建立基于临床因素预测结直肠癌HER-2状态的诺莫图模型
Establishment of a Nomogram Model for Predicting the HER-2 Status of Colorectal Cancer Based on Clinical Factors
DOI: 10.12677/acm.2024.14123224, PDF, HTML, XML,   
作者: 潘文俊, 刘尚龙*:青岛大学附属医院胃肠外科,山东 青岛
关键词: 结直肠癌HER-2诺莫图多因素分析Colorectal Cancer HER-2 Nomogram Multivariate Analysis
摘要: 研究背景:肿瘤HER-2表达的准确预测对于肿瘤治疗和预后评估起着至关重要的作用。然而,现有检测方法具有一定的局限性。研究目的:本研究旨在通过性别、吸烟史、饮酒史、血红蛋白、中性粒细胞、肿瘤大小、T分期等多个因素建立列线图,以预测肿瘤HER-2表达,并通过自举法验证列线图模型的准确性。研究内容:研究分析了肿瘤HER-2表达的生物学意义,采用最小绝对收缩和选择算子(LASSO回归)进行模型特征筛选,采用十折交叉验证来选择最优正则化参数,通过筛选出的HER-2相关的临床因素建立临床列线图,预测肿瘤HER-2表达,并通过自举法验证列线图模型准确性。从而通过患者临床病理因素预测肿瘤HER-2表达。研究结果:开发了基于临床信息的多因素预测HER-2表达的列线图预测模型,该模型具备良好的预测性能与临床应用能力,其曲线下面积(AUC)为0.860 (95%置信区间:0.8124~0.9068)。研究局限性及未来展望:我们开发的基于多因素预测HER-2表达的列线图预测模型具备良好的预测性能与临床应用能力,其曲线下面积(AUC)为0.860 (95%置信区间:0.8124~0.9068)。我们开发的多因素列线图预测模型为肿瘤HER-2表达的预测提供了准确、可靠的方法。但研究也存在局限性,未来可从扩大样本量、探索其他因素、结合分子生物学技术及开展临床干预研究等方面进一步完善。
Abstract: Research Background: Accurate prediction of tumor HER-2 expression plays a crucial role in tumor treatment and prognosis evaluation. However, existing detection methods have certain limitations. Research Purpose: This study aims to establish a nomogram through multiple factors such as gender, smoking history, drinking history, hemoglobin, neutrophils, tumor size, and T stage to predict tumor HER-2 expression and verify the accuracy of the nomogram model through the bootstrap method. Research Content: The biological significance of tumor HER-2 expression was analyzed. The least absolute shrinkage and selection operator (LASSO regression) was used for model feature screening. Ten-fold cross-validation was used to select the optimal regularization parameter. A clinical nomogram was established through the screened HER-2-related clinical factors to predict tumor HER-2 expression. The accuracy of the nomogram model was verified by the bootstrap method. Thus, tumor HER-2 expression is predicted through patients’ clinicopathological factors. Research Results: A nomogram prediction model based on multi-factor prediction of HER-2 expression was developed. This model has good prediction performance and clinical application ability. Its area under the curve (AUC) is 0.860 (95% confidence interval: 0.8124~0.9068). Research Limitations and Future Prospects: The nomogram prediction model based on multi-factor prediction of HER-2 expression developed by us has good prediction performance and clinical application ability. Its area under the curve (AUC) is 0.860 (95% confidence interval: 0.8124~0.9068). The multi-factor nomogram prediction model developed by us provides an accurate and reliable method for predicting tumor HER-2 expression. However, the study also has limitations. In the future, it can be further improved by expanding the sample size, exploring other factors, combining molecular biology techniques, and conducting clinical intervention studies.
文章引用:潘文俊, 刘尚龙. 建立基于临床因素预测结直肠癌HER-2状态的诺莫图模型[J]. 临床医学进展, 2024, 14(12): 1338-1348. https://doi.org/10.12677/acm.2024.14123224

1. 引言

结直肠癌作为世界上最为常见的恶性肿瘤之一,近年来其发病率和死亡率在全球范围内呈现出不断上升的趋势[1]。相关数据及研究均清晰地表明了这一令人担忧的发展态势。随着时代的变迁,人们的生活方式发生了巨大转变,饮食习惯也与以往大不相同。在这样的背景下,结直肠癌的发病年龄正逐渐年轻化[2]。这一现象引起了广泛的关注,因为它意味着越来越多的年轻人面临着结直肠癌的威胁,对人类的健康构成了极为严重的威胁。HER-2,即人类表皮生长因子受体2,是一种具有重要功能的跨膜酪氨酸激酶受体。它在细胞的增殖过程中起着关键作用,能够促进细胞的生长和分裂。同时,在细胞的分化方面,HER-2也发挥着不可或缺的作用,影响着细胞的成熟和特化。此外,HER-2还在细胞的存活中扮演着重要角色,维持着细胞的正常生命活动[3]。在结直肠癌中,HER-2的过表达或扩增与肿瘤的侵袭性紧密相关[4]。当HER-2过度表达或发生扩增时,肿瘤细胞往往具有更强的侵袭能力,更容易侵犯周围组织和器官。同时,HER-2的异常状态也与肿瘤的转移性密切相关,增加了肿瘤细胞扩散到其他部位的风险[5]。此外,HER-2的过表达或扩增还与不良预后密切相关,患者的生存时间和生活质量可能会受到严重影响[6]。因此,准确评估结直肠癌患者的HER-2状态具有极其重要的意义[7]。这对于制定个性化的精准靶向治疗方案至关重要,能够根据患者的具体情况选择最适合的治疗方法[8] [9]。同时,准确评估HER-2状态也有助于预测患者预后[10],为患者和医生提供更准确的预期,以便更好地规划后续的治疗和护理。

列线图是一种基于多因素分析构建的可视化预测工具。它通过对多个临床和病理因素进行综合分析,将这些因素整合在一起,以直观的方式展示每个因素对预测结果的贡献程度。这种可视化的特点使得临床医生能够更加清晰地了解各个因素的影响,从而为临床医生提供更准确、个性化的预测[11] [12]。通过构建结直肠癌HER-2状态的预测列线图,可以为医生提供有力的帮助。在术前,医生可以更好地评估患者的HER-2状态,从而更加准确地选择更合适的治疗方案。这不仅可以提高患者的生存率,还能改善患者的生活质量,为患者带来更多的希望和福祉。

2. 材料与方法

2.1. 研究对象

选取在我院2017年1月至2019年12月接受手术治疗的结直肠癌患者作为研究对象。纳入排除流程图如图1所示。纳入标准如下:1. 经病理确诊为结直肠癌,且存在术后HER-2免疫组化结果;2. 术前未接受新辅助治疗;3. 临床资料完整,涵盖性别、年龄、身体质量指数(BMI)、吸烟史、饮酒史、糖类抗原199 (CA199)、糖类抗原724 (CA724)、癌胚抗原(CEA)、甲胎蛋白(AFP)、术前血清总蛋白水平、术前血红蛋白水平、术前空腹血糖、术前嗜酸性粒细胞计数、术前中性粒细胞计数、术前单核细胞计数、肿瘤大小、病理分化程度、术前T分期、术前N分期等。排除标准如下:1. 合并其他恶性肿瘤;2. 患有严重的心、肝、肾等重要脏器疾病;3. 病历资料不完整。

Figure 1. Flow chart of the inclusion criteria

1. 纳入排除标准流程图

2.2. 数据收集

收集患者的临床资料,包括性别、年龄、身体质量指数(BMI)、吸烟史、饮酒史、糖类抗原199 (CA199)、糖类抗原724 (CA724)、癌胚抗原(CEA)、甲胎蛋白(AFP)、术前血清总蛋白水平、术前血红蛋白水平、术前空腹血糖、术前嗜酸性粒细胞计数、术前中性粒细胞计数、术前单核细胞计数、肿瘤大小、病理分化程度、术前T分期、术前N分期、以及术后肿瘤组织的HER-2状态(通过免疫组织化学染色或荧光原位杂交检测)。

2.3. 统计学方法

IBM SPSS Statistics (25.0;IBM公司)。对临床数据进行统计分析。对于正态分布的连续变量,采用双侧独立样本t检验,对于分布不均匀的变量,采用调整t检验。Mann-Whitney U检验用于非正态分布的连续变量。对于分类变量,使用卡方检验进行评估。双侧P值 < 0.05被认为具有统计学意义。通过R语言使用Lasso回归进行单因素和多因素分析,筛选与结直肠癌HER-2状态相关的危险因素来构建列线图,并利用受试者工作特征(ROC)曲线和校准曲线来评估列线图的预测效能。

3. 结果

3.1. 患者的一般临床特征

本次研究共纳入229例结直肠癌患者,基线信息分析如表1所示。其中,人表皮生长因子受体2 (HER-2)阴性的有129人,占总人数的56.33%;HER-2为阳性的有100人,占比43.67%。经统计学分析,两组间在血红蛋白、饮酒史、分化程度、肿瘤T分期方面的差异具有统计学意义(P < 0.05);而在年龄、体重指数(BMI)、糖类抗原199、糖类抗原724、癌胚抗原、甲胎蛋白、总蛋白、白蛋白、葡萄糖、嗜酸性粒细胞、中性粒细胞、淋巴细胞、单核细胞、肿物大小、性别、吸烟情况、淋巴结转移情况方面,差异无统计学意义(P > 0.05)。

Table 1. Patient baseline data analysis table

1. 患者基线资料分析表

Variables

Total (n = 229)

HER-2 (−) (n = 129)

HER-2 (+) (n = 100)

Statistic

P

年龄,M (Q1, Q3)

68.00 (58.00, 77.00)

67.00 (58.00, 78.00)

68.00 (59.25, 76.00)

Z = −0.27

0.787

BMI, M (Q1, Q3)

23.80 (21.50, 26.00)

24.10 (21.20, 26.00)

23.65 (21.87, 26.10)

Z = −0.31

0.753

CA199, M (Q1, Q3)

14.12 (8.11, 25.82)

11.82 (8.60, 27.87)

15.65 (7.85, 24.32)

Z = −0.13

0.894

CA724, M (Q1, Q3)

1.83 (1.06, 3.88)

1.66 (0.97, 4.50)

2.01 (1.12, 3.41)

Z = −0.66

0.509

CEA, M (Q1, Q3)

3.62 (1.83, 10.37)

3.28 (1.70, 8.81)

4.54 (2.30, 11.52)

Z = −1.53

0.126

AFP, M (Q1, Q3)

2.60 (1.79, 3.51)

2.63 (1.83, 3.53)

2.54 (1.77, 3.48)

Z = −0.44

0.657

总蛋白,M (Q1, Q3)

67.80 (61.70, 100.00)

68.60 (62.80, 100.00)

67.44 (60.70, 99.90)

Z = −0.91

0.361

白蛋白,M (Q1, Q3)

44.44 (38.50, 55.00)

45.10 (38.67, 55.20)

42.89 (38.10, 54.60)

Z = −0.96

0.338

葡萄糖,M (Q1, Q3)

4.90 (4.30, 5.48)

4.87 (4.32, 5.46)

4.90 (4.29, 5.49)

Z = −0.07

0.946

血红蛋白,M (Q1, Q3)

105.00 (89.00, 124.00)

115.00 (99.00, 130.00)

93.50 (79.00, 106.00)

Z = −7.41

<0.001

嗜酸性粒细胞,M (Q1, Q3)

0.11 (0.07, 0.17)

0.10 (0.06, 0.18)

0.11 (0.08, 0.17)

Z = −0.63

0.531

中性粒细胞,M (Q1, Q3)

3.29 (2.55, 4.39)

3.43 (2.70, 4.59)

3.08 (2.43, 4.33)

Z = −0.89

0.375

淋巴细胞,M (Q1, Q3)

1.62 (1.29, 2.04)

1.60 (1.27, 2.09)

1.63 (1.34, 2.02)

Z = −0.01

0.996

单核细胞,M (Q1, Q3)

0.45 (0.36, 0.60)

0.45 (0.36, 0.64)

0.44 (0.35, 0.59)

Z = −0.80

0.422

肿瘤大小,M (Q1, Q3)

55.00 (40.00, 65.00)

55.00 (40.00, 65.00)

50.00 (34.25, 66.25)

Z = −0.70

0.484

性别,n (%)

χ2 = 0.60

0.437

0

101 (44.10)

54 (41.86)

47 (47.00)

1

128 (55.90)

75 (58.14)

53 (53.00)

吸烟史,n (%)

χ2 = 0.91

0.340

0

162 (70.74)

88 (68.22)

74 (74.00)

1

67 (29.26)

41 (31.78)

26 (26.00)

饮酒史,n (%)

χ2 = 22.40

<0.001

0

149 (65.07)

67 (51.94)

82 (82.00)

1

80 (34.93)

62 (48.06)

18 (18.00)

肿瘤分化程度,n (%)

-

0.018

1

49 (21.40)

35 (27.13)

14 (14.00)

2

179 (78.17)

93 (72.09)

86 (86.00)

3

1 (0.44)

1 (0.78)

0 (0.00)

T分期,n (%)

-

0.018

1

3 (1.31)

0 (0.00)

3 (3.00)

2

18 (7.86)

8 (6.20)

10 (10.00)

3

173 (75.55)

95 (73.64)

78 (78.00)

4

35 (15.28)

26 (20.16)

9 (9.00)

N分期,n (%)

-

0.216

0

157 (68.56)

85 (65.89)

72 (72.00)

1

44 (19.21)

29 (22.48)

15 (15.00)

2

26 (11.35)

15 (11.63)

11 (11.00)

3

2 (0.87)

0 (0.00)

2 (2.00)

Z: Mann-Whitney test, χ2: Chi-square test, -: Fisher exact; M: Median, Q1: 1st Quartile, Q3: 3rd Quartile.

3.2. 特征的筛选及列线图的构建

我们采用最小绝对收缩和选择算子(Lasso回归)进行模型特征筛选。构建Lasso回归模型,将数据代入模型。通过调整正则化参数(采用十折交叉验证来选择最优参数),使模型在避免过拟合的同时,筛选出对因变量有重要影响的特征(图2(a))。根据Lasso回归模型中系数不为零的特征,确定为筛选出的重要特征。这些特征被认为与因变量存在显著的关联(图2(b))。根据LASSO分析结果,构建预测结直肠癌HER-2状态的列线图(图3)。列线图中,每个因素对应一个分值,将各个因素的分值相加,得到总分,再通过总分对应的概率值来预测HER-2状态。图4为添加个案的列线图模型,添加个案后的列线图模型能够更准确地识别研究对象中的特定群体或情况,为结直肠癌患者HER-2表达提供更可靠的依据。图5为根据列线图模型构建的动态列线图模型。动态列线图能够根据输入的不同变量值实时更新预测结果,通过调整不同的变量滑块,实时灵活地进行HER-2表达的预测。

Figure 2. Screening of the best clinical factors: (a) The Minimum Absolute Shrinkage and Selection Operator (LASSO) is used to select the feature with the highest coefficient; (b) Select and optimize the tuning parameters (lambda, λ) of the LASSO model by cross-validation of the tenfolds, and obtain the optimal λ value by plotting the vertical dashed line

2. 最佳临床因素的筛选:(a) 采用最小绝对收缩和选择算子(LASSO)来选择系数最高的特征;(b) 通过十折交叉验证选择并优化LASSO模型的调谐参数(lambda, λ),通过绘制垂直虚线获得最优λ

Figure 3. Construct a nomogram for predicting tumor HER-2 expression. Variables such as sex, smoke, drink, haemoglobin, neutrophils, tumor size, and T stage (T) are shown. Each variable has a different range of values and corresponding scores, and the total points are obtained by adding the corresponding scores of each variable, and the risk probability of tumor HER-2 expression is determined on the risk axis according to the total scores

3. 构建用于预测肿瘤HER-2表达的诺莫图。图中所示性别(sex)、吸烟史(smoke)、饮酒史(drink)、血红蛋白(haemoglobin)、中性粒细胞(Neutrophils)、肿瘤大小(large)、T分期(T)等变量。各变量具有不同的取值范围及对应的分值,通过将各变量对应的分值相加获得总积分(Total Points),依据总积分在风险轴(Risk)上确定肿瘤HER-2表达的风险概率

Figure 4. Add a nomogram model for a case

4. 添加个案的列线图模型

Figure 5. Dynamic nomogram model

5. 动态列线图模型

3.3. 列线图的预测效能评估与验证

绘制列线图的ROC曲线,计算曲线下面积(AUC)。结果显示,列线图的AUC为0.860 (95%置信区间:0.8124~0.9068),远远高于单独用某一因素进行预测,表明列线图具有较好的预测效能(图6(a))。我们绘制了列线图的校准曲线(图6(b))显示列线图预测的HER-2状态与实际HER-2状态具有较好的一致性。我们还绘制了模型的临床决策曲线(DCA) (图6(c)),曲线表示,在0~0.9及0.95~1的阈值下模型表现出高于全部治疗和全部不治疗策略曲线的临床收益。采用自举法进行模型的验证,模拟了实际研究中可能获得的包含预测值和真实值的数据集,绘制临床影响曲线图(图6(d)),曲线在一定范围内保持相对平稳,说明模型在该阈值范围内具有较为稳定的性能,不太容易受到阈值变化的影响。

Figure 6. Model evaluation and analysis of correlation curves; (a) ROC curve of nomogram model with AUC of 0.860 (95% confidence interval: 0.8124~0.9068); (b) Calibration curves of nomograms; (c) Nomogram model clinical decision curve (DCA); (d) Nomogram model clinical impact curve

6. 模型评价分析相关曲线。(a) 列线图模型ROC曲线,AUC为0.860 (95%置信区间:0.8124~0.9068);(b) 列线图的校准曲线;(c) 列线图模型临床决策曲线(DCA);(d) 列线图模型临床影响曲线图

4. 讨论

4.1. 血红蛋白与结直肠癌HER-2状态的关系

血红蛋白是反映机体贫血状态的重要指标。在结直肠癌患者中,贫血较为常见,其原因可能与肿瘤出血、营养吸收不良、铁代谢紊乱以及肿瘤细胞分泌的细胞因子抑制红细胞生成等有关。贫血不仅会影响患者的生活质量,还可能与肿瘤的侵袭性和预后密切相关。本研究发现,术前血红蛋白水平与结直肠癌HER-2状态存在显著相关性。低血红蛋白水平的患者HER-2阳性表达率较高。这可能是因为贫血导致机体缺氧,缺氧可以激活一系列缺氧诱导因子(HIF) [13],HIF可以上调HER-2基因的表达,从而促进肿瘤细胞的增殖、侵袭和血管生成[14]。此外,贫血还可能影响免疫系统功能[15],使机体对HER-2阳性肿瘤细胞的免疫清除能力下降,导致肿瘤细胞的生长和扩散。

4.2. 病理分化程度与结直肠癌HER-2状态的关系

病理分化程度是反映肿瘤细胞恶性程度的重要指标。高分化的结直肠癌肿瘤细胞形态和结构与正常细胞相似,生长缓慢,侵袭性和转移性较低;而低分化的结直肠癌肿瘤细胞形态和结构差异较大,生长迅速,侵袭性和转移性较强[16]。本研究结果表明,病理分化程度与结直肠癌HER-2状态密切相关。低分化的结直肠癌患者HER-2阳性表达率明显高于高分化和中分化的患者。这可能是因为低分化的肿瘤细胞具有更强的增殖和侵袭能力,需要更多的生长因子和信号通路来维持其生长和存活[17] [18]。HER-2作为一种重要的生长因子受体,在低分化肿瘤细胞中的表达可能会更高,以促进肿瘤细胞的生长和扩散[19]

4.3. 术前T分期与结直肠癌HER-2状态的关系

术前T分期是评估结直肠癌肿瘤浸润深度的重要指标,它与肿瘤的局部复发和远处转移密切相关。T分期越高,肿瘤浸润深度越深,预后越差[20]。本研究发现,术前T分期与结直肠癌HER-2状态存在显著相关性。T分期较高的患者HER-2阳性表达率较高。这可能是因为随着肿瘤的进展,肿瘤细胞的生物学行为发生改变,HER-2基因的表达和功能也可能发生相应的变化[21] [22]。此外,T分期较高的肿瘤往往具有更强的侵袭性和转移性,需要更多的生长因子和信号通路来支持其生长和扩散,HER-2可能在其中发挥了重要作用[23] [24]

4.4. 列线图的临床应用价值

本研究构建的列线图可以综合考虑饮酒史、血红蛋白水平、病理分化程度和术前T分期等因素,对结直肠癌HER-2状态进行准确预测。临床医生可以根据列线图预测的结果,在术前对患者的HER-2状态有一个初步的评估,从而制定更加个性化的治疗方案。对于HER-2阳性的患者,可以考虑使用抗HER-2靶向药物进行治疗,提高治疗效果[25]。通过准确预测结直肠癌HER-2状态,并采取相应的治疗措施,可以有效地提高患者的生存率和生活质量。此外,列线图还可以帮助医生更好地评估患者的预后,为患者提供更加准确的疾病信息和治疗建议,增强患者的治疗信心和依从性。

4.5. 本研究的局限性

本研究是一项单中心回顾性研究,样本量相对较小,可能存在一定的选择偏倚。饮酒史的评估可能存在一定的主观性,不同患者对饮酒量的定义可能存在差异。虽然本研究构建的列线图具有较好的预测效能,但仍需要在多中心、大样本的前瞻性研究中进行进一步验证和优化。

5. 结论

本研究通过对饮酒史、血红蛋白水平、病理分化程度和术前T分期等因素的分析,构建了预测结直肠癌HER-2状态的列线图。该列线图具有较好的预测效能,可为临床医生在术前评估结直肠癌患者的HER-2状态提供参考,有助于制定个性化的治疗方案,提高患者的生存率和生活质量。然而,本研究仍存在一定的局限性,需要进一步开展多中心、大样本的前瞻性研究来验证和优化列线图。未来,随着对结直肠癌HER-2状态研究的不断深入,相信会有更加准确、便捷的预测方法和治疗策略出现,为结直肠癌患者带来更多的福音。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49.
https://doi.org/10.3322/caac.21820
[3] Slamon, D.J., Godolphin, W., Jones, L.A., Holt, J.A., Wong, S.G., Keith, D.E., et al. (1989) Studies of the HER-2/neu Proto-Oncogene in Human Breast and Ovarian Cancer. Science, 244, 707-712.
https://doi.org/10.1126/science.2470152
[4] Bogoevska, V., Wolters-Eisfeld, G., Hofmann, B.T., El Gammal, A.T., Mercanoglu, B., Gebauer, F., et al. (2016) HRG/HER2/HER3 Signaling Promotes Ahr-Mediated Memo-1 Expression and Migration in Colorectal Cancer. Oncogene, 36, 2394-2404.
https://doi.org/10.1038/onc.2016.390
[5] Fanotto, V., Ongaro, E., Rihawi, K., Avallone, A., Silvestris, N., Fornaro, L., et al. (2016) HER-2 Inhibition in Gastric and Colorectal Cancers: Tangible Achievements, Novel Acquisitions and Future Perspectives. Oncotarget, 7, 69060-69074.
https://doi.org/10.18632/oncotarget.11264
[6] Yang, D., Wang, B., Li, Y., Zhang, J., Gong, X., Qin, H., et al. (2023) HER-2 Expression in Colorectal Cancer and Its Correlation with Immune Cell Infiltration. Biomedicines, 11, Article No. 2889.
https://doi.org/10.3390/biomedicines11112889
[7] Afrăsânie, V., Marinca, M.V., Alexa-Stratulat, T., Gafton, B., Păduraru, M., Adavidoaiei, A.M., et al. (2019) KRAS, NRAS, BRAF, HER2 and Microsatellite Instability in Metastatic Colorectal Cancer—Practical Implications for the Clinician. Radiology and Oncology, 53, 265-274.
https://doi.org/10.2478/raon-2019-0033
[8] Ross, J.S., Fakih, M., Ali, S.M., Elvin, J.A., Schrock, A.B., Suh, J., et al. (2018) Targeting HER2 in Colorectal Cancer: The Landscape of Amplification and Short Variant Mutations in erbb2 and erbb3. Cancer, 124, 1358-1373.
https://doi.org/10.1002/cncr.31125
[9] Indini, A., Rijavec, E. and Grossi, F. (2021) Trastuzumab Deruxtecan: Changing the Destiny of HER2 Expressing Solid Tumors. International Journal of Molecular Sciences, 22, Article No. 4774.
https://doi.org/10.3390/ijms22094774
[10] Battaglin, F., Ou, F., Qu, X., Hochster, H.S., Niedzwiecki, D., Goldberg, R.M., et al. (2024) her2 Gene Expression Levels Are Predictive and Prognostic in Patients with Metastatic Colorectal Cancer Enrolled in CALGB/SWOG 80405. Journal of Clinical Oncology, 42, 1890-1902.
https://doi.org/10.1200/jco.23.01507
[11] Wang, R., Dai, W., Gong, J., Huang, M., Hu, T., Li, H., et al. (2022) Development of a Novel Combined Nomogram Model Integrating Deep Learning-Pathomics, Radiomics and Immunoscore to Predict Postoperative Outcome of Colorectal Cancer Lung Metastasis Patients. Journal of Hematology & Oncology, 15, Article No. 11.
https://doi.org/10.1186/s13045-022-01225-3
[12] Huang, Y., Liang, C., He, L., Tian, J., Liang, C., Chen, X., et al. (2016) Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. Journal of Clinical Oncology, 34, 2157-2164.
https://doi.org/10.1200/jco.2015.65.9128
[13] Bae, T., Hallis, S.P. and Kwak, M. (2024) Hypoxia, Oxidative Stress, and the Interplay of HIFs and NRF2 Signaling in Cancer. Experimental & Molecular Medicine, 56, 501-514.
https://doi.org/10.1038/s12276-024-01180-8
[14] Kazi, A.A., Gilani, R.A., Schech, A.J., Chumsri, S., Sabnis, G., Shah, P., et al. (2014) Nonhypoxic Regulation and Role of Hypoxia-Inducible Factor 1 in Aromatase Inhibitor Resistant Breast Cancer. Breast Cancer Research, 16, R15.
https://doi.org/10.1186/bcr3609
[15] Srikantia, S.G., Bhaskaram, C., Prasad, J.S. and Krishnamachari, K.A.V.R. (1976) ANÆMIA and IMMUNE Response. The Lancet, 307, 1307-1309.
https://doi.org/10.1016/s0140-6736(76)92647-7
[16] La Vecchia, S. and Sebastián, C. (2020) Metabolic Pathways Regulating Colorectal Cancer Initiation and Progression. Seminars in Cell & Developmental Biology, 98, 63-70.
https://doi.org/10.1016/j.semcdb.2019.05.018
[17] Strickler, J.H., Yoshino, T., Graham, R.P., Siena, S. and Bekaii-Saab, T. (2022) Diagnosis and Treatment of Erbb2-Positive Metastatic Colorectal Cancer: A Review. JAMA Oncology, 8, 760-769.
https://doi.org/10.1001/jamaoncol.2021.8196
[18] Sell, T., Klotz, C., Fischer, M.M., Astaburuaga-García, R., Krug, S., Drost, J., et al. (2023) Oncogenic Signaling Is Coupled to Colorectal Cancer Cell Differentiation State. Journal of Cell Biology, 222, e202204001.
https://doi.org/10.1083/jcb.202204001
[19] Abdul Razzaq, E.A., Venkatachalam, T., Bajbouj, K., Rahmani, M., Mahdami, A., Rawat, S., et al. (2021) HER2 Overexpression Is a Putative Diagnostic and Prognostic Biomarker for Late-Stage Colorectal Cancer in North African Patients. Libyan Journal of Medicine, 16, Article ID: 1955462.
https://doi.org/10.1080/19932820.2021.1955462
[20] Cunningham, D., Atkin, W., Lenz, H., Lynch, H.T., Minsky, B., Nordlinger, B., et al. (2010) Colorectal Cancer. The Lancet, 375, 1030-1047.
https://doi.org/10.1016/s0140-6736(10)60353-4
[21] Geng, Y., Wang, J., Wang, R., Wang, K., Xu, Y., Song, G., et al. (2012) Leptin and HER-2 Are Associated with Gastric Cancer Progression and Prognosis of Patients. Biomedicine & Pharmacotherapy, 66, 419-424.
https://doi.org/10.1016/j.biopha.2012.03.002
[22] Kapitanovic, S., Radosevic, S., Kapitanovic, M., Andelinovic, S., Ferencic, Z., Tavassoli, M., et al. (1997) The Expression of P185(her-2/neu) Correlates with the Stage of Disease and Survival in Colorectal Cancer. Gastroenterology, 112, 1103-1113.
https://doi.org/10.1016/s0016-5085(97)70120-3
[23] Yan, S. (2011) Clinicopathologic Significance of Her-2/neu Protein Expression and Gene Amplification in Gastric Carcinoma. World Journal of Gastroenterology, 17, 1501-1506.
https://doi.org/10.3748/wjg.v17.i11.1501
[24] Hao, R., Liu, Y., Du, Q., Liu, L., Chen, S., You, H., et al. (2019) Transgelin-2 Expression in Breast Cancer and Its Relationships with Clinicopathological Features and Patient Outcome. Breast Cancer, 26, 776-783.
https://doi.org/10.1007/s12282-019-00981-4
[25] Raghav, K.P.S. and Moasser, M.M. (2022) Molecular Pathways and Mechanisms of HER2 in Cancer Therapy. Clinical Cancer Research, 29, 2351-2361.
https://doi.org/10.1158/1078-0432.ccr-22-0283