信号素4A在RA、MS、SLE、SSc中的研究进展
Research Progress of Semaphorin 4A in RA, MS, SLE, and SSc
DOI: 10.12677/jcpm.2024.34311, PDF, HTML, XML,   
作者: 刘 菡:济宁医学院临床医学院,山东 济宁;孙 琳*:济宁市第一人民医院内分泌与代谢科,山东 济宁
关键词: 信号素4A类风湿性关节炎多发性硬化系统性红斑狼疮系统性硬化Semaphorin 4A Rheumatoid Arthritis Multiple Sclerosis Systemic Lupus Erythematosus Systemic Sclerosis
摘要: 信号素4A (Sema4A)是信号蛋白家族的成员,被广泛认为参与免疫应答的所有阶段,是调节T细胞稳态、活化和Th1/2/17分化的关键分子,在T细胞介导的自身免疫性疾病的发病机制中具有重要作用。本文就Sema4A在部分T细胞介导的自身免疫性疾病,如类风湿性关节炎(RA)、多发性硬化(MS)、系统性红斑狼疮(SLE)、系统性硬化(SSc)中的研究进展展开介绍,可有助于寻找此类疾病新的可行性治疗靶标,并为其他自身免疫性疾病发病机制提供新的研究思路。
Abstract: Semaphorin 4A (Sema4A), a member of the semaphorin family, is widely recognized to be involved in all phases of the immune response. It is a key molecule that regulates T cell homeostasis, activation, and Th1/2/17 differentiation, and it plays an important role in the pathogenesis of T cell-mediated autoimmune diseases. This article introduces the research progress of Sema4A in some T cell-mediated autoimmune diseases, such as rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc), which can help to find new feasible therapeutic targets and provide new research ideas for the pathogenesis of autoimmune diseases.
文章引用:刘菡, 孙琳. 信号素4A在RA、MS、SLE、SSc中的研究进展[J]. 临床个性化医学, 2024, 3(4): 2195-2201. https://doi.org/10.12677/jcpm.2024.34311

1. 引言

脑信号蛋白是一大类糖蛋白分子,作为组织微环境中的调节因子,在神经系统发育、心脏发育、血管形成、骨吸收和重塑、免疫调节等各种生理过程中发挥重要作用[1],由胞外Sema结构域(富含半胱氨酸)、丛状蛋白(Plexin)–信号蛋白–整合素结构域和可变蛋白结构域共同构成,又根据其Sema结构域分为八个亚类[2]。Sema4A是第IV类信号蛋白,在成熟树突状细胞(DC)和活性T淋巴细胞表面高表达,在B细胞膜和静息T细胞膜上低表达,是一种跨膜蛋白,也可以从细胞膜脱落并在血清中以可溶性形式(sSema4A)检测到[3]。Sema4A通过与其相应受体结合发挥功能,受体主要包括丛蛋白B1 (PLXNB1)、丛蛋白B2 (PLXNB2)、丛蛋白D1 (PLXND1)、神经纤毛蛋白-1 (NRP-1)、免疫球蛋白样转录物4 (ILT4)和Tim-2 [4]。Sema4A在许多过程中发挥关键作用,包括细胞–细胞相互作用,免疫细胞活化,分化和迁移[5]。据文献报道,Sema4A在T细胞介导的免疫应答过程中起着重要作用,可引起免疫调节功能紊乱,参与多种自身免疫性疾病发生发展[6]。本文将对Sema4A在类风湿性关节炎(RA)、多发性硬化(MS)、系统性红斑狼疮(SLE)、系统性硬化(SSc)等T细胞介导的自身免疫性疾病中的最新研究进展进行综述,可有助于寻找此类疾病新的可行性靶标,为治疗提供新的研究思路。

2. Sema4A与RA

RA是一种免疫介导的慢性炎性疾病,其特征是持续性滑膜炎症和关节进行性破坏,滑膜炎症是免疫细胞浸润关节和滑膜基质成纤维细胞样滑膜细胞(FLS)积聚的结果,自身免疫会导致持续性滑膜炎,进而导致骨和软骨破坏,造成患者残疾和生活质量下降[7]

2.1. RA患者Sema4A流行病学研究

有研究表明,RA患者滑膜组织中Sema4A mRNA和蛋白表达水平升高[8],滑膜、关节液及血清中Sema4A较OA、AS、SLE也显著升高[6],并与表示疾病活动的CRP、DAS28、TNF-α、IL-6、CRP、RF及尿脱氧吡啶啉等指标正相关,并且Sema4A血清浓度在靶向生物治疗后显著降低[9],使用MTX或托珠单抗治疗RA患者,Sema4A浓度在具有良好临床反应的患者组中显著降低,提示Sema4A可用于评估治疗效果[10],提示Sema4A与RA的发生、发展、治疗密切相关。

2.2. Sema4A参与RA的发病机制

Sema4A不仅在血管生成中可抑制血管内皮生长因子(VEGF)介导的内皮细胞(EC)的迁移和增殖,还可能通过其对FLS的双重作用而直接参与疾病的炎症过程[11]。通过重组人Sema4A (rhSema4A)处理,不仅促进肌成纤维细胞或上皮–间质转化(EMT)样转化的类风湿关节炎滑膜成纤维细胞(RASF)更容易侵入,还可以促进RASFs中IL-6以及IL-1β和TNF-α的产生,这三种细胞因子可刺激RASF和炎性细胞加重滑膜炎症,导致关节破坏,已有研究表明,可通过抑制这三种细胞因子逆转疾病进展并使疾病活动评分明显改善[12]。同时,IL-6的产生是核因子κB (NF-κB)依赖性的,NF-κB可以在转录水平上调节Sema4A的表达,阻断NF-κB信号转导,在转录和翻译水平上减弱了脂多糖(LPS)诱导的Sema4A表达,LPS刺激后NF-κB向Sema4A启动子的募集增加。Sema4A与NF-κB相互调控并形成正反馈路径促进滑膜细胞的炎性进展[13]。此外,Sema4A还可以促进基质金属蛋白酶(MMP) MMP 3和MMP 9的产生,进而降解细胞外基质(ECM),为RASFs入侵提供空间[14]。在基因层面,Cavalcanti CAJ等人通过基因分型发现,T/T基因型的存在下,激活后的T细胞特异性上调Sema4A水平,加剧RA患者的Th1和Th17分化,有助于自身免疫的发生[6]

3. Sema4A与MS

MS是影响中枢神经系统的一种具有自身免疫性质的慢性炎性脱髓鞘疾病,也是年轻成人中持久神经功能障碍的主要原因[15],虽然MS的确切原因尚不完全清楚,但越来越多的证据表明,Th1和Th17细胞在MS的病理学中起重要作用。Sema4A对于Th1、Th17细胞分化至关重要,进而参与MS的发病。

3.1. MS患者Sema4A流行病学研究

Sema4A在MS患者的血清中显著增加,几乎三分之一的MS患者显示出相当高的血清Sema4A水平,而且可溶性Sema4A水平的升高伴随着基质金属蛋白酶(MMP)水平的升高,尤其是MMP-9 [16]。具有高血清Sema4A水平的MS患者有几个重要的标志:1) 具有比健康受试者或血清Sema4A低水平的患者显著更高比例地产生IL-17的CD4+T细胞;2) 具有更高的IL-2水平;3) 具有更严重的身体残疾;4) 对一线IFN-β治疗具有抵抗性,但是可以从芬戈莫德治疗中获益[17]

3.2. Sema4A参与MS的发病机制

具有高水平的Sema 4A的复发缓解型MS(RRMS)患者中IL-17水平显著升高,IL-17有助于血脑屏障(BBB)的破坏,并增强炎性趋化因子和IL-6在星形细胞中的表达,促进炎性细胞浸润到CNS中[15] [18] [19],同时参与脱髓鞘和髓鞘再生失败的过程[20]。此外,Sema4A对IL-10的产生具有抑制作用,IL-10是与IFN-β治疗的有益效果相关的抑制性细胞因子,导致血清Sema4A水平高的MS患者对IFN-β治疗无反应[3] [4] [21],血清Sema4A可能作为评估IFN-β疗法有效的生物标志物。Sema4A的释放可以被蛋白酶抑制剂阻止,包括基质金属蛋白酶(MMP)和金属蛋白酶(ADAM),Sema4A被MMP从细胞表面蛋白水解切割以在MS患者的血清中产生可溶性Sema4A。可溶性Sema4A伴随着MMP水平的增加而增加,Sema4A可助于提高MMP水平[3]。总之,这些发现不仅说明Sema4A能通过促进Th1和Th17细胞失衡而参与MS的发病机制,还可作为MS评估预后或诊断的生物标志物。

4. Sema4A与SLE

SLE是一种多系统自身免疫性疾病,临床表现复杂多样[22],多种自身抗体的产生和免疫复合物的形成是SLE的主要病理特征。

4.1. SLE患者Sema4A流行病学研究

在SLE患者中,不仅树突状细胞(mDCs)、B细胞、CD4+T、粒细胞上Sema4A过度表达,可溶性Sema4A浓度增加,而且Sema4A的水平与SLE疾病活动指数(SLEDAI评分)呈正相关,SLE患者体内Th2、Th17细胞占比显著升高,SLE患者Th1/Th2比例失衡,趋于Th2型,且血浆可溶性Sema4A与Th2、Th17细胞比例呈正相关,与Th1/Th2呈负相关[23],Sandrin-Garcia等人评估了4500个基因在活动期和非活动期系统性红斑狼疮(SLE)患者中的表达谱:在患者和健康对照之间总共有156个基因差异表达,其中,Sema4A基因在活动性SLE患者中上调(约32倍变化) [24]。这些数据表明Sema4A可能在SLE的疾病进展中起关键作用。Sema4A还有希望用于SLE诊断的标志物,并且区分SLE与RA [25]

4.2. Sema4A参与SLE的发病机制

Sema4A与免疫球蛋白样转录物4 (ILT4)组合诱导Th2细胞分化,调节Th细胞亚群分布,促进机体的免疫炎症反应,诱导抗体的产生,从而有助于SLE发病机制[26]。在B细胞上表达的Sema4A也可以与T细胞受体结合,在共刺激通路中发挥作用,最终直接或间接地扩大SLE患者的免疫应答。T细胞上的Sema4A表达有助于T细胞分化[4],并诱导IL-17产生[27]。此外,可溶性Sema4A通过直接结合其受体影响T细胞的活化和分化。免疫性贫血是SLE患者常见的并发症,免疫细胞的异常活化、抗红细胞抗体的产生和某些药物的使用是免疫性贫血出现的病理因素[22],可溶性Sema4A可预测SLE患者血液学损害的预后。无论是SLE患者来源还是健康者来源的CD4+T细胞,经Sema4A处理后,其活化与增殖水平均显著升高,且该效应能被抗-Sema4A抗体抑制。进一步分析Sema4A处理后Th1、Th2和Th17相关细胞因子水平,发现Sema4A能诱导IL-4、IL-17的分泌,抑制IFN-γ的分泌,表明Sema4A可影响T细胞活化、增殖和分化,在启动和激活机体炎症病变中发挥重要作用[23]。考虑到SLE发病机制中T辅助细胞亚群的失衡以及Sema4A对免疫细胞调节的参与[28],我们认为Sema4A基因是SLE易感性和自身免疫发展的潜在靶基因。

5. Sema4A与SSc

SSc是一种病因不明的严重自身免疫性炎性疾病,具有高发病率和死亡率,其特征在于免疫系统激活、血管异常和纤维化[29]。越来越多的证据表明,在SSc患者中免疫应答失调造成T细胞稳态的改变,进而导致病理学改变[30] [31]

5.1. SSc患者Sema4A流行病学研究

与健康对照组(HC)相比,SSc患者血浆中Sema4A水平显著更高,瘢痕中培养的成纤维细胞也显示出Sema4A分泌升高[32],SSc患者外周血和皮肤中Th17细胞的比例升高[33],总的、初始的和效应记忆CD4+T细胞中IL-17的产生也更高,并且与皮肤增厚的严重程度正相关。

5.2. Sema4A参与SSc的发病机制

Th17细胞分泌的细胞因子IL-17参与促成SSc病理学改变的各个阶段,包括促炎性细胞因子分泌、单核细胞募集和粒细胞-巨噬细胞集落刺激因子产生[34] [35],Sema4A可以通过上调成纤维细胞中PLXND1、PLXNB2、NRP-1的mRNA表达,并上调其受体进一步增强促纤维化作用[36],有实验证明阻断受体NRP-1和PLXND1,或沉默PLXNB2,可抑制Sema4A信号传导,大幅减少Th17细胞因子分泌[14] [37] [38],而Th17分泌的细胞因子IL-17 A可促进SSc患者来源的真皮血管平滑肌细胞(DVSMCs)的增殖、迁移、胶原合成和分泌,这可能会进一步加重SSc中的血管病变[34]。Sema4A作为Th17产生和纤维化的关键介导剂,参与SSc病理学的两个主要方面,一方面,Sema4A以IL-17依赖性方式诱导炎症,另一方面直接诱导真皮成纤维细胞中的促纤维化表型,阻断Sema4A信号传导可能会抑制SSc的病理过程[36]。在SSc患者免疫细胞中,Sema4A及其受体的调节表达被破坏[36]。另外,HAI-YING PENG等人通过Western blot分析证实,Sema4A激活肺成纤维细胞中的Akt通路,促进肺成纤维细胞收缩胶原凝胶基质的能力,阻断Sema4A PlexinD1-Akt级联反应有利于减轻SSc患者的肺纤维化[32]

6. 总结

Sema4A及其受体通过作用于免疫细胞,特别是CD4+T细胞分化中发挥核心作用,对促炎细胞因子和抗炎细胞因子表达水平产生影响,从而参与细胞免疫反应和体液免疫反应的调节,在免疫系统中发挥重要作用,在自身免疫性疾病的病理过程中担负着重要的角色,参与自身免疫病的发生发展,在相关疾病诊断及治疗方面具有广阔的研究前景,调节Sema4A水平可能是CD4+T细胞介导的疾病的潜在治疗方法。同时也为相关疾病发病机制研究提供新的视角,并可能成为此类疾病新的诊断标志物及治疗靶点。但Sema4A调控细胞因子的具体机制及通过何种途径参与疾病的病理过程,目前尚不明确,需要更多的研究来确认它在该类疾病发病机制中的真实作用。有待于进一步研究。

NOTES

*通讯作者。

参考文献

[1] Fard, D. and Tamagnone, L. (2021) Semaphorins in Health and Disease. Cytokine & Growth Factor Reviews, 57, 55-63.
https://doi.org/10.1016/j.cytogfr.2020.05.006
[2] 欧阳丹, 马远志, 李鑫, 等. 信号素在类风湿关节炎发病机制中作用的研究进展[J]. 中国免疫学杂志, 2024, 40(9): 2001-2005.
[3] Maeda, Y., Tsuda, T., Takeda, Y., Koyama, S., Hayama, Y., Nojima, S., et al. (2019) SEMA4A Promotes Eosinophil Survival and Contributes to Eosinophil-Mediated Allergic Diseases. Allergology International, 68, 274-276.
https://doi.org/10.1016/j.alit.2018.10.001
[4] Carvalheiro, T., Rafael-Vidal, C., Malvar-Fernandez, B., Lopes, A.P., Pego-Reigosa, J.M., Radstake, T.R.D.J., et al. (2020) Semaphorin4A-Plexin D1 Axis Induces Th2 and Th17 While Represses Th1 Skewing in an Autocrine Manner. International Journal of Molecular Sciences, 21, Article 6965.
https://doi.org/10.3390/ijms21186965
[5] Ito, D. and Kumanogoh, A. (2016) The Role of Sema4A in Angiogenesis, Immune Responses, Carcinogenesis, and Retinal Systems. Cell Adhesion & Migration, 10, 692-699.
https://doi.org/10.1080/19336918.2016.1215785
[6] Cavalcanti, C.A.J., Germoglio, V., de Azevêdo Silva, J., Glesse, N., Vianna, P., Cechim, G., et al. (2019) T-Cell Specific Upregulation of Sema4A as Risk Factor for Autoimmunity in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Autoimmunity, 53, 65-70.
https://doi.org/10.1080/08916934.2019.1704273
[7] Tang, M.W., Malvar Fernández, B., Newsom, S.P., van Buul, J.D., Radstake, T.R.D.J., Baeten, D.L., et al. (2018) Class 3 Semaphorins Modulate the Invasive Capacity of Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Rheumatology, 57, 909-920.
https://doi.org/10.1093/rheumatology/kex511
[8] Wang, L., Song, G., Zheng, Y., Tan, W., Pan, J., Zhao, Y., et al. (2015) Expression of Semaphorin 4A and Its Potential Role in Rheumatoid Arthritis. Arthritis Research & Therapy, 17, Article 227.
[9] Avouac, J., Pezet, S., Vandebeuque, E., Orvain, C., Gonzalez, V., Marin, G., et al. (2021) Semaphorins: From Angiogenesis to Inflammation in Rheumatoid Arthritis. Arthritis & Rheumatology, 73, 1579-1588.
https://doi.org/10.1002/art.41701
[10] Avouac, J., Vandebeuque, E., Combier, A., Poiroux, L., Steelandt, A., Boisson, M., et al. (2023) Relevance of Circulating Semaphorin 4A for Rheumatoid Arthritis Response to Treatment. Scientific Reports, 13, Article No. 14626.
https://doi.org/10.1038/s41598-023-41943-3
[11] Toyofuku, T., Yabuki, M., Kamei, J., Kamei, M., Makino, N., Kumanogoh, A., et al. (2007) Semaphorin-4A, an Activator for T-Cell-Mediated Immunity, Suppresses Angiogenesis via Plexin-D1. The EMBO Journal, 26, 1373-1384.
https://doi.org/10.1038/sj.emboj.7601589
[12] Chapoval, S.P. (2015) Semaphorin 4A as Novel Regulator and Promising Therapeutic Target in Rheumatoid Arthritis. Arthritis Research & Therapy, 17, Article 313.
[13] 刘晓. Sema4A在乳腺癌中的作用和机制的初步研究[D]: [博士学位论文]. 济南: 山东大学, 2019.
[14] Meda, C., Molla, F., De Pizzol, M., Regano, D., Maione, F., Capano, S., et al. (2012) Semaphorin 4A Exerts a Proangiogenic Effect by Enhancing Vascular Endothelial Growth Factor-A Expression in Macrophages. The Journal of Immunology, 188, 4081-4092.
https://doi.org/10.4049/jimmunol.1101435
[15] Karussis, D. (2014) The Diagnosis of Multiple Sclerosis and the Various Related Demyelinating Syndromes: A Critical Review. Journal of Autoimmunity, 48, 134-142.
https://doi.org/10.1016/j.jaut.2014.01.022
[16] Lotfi, R., Nasiri Kalmarzi, R., Rajabinejad, M., Hasani, S. and Zamani, F. (2021) The Role of Immune Semaphorins in the Pathogenesis of Multiple Sclerosis: Potential Therapeutic Targets. International Immunopharmacology, 95, Article 107556.
https://doi.org/10.1016/j.intimp.2021.107556
[17] Koda, T., Namba, A., Nakatsuji, Y., Niino, M., Miyazaki, Y., Sugimoto, T., et al. (2018) Beneficial Effects of Fingolimod in MS Patients with High Serum Sema4A Levels. PLOS ONE, 13, e0193986.
https://doi.org/10.1371/journal.pone.0193986
[18] Volpe, E., Battistini, L. and Borsellino, G. (2015) Advances in T Helper 17 Cell Biology: Pathogenic Role and Potential Therapy in Multiple Sclerosis. Mediators of Inflammation, 2015, Article ID: 475158.
https://doi.org/10.1155/2015/475158
[19] Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., et al. (2007) Human TH17 Lymphocytes Promote Blood-Brain Barrier Disruption and Central Nervous System Inflammation. Nature Medicine, 13, 1173-1175.
https://doi.org/10.1038/nm1651
[20] Eiza, N., Garty, M., Staun-Ram, E., Miller, A. and Vadasz, Z. (2022) The Possible Involvement of Sema3a and Sema4a in the Pathogenesis of Multiple Sclerosis. Clinical Immunology, 238, Article 109017.
https://doi.org/10.1016/j.clim.2022.109017
[21] Kang, Z., Altuntas, C.Z., Gulen, M.F., Liu, C., Giltiay, N., Qin, H., et al. (2010) Astrocyte-Restricted Ablation of Interleukin-17-Induced Act1-Mediated Signaling Ameliorates Autoimmune Encephalomyelitis. Immunity, 32, 414-425.
https://doi.org/10.1016/j.immuni.2010.03.004
[22] Arbitman, L., Furie, R. and Vashistha, H. (2022) B Cell-Targeted Therapies in Systemic Lupus Erythematosus. Journal of Autoimmunity, 132, Article 102873.
https://doi.org/10.1016/j.jaut.2022.102873
[23] 谭雪玲, 何仁栋, 向江圆, 等. 信号素4A对SLE患者T细胞功能的影响[J]. 中国免疫学杂志, 2023, 39(4): 822-826.
[24] Sandrin-Garcia, P., Junta, C.M., Fachin, A.L., Mello, S.S., Baião, A.M.T., Rassi, D.M., et al. (2009) Shared and Unique Gene Expression in Systemic Lupus Erythematosus Depending on Disease Activity. Annals of the New York Academy of Sciences, 1173, 493-500.
https://doi.org/10.1111/j.1749-6632.2009.04636.x
[25] He, R., Tan, X., Xiang, J., Zhu, J., Jiang, Y., Liu, W., et al. (2022) Semaphorin 4A as a Potential Biomarker for Diagnosis of Systemic Lupus Erythematosus. Immunological Investigations, 52, 104-116.
https://doi.org/10.1080/08820139.2022.2134024
[26] Lu, N., Li, Y., Zhang, Z., Xing, J., Sun, Y., Yao, S., et al. (2018) Human Semaphorin-4A Drives Th2 Responses by Binding to Receptor Ilt-4. Nature Communications, 9, Article No. 742.
https://doi.org/10.1038/s41467-018-03128-9
[27] Nakatsuji, Y., Okuno, T., Moriya, M., Sugimoto, T., Kinoshita, M., Takamatsu, H., et al. (2012) Elevation of Sema4A Implicates Th Cell Skewing and the Efficacy of IFN-Β Therapy in Multiple Sclerosis. The Journal of Immunology, 188, 4858-4865.
https://doi.org/10.4049/jimmunol.1102023
[28] Kleczynska, W., Jakiela, B., Plutecka, H., Milewski, M., Sanak, M. and Musial, J. (2012) Imbalance between Th17 and Regulatory T-Cells in Systemic Lupus Erythematosus. Folia Histochemica et Cytobiologica, 49, 646-653.
https://doi.org/10.5603/fhc.2011.0088
[29] Denton, C.P. and Khanna, D. (2017) Systemic Sclerosis. The Lancet, 390, 1685-1699.
https://doi.org/10.1016/s0140-6736(17)30933-9
[30] van Bon, L., Cossu, M. and Radstake, T.R.D.J. (2011) An Update on an Immune System That Goes Awry in Systemic Sclerosis. Current Opinion in Rheumatology, 23, 505-510.
https://doi.org/10.1097/bor.0b013e32834b0dac
[31] Lafyatis, R. and York, M. (2009) Innate Immunity and Inflammation in Systemic Sclerosis. Current Opinion in Rheumatology, 21, 617-622.
https://doi.org/10.1097/bor.0b013e32832fd69e
[32] Peng, H., Gao, W., Chong, F., Liu, H. and Zhang, J. (2015) Semaphorin 4A Enhances Lung Fibrosis through Activation of Akt via Plexind1 Receptor. Journal of Biosciences, 40, 855-862.
https://doi.org/10.1007/s12038-015-9566-9
[33] Zhou, Y., Hou, W., Xu, K., Han, D., Jiang, C., Mou, K., et al. (2015) The Elevated Expression of Th17-Related Cytokines and Receptors Is Associated with Skin Lesion Severity in Early Systemic Sclerosis. Human Immunology, 76, 22-29.
https://doi.org/10.1016/j.humimm.2014.12.008
[34] Gonçalves, R.S.G., Pereira, M.C., Dantas, A.T., Almeida, A.R.D., Marques, C.D.L., Rego, M.J.B.M., et al. (2017) IL-17 and Related Cytokines Involved in Systemic Sclerosis: Perspectives. Autoimmunity, 51, 1-9.
https://doi.org/10.1080/08916934.2017.1416467
[35] Onishi, R.M. and Gaffen, S.L. (2010) Interleukin-17 and Its Target Genes: Mechanisms of Interleukin-17 Function in Disease. Immunology, 129, 311-321.
https://doi.org/10.1111/j.1365-2567.2009.03240.x
[36] Carvalheiro, T., Affandi, A.J., Malvar‐Fernández, B., Dullemond, I., Cossu, M., Ottria, A., et al. (2019) Induction of Inflammation and Fibrosis by Semaphorin 4A in Systemic Sclerosis. Arthritis & Rheumatology, 71, 1711-1722.
https://doi.org/10.1002/art.40915
[37] Ito, D., Nojima, S., Nishide, M., Okuno, T., Takamatsu, H., Kang, S., et al. (2015) mTOR Complex Signaling through the Sema4a-Plexin B2 Axis Is Required for Optimal Activation and Differentiation of CD8+ T Cells. The Journal of Immunology, 195, 934-943.
https://doi.org/10.4049/jimmunol.1403038
[38] Delgoffe, G.M., Woo, S., Turnis, M.E., Gravano, D.M., Guy, C., Overacre, A.E., et al. (2013) Stability and Function of Regulatory T Cells Is Maintained by a Neuropilin-1-Semaphorin-4A Axis. Nature, 501, 252-256.
https://doi.org/10.1038/nature12428