, 471, 602-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Anders, C., Niewoehner, O., Duerst, A. and Jinek, M. (2014) Structural Basis of PAM-Dependent Target DNA Recognition by the Cas9 Endonuclease. Nature, 513, 569-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337, 816-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dong, D., Ren, K., Qiu, X., Zheng, J., Guo, M., Guan, X., et al. (2016) The Crystal Structure of Cpf1 in Complex with CRISPR RNA. Nature, 532, 522-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yamano, T., Nishimasu, H., Zetsche, B., Hirano, H., Slaymaker, I.M., Li, Y., et al. (2016) Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 165, 949-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
East-Seletsky, A., O’Connell, M.R., Knight, S.C., Burstein, D., Cate, J.H.D., Tjian, R., et al. (2016) Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection. Nature, 538, 270-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, L., Li, X., Ma, J., Li, Z., You, L., Wang, J., et al. (2017) The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell, 170, 714-726.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., et al. (2018) Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science, 362, 839-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, G., Tian, W., Liu, X., Ren, W. and Liu, C. (2020) New CRISPR-Derived MicroRNA Sensing Mechanism Based on Cas12a Self-Powered and Rolling Circle Transcription-Unleashed Real-Time crRNA Recruiting. Analytical Chemistry, 92, 6702-6708. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, S., Cheng, Q., Wang, J., Li, X., Zhang, Z., Gao, S., et al. (2018) CRISPR-Cas12a-Assisted Nucleic Acid Detection. Cell Discovery, 4, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., et al. (2016) Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165, 1255-1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, L., Li, S. and Wang, J. (2018) CRISPR-Cas12b-Assisted Nucleic Acid Detection Platform. bioRxiv. [Google Scholar] [CrossRef]
|
|
[20]
|
Li, J., Yang, S., Zuo, C., Dai, L., Guo, Y. and Xie, G. (2020) Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sensors, 5, 970-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Feldmann, H., Nichol, S.T., Klenk, H., Peters, C.J. and Sanchez, A. (1994) Characterization of Filoviruses Based on Differences in Structure and Antigenicity of the Virion Glycoprotein. Virology, 199, 469-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gire, S.K., Goba, A., Andersen, K.G., Sealfon, R.S.G., Park, D.J., Kanneh, L., et al. (2014) Genomic Surveillance Elucidates Ebola Virus Origin and Transmission during the 2014 Outbreak. Science, 345, 1369-1372. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sanchez, A., Ksiazek, T.G., Rollin, P.E., Miranda, M.E.G., Trappier, S.G., Khan, A.S., et al. (1999) Detection and Molecular Characterization of Ebola Viruses Causing Disease in Human and Nonhuman Primates. The Journal of Infectious Diseases, 179, S164-S169. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sullivan, N.J., Sanchez, A., Rollin, P.E., Yang, Z. and Nabel, G.J. (2000) Development of a Preventive Vaccine for Ebola Virus Infection in Primates. Nature, 408, 605-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Rasmussen, S.A., Jamieson, D.J., Honein, M.A. and Petersen, L.R. (2016) Zika Virus and Birth Defects—Reviewing the Evidence for Causality. New England Journal of Medicine, 374, 1981-1987. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Brasil, P., Pereira, J.P., Moreira, M.E., Ribeiro Nogueira, R.M., Damasceno, L., Wakimoto, M., et al. (2016) Zika Virus Infection in Pregnant Women in Rio de Janeiro. New England Journal of Medicine, 375, 2321-2334. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Smith, D.W. and Mackenzie, J. (2016) Zika Virus and Guillain-Barré Syndrome: Another Viral Cause to Add to the List. The Lancet, 387, 1486-1488. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Waggoner, J.J., Gresh, L., Vargas, M.J., Ballesteros, G., Tellez, Y., Soda, K.J., et al. (2016) Viremia and Clinical Presentation in Nicaraguan Patients Infected with Zika Virus, Chikungunya Virus, and Dengue Virus. Clinical Infectious Diseases, 63, 1584-1590. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., et al. (2016) Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165, 1255-1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/c2c2. Science, 356, 438-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Centers for Disease Control and Prevention (2020) Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus Centers for Disease Control and Prevention.
|
|
[33]
|
Feng, W., Newbigging, A.M., Le, C., Pang, B., Peng, H., Cao, Y., et al. (2020) Molecular Diagnosis of COVID-19: Challenges and Research Needs. Analytical Chemistry, 92, 10196-10209. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Carter, L.J., Garner, L.V., Smoot, J.W., Li, Y., Zhou, Q., Saveson, C.J., et al. (2020) Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Central Science, 6, 591-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Joung, J., Ladha, A., Saito, M., Segel, M., Bruneau, R., Huang, M.W., et al. (2020) Point-of-Care Testing for COVID-19 Using SHERLOCK Diagnostics. MedRxiv. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Joung, J., Ladha, A., Saito, M., Kim, N., Woolley, A.E., Segel, M., et al. (2020) Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 383, 1492-1494. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
zur Hausen, H. (2002) Papillomaviruses and Cancer: From Basic Studies to Clinical Application. Nature Reviews Cancer, 2, 342-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Muñoz, N., Bosch, F.X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K.V., et al. (2003) Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer. New England Journal of Medicine, 348, 518-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, Q., Zhang, B., Xu, X., Long, F. and Wang, J. (2018) CRISPR-Typing PCR (ctPCR), a New Cas9-Based DNA Detection Method. Scientific Reports, 8, Article No. 14126. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, B., Wang, Q., Xu, X., Xia, Q., Long, F., Li, W., et al. (2018) Detection of Target DNA with a Novel Cas9/sgRNAs-Associated Reverse PCR (CARP) Technique. Analytical and Bioanalytical Chemistry, 410, 2889-2900. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhang, B., Xia, Q., Wang, Q., Xia, X. and Wang, J. (2018) Detecting and Typing Target DNA with a Novel CRISPR-Typing PCR (ctPCR) Technique. Analytical Biochemistry, 561, 37-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pantosti, A. (2012) Methicillin-Resistant Staphylococcus Aureus Associated with Animals and Its Relevance to Human Health. Frontiers in Microbiology, 3, Article 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Boucher, H., Miller, L.G. and Razonable, R.R. (2010) Serious Infections Caused by Methicillin‐Resistant Staphylococcus aureus. Clinical Infectious Diseases, 51, S183-S197. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Brumfitt, W. and Hamilton-Miller, J. (1989) Methicillin-Resistant Staphylococcus aureus. New England Journal of Medicine, 320, 1188-1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Guk, K., Keem, J.O., Hwang, S.G., Kim, H., Kang, T., Lim, E., et al. (2017) A Facile, Rapid and Sensitive Detection of MRSA Using a CRISPR-Mediated DNA FISH Method, Antibody-Like Dcas9/sgRNA Complex. Biosensors and Bioelectronics, 95, 67-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Kaper, J.B., Nataro, J.P. and Mobley, H.L.T. (2004) Pathogenic Escherichia Coli. Nature Reviews Microbiology, 2, 123-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ostroff, S.M., Tarr, P.I., Neill, M.A., Lewis, J.H., Hargrett-Bean, N. and Kobayashi, J.M. (1989) Toxin Genotypes and Plasmid Profiles as Determinants of Systemic Sequelae in Escherichia coli O157:H7 Infections. Journal of Infectious Diseases, 160, 994-998. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Nataro, J.P. and Kaper, J.B. (1998) Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11, 142-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sun, X., Wang, Y., Zhang, L., Liu, S., Zhang, M., Wang, J., et al. (2020) CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157:H7 Detection Based on a Metal-Organic Framework Platform. Analytical Chemistry, 92, 3032-3041. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wang, T., Liu, Y., Sun, H., Yin, B. and Ye, B. (2019) An RNA‐Guided Cas9 Nickase‐Based Method for Universal Isothermal DNA Amplification. Angewandte Chemie International Edition, 58, 5382-5386. [Google Scholar] [CrossRef] [PubMed]
|