mHLA-DR在脓毒症免疫抑制中的作用
The Role of mHLA-DR in Sepsis Immunosuppression
DOI: 10.12677/acm.2024.14123221, PDF, HTML, XML,    科研立项经费支持
作者: 杨金花:成都中医药大学医学与生命科学学院,四川 成都;夏洪韬*:遂宁市中心医院重症医学科,四川 遂宁
关键词: 脓毒症免疫抑制免疫监测单核细胞HLA-DR免疫治疗Sepsis Immunosuppression Immunomonitoring Monocyte Human Leukocyte Antigen-DR Immunotherapy
摘要: 脓毒症是宿主对感染的反应失调而引起器官功能障碍的临床综合征,其发病率和死亡率在全球范围内居高不下。免疫抑制是造成脓毒症患者预后不良的关键阶段,导致患者继发感染易感性增加,ICU入住时间及总住院时间增加。免疫状态的评估是识别脓毒症患者免疫抑制和明确免疫调理治疗时机的重要前提,mHLA-DR是免疫功能监测的最佳生物标志物之一。本文就mHLA-DR对脓毒症免疫状态评估的作用,脓毒症免疫抑制机制及治疗方案进行综述。
Abstract: Sepsis is a clinical syndrome of organ dysfunction caused by a dysregulated host response to infection, with high morbidity and mortality worldwide. Immunosuppression is a critical stage contributing to the poor prognosis of sepsis patients, leading to increased susceptibility to secondary infections and increased ICU stay and total hospitalization time. Assessing immune status is an important prerequisite for identifying immunosuppression and clarifying the timing of immunome- odulatory therapy in sepsis patients. mHLA-DR is one of the best biomarkers for monitoring immune function. In this article, we review the role of mHLA-DR in assessing immune status in sepsis and the mechanism and treatment options of sepsis immunosuppression.
文章引用:杨金花, 夏洪韬. mHLA-DR在脓毒症免疫抑制中的作用[J]. 临床医学进展, 2024, 14(12): 1318-1325. https://doi.org/10.12677/acm.2024.14123221

1. 引言

脓毒症(Sepsis)是全球重症监护室(Intensive Care Unit, ICU)患者常见的死因,其治疗使患者面临巨大的经济负担[1]。脓毒症的最新定义为宿主对感染的免疫反应失调而引起的危及生命的器官功能障碍,其具有发病率高、病情凶险、疾病进展迅猛、病死率高等特点,现已成为全球范围内重症学者关注的焦点[2]-[4]

严重脓毒症的发病机制以免疫反应失控为特征,导致过度炎症反应和免疫抑制,并且免疫抑制在感染已经被治疗之后也可以持续存在[5]。脓毒症引起的免疫抑制显著增加了患者出现继发感染、多器官功能障碍综合征(multiple organ dysfunction syndrome, MODS)的机率,同时免疫抑制与再入院率和长期病死率的增加也密切相关[6]。因此,寻找评估脓毒症免疫状态的理想生物标志物对脓毒症患者免疫抑制的识别、动态监测、明确免疫治疗时机具有重要价值。脓毒症免疫监测和治疗相关的专家共识指出单核细胞人白细胞抗原-DR (Monocyte human leukocyte antigen-DR, mHLA-DR)是目前脓毒症免疫监测的理想标志物[7] [8]之一。综上,本文将重点介绍mHLA-DR对于脓毒症患者免疫功能的评估,并描述脓毒症免疫抑制机制及治疗方案。

2. 脓毒症免疫抑制的机制

机体抵御病原体入侵的免疫反应可分为固有免疫和获得性免疫,两者均由免疫细胞和免疫分子组成。固有免疫细胞和获得性免疫细胞的激活及浸润是组织炎症的关键特征。固有免疫系统是机体对抗病原体的第一道防线,其中固有免疫细胞被危险信号激活,包括病原体和病原体相关的分子模式以及代谢物相关的危险信号。固有免疫激活可以通过吞噬病原体和分泌生物活性分子直接引发局部的促炎及抗炎反应,或间接通过抗原呈递细胞(Antigen-presenting cells, APC)激活介导的获得性免疫反应[9]。在生理状态下,机体通过促炎反应和抗炎反应之间的动态平衡来维持免疫稳态。但在脓毒症患者,促炎反应和抗炎反应之间的动态平衡被打破,炎性细胞释放的促炎性细胞因子的上调表达以及补体和凝血系统的激活,导致过度炎症反应,进而导致细胞因子风暴和MODS。在此期间,抗炎细胞因子和共抑制分子释放增加,单核细胞表面HLA-DR的表达下调,免疫细胞凋亡,调节型细胞扩增导致了免疫抑制[10]

3. mHLA-DR对脓毒症免疫状态评估的作用

单核细胞表面表达的HLA-DR是单核巨噬细胞和抗原特异性T淋巴细胞之间的桥梁,低mHLA-DR水平导致抗原提呈减少和获得性免疫激活减少[11]。由此可见mHLA-DR足够的表达对于固有免疫和获得性免疫系统功能都具有重要的临床意义。

3.1. 脓毒症免疫抑制患者的识别

关于脓毒症免疫监测及治疗的专家共识[7]表示mHLA-DR是脓毒症患者免疫功能监测的高价值指标。多项研究发现脓毒症患者的mHLA-DR水平在死亡人群组显著低于存活和健康人群组[12] [13]。有临床研究将mHLA-DR表达率为30%作为脓毒症患者出现免疫麻痹的界限值[14]。Monneret等人[12]研究发现脓毒症患者在诊断后第3~4天死亡的mHLA-DR表达较存活者显著降低,并且第3~4天的mHLA-DR表达率<30%对死亡率的预测具有较大价值。同时该研究建议mHLA-DR水平可作为脓毒症免疫抑制患者开始进行免疫调理治疗依据。

3.2. 脓毒症免疫抑制的分级

多项临床研究提示,正常情况下,mHLA-DR的水平范围为15,000单克隆抗体/细胞(Ab/c)至60,000 Ab/c,健康受试者中mHLA-DR的下限为15,000 Ab/c,对应mHLA-DR的表达率为60% [15]-[17]。多数学者采用mHLA-DR为8000 Ab/c对应mHLADR的表达率为45%表示中度免疫抑制,mHLA-DR为5000 Ab/c对应mHLA-DR的表达率为30%表示免疫麻痹[18] [19]。因此,当mHLA-DR大于60%或者15000 Ab/c提示当前免疫状态正常,mHLA-DR处于45%到60%或者8000 Ab/c到15000Ab/c提示患者出现轻度免疫抑制,mHLA-DR处于30%到45%或者5000 Ab/c到8000 Ab/c提示患者处于中度免疫抑制状态,当mHLA-DR小于30%或者5000 Ab/c提示患者免疫功能严重受损,处于免疫麻痹状态。

3.3. 脓毒症免疫抑制患者预后的评估

mHLA-DR表达水平降低对脓毒症患者病情严重程度及预后的评估具有良好的鉴别能力和临床价值[20]。Leijte等人[13]研究发现:随着时间的推移mHLA-DR表达下降的患者继发感染的风险和死亡率显著升高。mHLA-DR表达下调的持续存在提示脓毒症患者的免疫麻痹恢复缓慢或没有恢复[12] [21]。一项前瞻性观察研究[22]选取脓毒症患者收治的第0、3、7三个时间点,监测mHLA-DR表达水平,提示脓毒症患者第3天及第7天的mHLA-DR表达率与第0天的差值在预测严重脓毒症患者28天死亡风险具有良好的准确度和特异度(AUC分别为0.919,0.938),是可靠的预测因子。因此,连续监测mHLA-DR的动态变化比单个时间点监测mHLA-DR能更好地预测死亡风险,对评估脓毒症患者的预后具有重要的指导意义。

3.4. 脓毒症免疫治疗反应性的监测

mHLA-DR是脓毒症治疗过程中监测患者免疫系统功能的重要指标[23]。在一项前瞻性、随机双盲对照的多中心临床研究[24]中选取连续2天mHLA-DR < 8000 Ab/c,存在免疫抑制的脓毒症患者,予以粒细胞–巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF)进行免疫调节治疗或安慰剂治疗8天,治疗的目标设定为mHLA-DR ≥ 15,000 Ab/c,期间动态检测两组的mHLA-DR表达水平。此研究发现使用GM-CSF的研究组在24小时后mHLA-DR表达率显著升高,并且缩短了机械通气时间(较安慰剂组平均缩短59.3小时)、ICU入住时间及总住院时间。因此,mHLA-DR对于监测脓毒症抑制患者免疫调理治疗的反应性具有较高价值。

4. 脓毒症相关免疫调理治疗

免疫刺激疗法目的是恢复免疫细胞功能,使其清除引起脓毒症的感染,以及预防继发感染,从而降低脓毒症的晚期死亡率[25]。接下来从增强固有免疫、获得性免疫及免疫刺激联合抗炎治疗阐述脓毒症患者免疫抑制的治疗进展。

4.1. 增强固有免疫

4.1.1. 干扰素γ

干扰素γ (interferon γ, INF-γ)通过提高巨噬细胞的吞噬和杀菌能力,进而增强机体清除病原体的能力[26]。有研究表明[27]使用IFN-γ治疗脓毒症小鼠可以上调树突状细胞(dendritic cells, DC)表面CD 86的表达,减少DC的凋亡,从而逆转脓毒症引起的免疫抑制。另一项临床研究[28]招募了9名mHLA-DR低表达的患者,给予IFN-γ治疗后显著上调了mHLA-DR的表达水平,并且刺激单核细胞分泌肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α),从而帮助消除致病菌。但是,IFN-γ同时是一种促炎的细胞因子,其临床应用方案和治疗结果仍有待进一步研究验证。

4.1.2. 粒细胞–巨噬细胞集落刺激因子(GM-CSF)

粒细胞–巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF) 是一种刺激免疫细胞进行增殖和分化的生长因子,可以通过增强中性粒细胞、单核细胞和巨噬细胞在脓毒症期间的吞噬和杀菌能力来改善免疫功能[29]。已有研究证明[30]给予GM-CSF可促进内毒素刺激单核细胞HLA-DR的表达和TNF-α的产生,提示GM-CSF是增强机体免疫力和逆转免疫麻痹的潜在因子。一项临床试验[31]报道,合并MODS的脓毒症患儿接受GM-CSF治疗后,TNF-α增加,医院继发性感染的风险降低。因此,GM-CSF有利于增强中性粒细胞的吞噬能力,从而减少继发感染的发生。但是,目前常规使用GM-CSF治疗脓毒症患者,尚没有直接的临床证据支持其作为标准治疗,还需进一步临床试验证实。

4.2. 增强获得性免疫

4.2.1. 白细胞介素-7

白细胞介素-7 (interleukin-7, IL-7) IL-7是淋巴细胞存活和扩增所需的有效抗凋亡细胞因子,有研究显示出其对脓毒症患者的潜在益处[32]。该Ⅱ期研究纳入了27例伴有严重淋巴细胞减少的脓毒性休克患者,主要目的是确定重组人IL-7在脓毒症患者中使用的安全性及其逆转淋巴细胞减少的能力。结果显示接受IL-7治疗的患者较对照组淋巴细胞绝对计数以及CD4+和CD8+ T细胞计数均显著增加[32]。综上可知,IL-7可以通过刺激淋巴细胞的增殖,进而增加外周血淋巴细胞的数量,但是否能够逆转脓毒症引起的免疫抑制和降低病死率还需进一步研究证实。

4.2.2. 免疫球蛋白

免疫球蛋白(Immunoglobulin, Ig)由B细胞分泌的天然蛋白质,在中和内毒素、增强单核细胞和巨噬细胞吞噬能力中发挥关键作用。Akatsuka等人[33]的研究表明,与IgG (Immunoglobulin G)水平正常的患者相比,IgG水平低的脓毒症患者的死亡率明显增高,且脓毒症患者的IgG水平低下与更高的28天死亡率相关。这表明静脉注射免疫球蛋白(IVIG)可能是一种有价值的免疫增强疗法。最近一项包含31个随机对照试验的荟萃分析[34]发现,IVIG可显著改善脓毒症患者的急性生理与慢性健康Ⅱ (Acute Physiology And Chronic Health Evaluation Ⅱ, APACHE Ⅱ)评分,缩短住院时间,降低死亡率,尤其在降低成人脓毒症患者死亡率方面发挥关键作用。尽管荟萃分析中纳入的临床试验存在显著的异质性,包括人群特征、给药方案、抗体制剂类型和对照干预措施的差异,以及研究质量的差异,但总体而言,IVIG治疗已显示可降低脓毒症患者的死亡率。

4.2.3. 胸腺肽α1

胸腺肽α1 (Tα1)是胸腺中发现的高度保守肽,在T细胞成熟和分化中起关键作用。一项多中心、单盲、随机对照试验[23]报道,Tα1治疗严重脓毒症患者可上调mHLA-DR的表达水平,改善序贯器官衰竭评估评分(Sequential Organ Failure Assessment, SOFA)评分,28天死亡率从35.0%降至26.0%,表明Tα1可增强严重脓毒症患者的免疫功能,降低28天全因死亡率。Li等人[35]对12项与Tα1相关的临床试验进行了系统回顾,表明Tα1治疗可以降低脓毒症患者的全因死亡率。但是,考虑到纳入研究的质量较差以及样本数量较少,其临床应用需谨慎。

4.2.4. 抗PD-L1抗体/PD-1抗体

PD-1受体系统代表一种关键的检查点调节机制,目前已有多项研究将其作为脓毒症患者的潜在治疗靶点进行了试验。有研究用抗PD-1抗体治疗脓毒症患者,发现其CD8+ T细胞的细胞凋亡减少和IFN-γ产生增加[36]。此外,有两项研究[37] [38]初步证实了Nivolumab (一种PD-1抑制剂)的安全性和耐受性。并且在抗PD-L1治疗期间,出现淋巴细胞绝对计数和单核细胞HLA-DR表达水平随时间推移而不断增加。具体来说,此研究[38]中480 mg Nivolumab组的绝对淋巴细胞计数和单核细胞HLA-DR表达水平的均值,从基线至第28天,分别增加574/μL和17,652 Ab/c,960 mg组分别增加672/μL和6516 Ab/c。目前,抗PD-1/PD-L1治疗是否会影响脓毒症患者继发感染和死亡率等主要临床结局仍有待验证。

4.3. 免疫调节治疗

过度的炎症反应和免疫抑制两者并非独立发生的,它们通常在脓毒症的病理生理过程中共存。因此,一些研究人员提出了抗炎和免疫调理相结合的治疗方案。一项基于6项临床试验的荟萃分析[39],表明联合使用抗炎和免疫增强剂可显著改善严重脓毒症的结局。另一项对8项随机临床试验的荟萃分析[40]证实,使用乌司他丁联合Tα1的免疫调节治疗可改善脓毒症患者的器官功能并降低死亡率。

5. 总结与展望

脓毒症患者的临床过程不仅是病原体与机体免疫功能之间的“斗争”,同时也是宿主自身炎症反应的异常激活与随后的抗炎反应之间的“战斗”。病原体感染是脓毒症发病的触发因素,而宿主免疫反应的失控和紊乱是驱动脓毒症进展的关键机制。诸多研究表明,免疫抑制是增加脓毒症患者出现继发感染和晚期死亡率的一个重要因素。然而,大多数的研究都是观察性的,缺乏免疫抑制与脓毒症患者发生继发感染之间因果关系的确切证据,这需要大样本对照临床试验进一步证实。

目前,越来越多的证据提示,mHLA-DR的低表达可作为预测脓毒症免疫麻痹或预后不良的生物标志物。早期许多研究支持使用CD14+单核细胞表面的HLA-DR的实际数量作为临床上识别脓毒症患者存在免疫抑制的生物标志物。此外,脓毒症免疫抑制的严重程度可以通过住院期间监测mHLA-DR的水平进行评估。尽管如此,虽然脓毒症免疫抑制可以通过mHLA-DR表达下调而识别,但迄今为止仍缺乏已经验证的测试或批准的治疗来纠正脓毒症患者的免疫抑制,这阻碍了mHLA-DR等生物标志物的广泛采用。

越来越多的临床试验尝试调节机体免疫系统的组成和功能,以促进免疫稳态的恢复,但这些试验的结果差异很大。到目前为止,在临床中还没有普遍公认的有效或批准用于治疗脓毒症的免疫疗法。我们仍然面临诸多挑战,包括但不限于:1) 确定合适的分子靶标及其相应的生物标志物,开发工程化分子制剂,并找到监测患者免疫功能的工具;2) 确定相关制剂的安全有效剂量,包括拮抗剂,抗体,细胞因子和间充质干细胞;3) 确定免疫治疗的干预方式,包括皮下、静脉和吸入给药途径;4) 免疫调节药物的采购和临床管理,以确保人体安全有效地使用。

基金项目

四川省医学科研项目(S17069)。

NOTES

*通讯作者。

参考文献

[1] Bauer, M., Gerlach, H., Vogelmann, T., Preissing, F., Stiefel, J. and Adam, D. (2020) Mortality in Sepsis and Septic Shock in Europe, North America and Australia between 2009 and 2019—Results from a Systematic Review and Meta-Analysis. Critical Care, 24, Article No. 239.
https://doi.org/10.1186/s13054-020-02950-2
[2] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[3] Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211.
https://doi.org/10.1016/s0140-6736(19)32989-7
[4] Evans, L., Rhodes, A., Alhazzani, W., Antonelli, M., Coopersmith, C.M., French, C., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247.
https://doi.org/10.1007/s00134-021-06506-y
[5] Gotts, J.E. and Matthay, M.A. (2016) Sepsis: Pathophysiology and Clinical Management. British Medical Journal, 353, i1585.
https://doi.org/10.1136/bmj.i1585
[6] Chang, D.W., Tseng, C. and Shapiro, M.F. (2015) Rehospitalizations Following Sepsis. Critical Care Medicine, 43, 2085-2093.
https://doi.org/10.1097/ccm.0000000000001159
[7] Pei, F., Yao, R., Ren, C., Bahrami, S., Billiar, T.R., Chaudry, I.H., et al. (2022) Expert Consensus on the Monitoring and Treatment of Sepsis-Induced Immunosuppression. Military Medical Research, 9, Article No. 74.
https://doi.org/10.1186/s40779-022-00430-y
[8] 中国研究型医院学会休克与脓毒症专业委员会, 中国人民解放军重症医学专业委员会, 重症免疫研究协作组, 等. 脓毒症免疫抑制诊治专家共识[J]. 中华危重病急救医学, 2020, 32(11): 1281-1289.
[9] Sun, L., Wang, X., Saredy, J., Yuan, Z., Yang, X. and Wang, H. (2020) Innate-Adaptive Immunity Interplay and Redox Regulation in Immune Response. Redox Biology, 37, Article 101759.
https://doi.org/10.1016/j.redox.2020.101759
[10] Liu, D., Huang, S., Sun, J., Zhang, H., Cai, Q., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56.
https://doi.org/10.1186/s40779-022-00422-y
[11] Pfortmueller, C.A., Meisel, C., Fux, M. and Schefold, J.C. (2017) Assessment of Immune Organ Dysfunction in Critical Illness: Utility of Innate Immune Response Markers. Intensive Care Medicine Experimental, 5, Article No. 49.
https://doi.org/10.1186/s40635-017-0163-0
[12] Monneret, G., Lepape, A., Voirin, N., Bohé, J., Venet, F., Debard, A., et al. (2006) Persisting Low Monocyte Human Leukocyte Antigen-Dr Expression Predicts Mortality in Septic Shock. Intensive Care Medicine, 32, 1175-1183.
https://doi.org/10.1007/s00134-006-0204-8
[13] Leijte, G.P., Rimmelé, T., Kox, M., Bruse, N., Monard, C., Gossez, M., et al. (2020) Monocytic HLA-DR Expression Kinetics in Septic Shock Patients with Different Pathogens, Sites of Infection and Adverse Outcomes. Critical Care, 24, Article No. 110.
https://doi.org/10.1186/s13054-020-2830-x
[14] Landelle, C., Lepape, A., Voirin, N., Tognet, E., Venet, F., Bohé, J., et al. (2010) Low Monocyte Human Leukocyte Antigen-Dr Is Independently Associated with Nosocomial Infections after Septic Shock. Intensive Care Medicine, 36, 1859-1866.
https://doi.org/10.1007/s00134-010-1962-x
[15] Hagedoorn, N.N., Kolukirik, P., Nagtzaam, N.M.A., Nieboer, D., Verbruggen, S., Joosten, K.F., et al. (2021) Association of Monocyte HLA-DR Expression over Time with Secondary Infection in Critically Ill Children: A Prospective Observational Study. European Journal of Pediatrics, 181, 1133-1142.
https://doi.org/10.1007/s00431-021-04313-7
[16] Cajander, S., Tina, E., Bäckman, A., Magnuson, A., Strålin, K., Söderquist, B., et al. (2016) Quantitative Real-Time Polymerase Chain Reaction Measurement of HLA-DRA Gene Expression in Whole Blood Is Highly Reproducible and Shows Changes That Reflect Dynamic Shifts in Monocyte Surface HLA-DR Expression during the Course of Sepsis. PLOS ONE, 11, e0154690.
https://doi.org/10.1371/journal.pone.0154690
[17] Zorio, V., Venet, F., Delwarde, B., Floccard, B., Marcotte, G., Textoris, J., et al. (2017) Assessment of Sepsis-Induced Immunosuppression at ICU Discharge and 6 Months after ICU Discharge. Annals of Intensive Care, 7, Article No. 80.
https://doi.org/10.1186/s13613-017-0304-3
[18] Pfortmueller, C.A., Meisel, C., Fux, M. and Schefold, J.C. (2017) Assessment of Immune Organ Dysfunction in Critical Illness: Utility of Innate Immune Response Markers. Intensive Care Medicine Experimental, 5, Article No. 49.
https://doi.org/10.1186/s40635-017-0163-0
[19] Döcke, W.D., Höflich, C., Davis, K.A., et al. (2005) Monitoring Temporary Immuno-Depression by Flow Cytometric Measurement of Monocytic HLA-DR Expression: A Multi-Center Standardized Study.
[20] Chen, Y. (2017) Dynamic Monitoring of Monocyte HLA-DR Expression for the Diagnosis Prognosis and Prediction of Sepsis. Frontiers in Bioscience, 22, 1344-1354.
https://doi.org/10.2741/4547
[21] Joshi, I., Carney, W.P. and Rock, E.P. (2023) Utility of Monocyte HLA-DR and Rationale for Therapeutic GM-CSF in Sepsis Immunoparalysis. Frontiers in Immunology, 14, Article 1130214.
https://doi.org/10.3389/fimmu.2023.1130214
[22] Wu, J., Ma, J., Chen, J., Ou-Yang, B., Chen, M., Li, L., et al. (2011) Changes of Monocyte Human Leukocyte Antigen-Dr Expression as a Reliable Predictor of Mortality in Severe Sepsis. Critical Care, 15, Article No. R220.
https://doi.org/10.1186/cc10457
[23] Wu, J., Zhou, L., Liu, J., Ma, G., Kou, Q., He, Z., et al. (2013) The Efficacy of Thymosin Alpha 1 for Severe Sepsis (ETASS): A Multicenter, Single-Blind, Randomized and Controlled Trial. Critical Care, 17, Article No. R8.
https://doi.org/10.1186/cc11932
[24] Meisel, C., Schefold, J.C., Pschowski, R., Baumann, T., Hetzger, K., Gregor, J., et al. (2009) Granulocyte-Macrophage Colony-Stimulating Factor to Reverse Sepsis-Associated Immunosuppression. American Journal of Respiratory and Critical Care Medicine, 180, 640-648.
https://doi.org/10.1164/rccm.200903-0363oc
[25] Hotchkiss, R.S., Monneret, G. and Payen, D. (2013) Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nature Reviews Immunology, 13, 862-874.
https://doi.org/10.1038/nri3552
[26] Guo, Y., Patil, N.K., Luan, L., Bohannon, J.K. and Sherwood, E.R. (2017) The Biology of Natural Killer Cells during Sepsis. Immunology, 153, 190-202.
https://doi.org/10.1111/imm.12854
[27] Fu, X. and Wang, Y. (2023) Interferon-γ Regulates Immunosuppression in Septic Mice by Promoting the Warburg Effect through the PI3K/Akt/mTOR Pathway. Molecular Medicine, 29, Article No. 95.
https://doi.org/10.1186/s10020-023-00690-x
[28] Döcke, W., Randow, F., Syrbe, U., Krausch, D., Asadullah, K., Reinke, P., et al. (1997) Monocyte Deactivation in Septic Patients: Restoration by IFN-Γ Treatment. Nature Medicine, 3, 678-681.
https://doi.org/10.1038/nm0697-678
[29] Borriello, F., Galdiero, M.R., Varricchi, G., Loffredo, S., Spadaro, G. and Marone, G. (2019) Innate Immune Modulation by GM-CSF and IL-3 in Health and Disease. International Journal of Molecular Sciences, 20, Article 834.
https://doi.org/10.3390/ijms20040834
[30] Flohé, S., Lendemans, S., Selbach, C., Waydhas, C., Ackermann, M., Schade, F.U., et al. (2003) Effect of Granulocyte-Macrophage Colony-Stimulating Factor on the Immune Response of Circulating Monocytes after Severe Trauma. Critical Care Medicine, 31, 2462-2469.
https://doi.org/10.1097/01.ccm.0000089640.17523.57
[31] Hall, M.W., Knatz, N.L., Vetterly, C., Tomarello, S., Wewers, M.D., Volk, H.D., et al. (2010) Immunoparalysis and Nosocomial Infection in Children with Multiple Organ Dysfunction Syndrome. Intensive Care Medicine, 37, 525-532.
https://doi.org/10.1007/s00134-010-2088-x
[32] Francois, B., Jeannet, R., Daix, T., Walton, A.H., Shotwell, M.S., Unsinger, J., et al. (2018) Interleukin-7 Restores Lymphocytes in Septic Shock: The IRIS-7 Randomized Clinical Trial. JCI Insight, 3, e98960.
https://doi.org/10.1172/jci.insight.98960
[33] Akatsuka, M., Tatsumi, H., Sonoda, T. and Masuda, Y. (2021) Low Immunoglobulin G Level Is Associated with Poor Outcomes in Patients with Sepsis and Septic Shock. Journal of Microbiology, Immunology and Infection, 54, 728-732.
https://doi.org/10.1016/j.jmii.2020.08.013
[34] Pan, B., Sun, P., Pei, R., Lin, F. and Cao, H. (2023) Efficacy of IVIG Therapy for Patients with Sepsis: A Systematic Review and Meta-Analysis. Journal of Translational Medicine, 21, Article No. 765.
https://doi.org/10.1186/s12967-023-04592-8
[35] Li, C., Bo, L., Liu, Q. and Jin, F. (2015) Thymosin Alpha1 Based Immunomodulatory Therapy for Sepsis: A Systematic Review and Meta-Analysis. International Journal of Infectious Diseases, 33, 90-96.
https://doi.org/10.1016/j.ijid.2014.12.032
[36] Chang, K., Svabek, C., Vazquez-Guillamet, C., Sato, B., Rasche, D., Wilson, S., et al. (2014) Targeting the Programmed Cell Death 1: Programmed Cell Death Ligand 1 Pathway Reverses T Cell Exhaustion in Patients with Sepsis. Critical Care, 18, R3.
https://doi.org/10.1186/cc13176
[37] Hotchkiss, R.S., Colston, E., Yende, S., Crouser, E.D., Martin, G.S., Albertson, T., et al. (2019) Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Nivolumab. Intensive Care Medicine, 45, 1360-1371.
https://doi.org/10.1007/s00134-019-05704-z
[38] Watanabe, E., Nishida, O., Kakihana, Y., Odani, M., Okamura, T., Harada, T., et al. (2019) Pharmacokinetics, Pharmacodynamics, and Safety of Nivolumab in Patients with Sepsis-Induced Immunosuppression: A Multicenter, Open-Label Phase 1/2 Study. Shock, 53, 686-694.
https://doi.org/10.1097/shk.0000000000001443
[39] Han, D., Shang, W., Wang, G., Sun, L., Zhang, Y., Wen, H., et al. (2015) Ulinastatin and Thymosin Α1-Based Immunomodulatory Strategy for Sepsis: A Meta-Analysis. International Immunopharmacology, 29, 377-382.
https://doi.org/10.1016/j.intimp.2015.10.026
[40] Liu, D., Yu, Z., Yin, J., Chen, Y., Zhang, H., Xin, F., et al. (2017) Effect of Ulinastatin Combined with Thymosin Alpha1 on Sepsis: A Systematic Review and Meta-Analysis of Chinese and Indian Patients. Journal of Critical Care, 39, 259-266.
https://doi.org/10.1016/j.jcrc.2016.12.013