甘油三酯葡萄糖指数联合肥胖相关指标预测2型糖尿病发生风险的研究进展
Research Progress of Triglyceride Glucose Index Combined with Obesity-Related Indicators in Predicting the Risk of Type 2 Diabetes Mellitus
DOI: 10.12677/acm.2024.14123227, PDF, HTML, XML,   
作者: 陈凌煜*:西安医学院研究生部,陕西 西安;时 晔:陕西省人民医院全科医学科,陕西 西安
关键词: 甘油三酯葡萄糖指数肥胖相关指标胰岛素抵抗2型糖尿病Triglyceride Glucose Index Obesity-Related Indicators Insulin Resistance Type 2 Diabetes Mellitus
摘要: 胰岛素抵抗(IR)是肥胖和T2DM的共同病理生理基础。肥胖相关指标作为2型糖尿病(T2DM)的危险因素,也是其进展的重要原因。体重指数(BMI)作为肥胖的依据指标,成为大多数T2DM风险模型的变量之一,然而,对于中心性肥胖或老年人群,BMI及其他肥胖相关其他指标的预测能力有限。甘油三酯葡萄糖 (TyG)指数操作简单、经济易得,可作为IR评价指标。近年研究发现TyG指数与肥胖相关指标对T2DM发病风险预测作用更好,本文就TyG指数联合肥胖相关指标对T2DM的预测价值作一综述。
Abstract: Insulin resistance (IR) is the common pathophysiological basis for obesity and T2DM. Obesity-related indicators, as risk factors of type 2 diabetes mellitus (T2DM) and important reasons for its progress. Body Mass Index (BMI), as a basis indicator for obesity, has become one of the variables in most T2DM risk models. However, the predictive power of BMI and other obesity related indicators is limited for central obesity or elderly populations. The triglyceride glucose (TyG) index is simple to operate and economical to obtain, and can be used as an IR evaluation index. In recent years, it has been found that TyG index and obesity-related indicators play a better role in predicting the risk of T2DM. This article reviews the predictive value of TyG index combined with obesity-related indicators on T2DM.
文章引用:陈凌煜, 时晔. 甘油三酯葡萄糖指数联合肥胖相关指标预测2型糖尿病发生风险的研究进展[J]. 临床医学进展, 2024, 14(12): 1365-1370. https://doi.org/10.12677/acm.2024.14123227

1. 引言

2型糖尿病(Type 2 Diabetes Mellitus, T2DM)的发病率逐年上升。根据国际糖尿病联合会2021年发布的糖尿病地图估计[1],到2030和2045年,全球糖尿病预计患者总数将增加到6.43亿(11.3%)和7.83亿(12.2%)。T2DM患病人数多,疾病负担重,早期预防T2DM已成为全球公共卫生的主要优先事项,如果通过简单有效的预测工具,识别基层易患T2DM的高危人群,进而通过有效干预方式延缓或预防T2DM发生,势必有很大的临床意义及社会价值。

肥胖是T2DM的危险因素之一,常伴随在其早期阶段,尤其是腹型肥胖,已成为T2DM进展的重要原因[2]。常用的肥胖相关指标,如体重指数(Body Mass Index, BMI)、腰围(Waist Circumference, WC)、腰高比(Waist-to-Height Ratio, WHtR)等被广泛用于评估T2DM发病风险中,但实践发现上述指标仍有其局限性。对于非肥胖人群,TyG指数作为一种简单测量计算可得的指标,与IR关系密切,已被应用于预测T2DM风险的研究,近年研究发现TyG指数与肥胖相关指标的联合对T2DM的预测作用更佳,本文就相关报道作一综述。

2. IR与T2DM

T2DM作为一种多因素相关的代谢性疾病,特点在于胰岛素抵抗(Insulin resistance, IR)和β细胞功能下降。研究表明[3],患者在诊断为T2DM前常存在长达数年及数十年的IR状态。IR通过复杂的病理生理过程(如内皮损伤、炎症反应激活和氧化应激等)在T2DM的发生和进展中起关键作用[4]。T2DM患者早期,体内已经存在糖尿病相关的病理生理改变,以IR为主要特点,但空腹血糖正常(Normal fasting glucose, NFG)且无明显症状;再过渡到糖尿病前期,包括空腹血糖受损(impaired fasting glucose, IFG)、糖耐量减低(impaired glucose tolerance, IGT)等,此时IR进一步加重,体内糖代谢负荷进一步加重。

因此,早期监测IR已成为预测T2DM发生的重要工具之一。测量IR的金标准是高胰岛素–正常血糖钳夹(HEC)技术[5],而在大规模人群中运用HEC存在经济、时间成本和伦理方面的局限性;稳态模型评估–胰岛素抵抗指数(HOMA-IR)作为临床上评估IR的方法并被广泛应用[6],尽管如此,HOMA-IR需要测量空腹胰岛素水平,在多数基层医院及初级医疗中难以实现。

3. TyG指数与T2DM

研究发现在IR替代方案中,TyG指数作为一种并非基于胰岛素的指标,比其他评估IR的指标成本更低,更易操作,也被证实出与IR具有更好的相关性,可作为评估IR的可靠指标[7]。多数研究发现,TyG指数与T2DM的发病风险呈正相关,然而呈线性还是非线性仍有不同争论。在NFG个体中,TyG指数对T2DM的预测价值更优,其ROC曲线下面积值更高[8]。TyG指数也被证实出与糖化血红蛋白(HbA1c)具有良好的相关性,可作为评估T2DM患者长期血糖的有用工具[9]。韩国一项4年的纵向研究[10]发现无论BMI是否大于25 kg/m2,TyG指数 ≥ 8.8的亚组患糖尿病的风险显著增高(HR:2.40 [P = 0.024]和2.25 [P = 0.048]),另一项长达12年的纵向研究[11]显示TyG指数可作为非肥胖成人T2DM发病率的预测因子。中国两项追访6年、15年的研究[12] [13]中也发现正常体重人群中,T2DM发病风险随着TyG指数的增加而增加。因此,在正常体重人群筛查中,TyG指数应作为有效的筛查工具,以便进行早期干预。

4. 肥胖相关指标与T2DM

肥胖是T2DM发生的危险因素。评估肥胖的测量指标有很多[14],如体重指数(BMI)、腰围(WC)、腰高比(WHtR)、腰臀比(WHR)、臀围(HC)、身体肥胖指数(BAI)、锥度指数(CI)、内脏肥胖指数(VAI)、中国内脏肥胖指数(CVAI)、脂质积累产物(LAP)、体型指数(ABSI)、身体圆度指数(BRI)等。这些测量指标不同程度地反映了人群的肥胖,均与T2DM的发展相关,研究显示上述指标均对中国中老年人T2DM有适度的预测能力但也相对较弱[15]

BMI作为肥胖的依据指标,成为大多数T2DM风险模型的变量之一,被临床广泛运用[14]。然而,BMI也有其局限性,不能反映中心性肥胖,而内脏肥胖是引起胰岛素抵抗的主要风险因素,也是T2DM的一个独立危险因素[16]。尤其是胰腺内脂肪沉积[17],脂肪累积、脂质含量增加,使得胰岛素转运信号通路发生障碍而引起IR,从而加速T2DM的发生发展。一项研究认为对于腹型肥胖的体检者来说,测量WC是筛查糖尿病风险的廉价工具,但与单独的WC相比,针对身高校正的WHtR可能提供更好的预测能力[18]。有研究进一步表明,WHtR比BMI和WC更有效地识别处于早期健康风险中的个体,在T2DM普查中发现WHtR筛查T2DM高危人群的效果优于BMI及WHR,并且T2DM患者一级亲属(First-degree relative, FDR)中,WHtR和WHR在预测FDR患T2DM方面更优[19]-[21]

5. TyG指数联合肥胖相关指标与T2DM

综上所述,TyG指数与肥胖相关指标均对T2DM发病风险显示出相关性。IR作为肥胖与T2DM共同的病理基础,和肥胖一起是T2DM的强预测因子。TyG指数衍生出的TyG指数联合肥胖相关指标,如TyG-WC、TyG-BMI、TyG-WHtR等,也被验证出可为估计T2DM发病风险提供更广泛的基础[15]

2016年Er.教授首次报道通过比较单纯的TyG指数和肥胖相关指标,发现TyG-BMI指数在识别IR方面具有最高的AUC [22]。一项纳入6842例体检者[23]的研究发现经过5年的随访,新发T2DM患者的TyG指数、TyG-BMI指数的连续变化与该疾病的关联性呈递增形–线性量效关系,TyG-BMI指数预测T2DM的ROC曲线下面积为0.725 [95% CI (0.688, 0.760)]比TyG指数的ROC面积0.696更大,说明两者的高水平状态均是T2DM的独立危险因素,尤其TyG-BMI指数是较优的预测指标。一项纳入中国11万体检者的队列研究发现[24],多因素COX回归分析显示,3年随访内TyG-BMI指数是新发T2DM的独立预测因子(HR:1.50每增加SD:1.50,95% CI:1.40至1.60,P趋势 < 0.00001)。并且亚组分析显示,中青年人群发生TyG-BMI相关糖尿病的风险显著高于中老年人,非肥胖人群发生TyG-BMI相关糖尿病的风险也显著高于超重和肥胖人群。

在各项研究中,TyG-WC指数也显示出良好的预测作用,其中在预测T2DM患者的一级亲属患病风险中显示出最佳预测价值[25]。一项研究在5年内比较1544例T2DM患者FDR的TyG、TyG-BMI和TyG-WC三个指标中发现TyG-WC指数与糖尿病前期和糖尿病患病率的相关性更强,其可观察到最大的AUC (0.765, 95% CI: 0.741~0.789, P < 0.001)。进一步比较发现TyG-WC指数的稳健预测价值最大(HR: 7.13, 95% CI: 3.41~14.90, P < 0.001),说明TyG-WC指数是早期预测T2DM患者FDR糖尿病前期和糖尿病风险的最佳标志物。并且研究显示[15] TyG-WC指数对女性患T2DM 的可能风险更加相关,TyG-WC每增加一个单位,女性患T2DM的可能性就会增加2.7倍。研究显示TyG-WC指数对T2DM合并MetS的预测效率最高[26]

近年来有研究提出比起上述两项指标,TyG-WHtR指数是T2DM的最佳预测指标。中国一项纵向研究中发现高TyG-WHtR指数是T2DM发展累积风险增加的重要预测因子,该研究包括7902名受试者,经过4年的随访调查结果显示,新发T2DM患者的TyG-WHtR指数[AUC = 0.664, 95% CI: 0.636~0.691]是T2DM的最佳预测因子(P < 0.05)。TyG-WHtR指数在筛查易患T2DM的个体方面优于TyG指数及其改良指标[27]。而一项针对中国人群的T2DM前瞻性预测研究表明[28],TyG指数与新发T2DM呈正线性关系,TyG-WHtR指数是识别NFG组T2DM风险的临床有效标志物,TyG-BMI指数是预测IFG组T2DM风险的有效标志物。

6. 展望

综上所述,对于正常体重及正常空腹血糖者,TyG指数是T2DM高危人群简便经济易得的预测指标;对于超重、肥胖人群,无空腹血糖受损者,TyG-WHtR指数识别T2DM风险最佳,若有空腹血糖受损则TyG-BMI指数预测最佳;TyG-WC可作为早期识别T2DM患者一级亲属糖尿病前期和糖尿病风险的替代标志物。

TyG指数联合肥胖相关指标作为一种由TyG指数延伸而来的评估IR的指标,在临床预测T2DM未来2~15年内发病风险方面受到关注。尤其是TyG-WHtR指数作为TyG指数及TyG-BMI指数的补充,用于2型糖尿病高危人群的早期筛查,此指标简单易得、经济有效,对于基层全科医师来说,更加容易接受和实施,对扩大T2DM筛查人群有重要意义。目前国内外研究缺乏此指标大样本量的RCT研究支持与验证,以及是否与T2DM相关并发症有关联性,仍需进一步观察及研究。

NOTES

*通讯作者。

参考文献

[1] Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[2] Abdullah, A., Peeters, A., de Courten, M. and Stoelwinder, J. (2010) The Magnitude of Association between Overweight and Obesity and the Risk of Diabetes: A Meta-Analysis of Prospective Cohort Studies. Diabetes Research and Clinical Practice, 89, 309-319.
https://doi.org/10.1016/j.diabres.2010.04.012
[3] Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., et al. (2020) Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21, Article No. 6275.
https://doi.org/10.3390/ijms21176275
[4] 刘妍, 常丽萍, 高怀林. 胰岛素抵抗的发病机制研究进展[J]. 世界中医药, 2021, 16(11): 1671-1674.
[5] DeFronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. American Journal of Physiology-Endocrinology and Metabolism, 237, e214.
https://doi.org/10.1152/ajpendo.1979.237.3.e214
[6] Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. (1985) Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia, 28, 412-419.
https://doi.org/10.1007/bf00280883
[7] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[8] Lee, J., Lim, N. and Park, H. (2018) The Product of Fasting Plasma Glucose and Triglycerides Improves Risk Prediction of Type 2 Diabetes in Middle-Aged Koreans. BMC Endocrine Disorders, 18, Article No. 33.
https://doi.org/10.1186/s12902-018-0259-x
[9] Hameed, E.K. (2019) Tyg Index a Promising Biomarker for Glycemic Control in Type 2 Diabetes Mellitus. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 560-563.
https://doi.org/10.1016/j.dsx.2018.11.030
[10] Lee, D.Y., Lee, E.S., Kim, J.H., Park, S.E., Park, C., Oh, K., et al. (2016) Predictive Value of Triglyceride Glucose Index for the Risk of Incident Diabetes: A 4-Year Retrospective Longitudinal Study. PLOS ONE, 11, e0163465.
https://doi.org/10.1371/journal.pone.0163465
[11] Park, B., Lee, H.S. and Lee, Y. (2021) Triglyceride Glucose (TyG) Index as a Predictor of Incident Type 2 Diabetes among Nonobese Adults: A 12-Year Longitudinal Study of the Korean Genome and Epidemiology Study Cohort. Translational Research, 228, 42-51.
https://doi.org/10.1016/j.trsl.2020.08.003
[12] Zhang, M., Wang, B., Liu, Y., Sun, X., Luo, X., Wang, C., et al. (2017) Cumulative Increased Risk of Incident Type 2 Diabetes Mellitus with Increasing Triglyceride Glucose Index in Normal-Weight People: The Rural Chinese Cohort Study. Cardiovascular Diabetology, 16, Article No. 30.
https://doi.org/10.1186/s12933-017-0514-x
[13] Wang, Z., Zhao, L. and He, S. (2021) Triglyceride-Glucose Index as Predictor for Future Type 2 Diabetes Mellitus in a Chinese Population in Southwest China: A 15-Year Prospective Study. Endocrine, 72, 124-131.
https://doi.org/10.1007/s12020-020-02589-7
[14] 刘晓龙. 成人肥胖评价方法与测量指标研究进展[J]. 中国现代医药杂志, 2020, 22(5): 105-108.
[15] Ke, P., Wu, X., Xu, M., Feng, J., Xu, H., Gan, Y., et al. (2021) Comparison of Obesity Indices and Triglyceride Glucose-Related Parameters to Predict Type 2 Diabetes Mellitus among Normal-Weight Elderly in China. Eating and Weight DisordersStudies on Anorexia, Bulimia and Obesity, 27, 1181-1191.
https://doi.org/10.1007/s40519-021-01238-w
[16] 任颖, 刘伟, 陆广华, 等. 2型糖尿病病人的内脏脂肪性肥胖和胰岛素抵抗[J]. 中国糖尿病杂志, 2003, 11(2): 84-87.
[17] Petrov, M.S. and Taylor, R. (2021) Intra-pancreatic Fat Deposition: Bringing Hidden Fat to the Fore. Nature Reviews Gastroenterology & Hepatology, 19, 153-168.
https://doi.org/10.1038/s41575-021-00551-0
[18] Noble, D., Mathur, R., Dent, T., Meads, C. and Greenhalgh, T. (2011) Risk Models and Scores for Type 2 Diabetes: Systematic Review. BMJ, 343, d7163.
https://doi.org/10.1136/bmj.d7163
[19] Ashwell, M. and Gibson, S. (2016) Waist-to-Height Ratio as an Indicator of “Early Health Risk”: Simpler and More Predictive than Using a “Matrix” Based on BMI and Waist Circumference. BMJ Open, 6, e010159.
https://doi.org/10.1136/bmjopen-2015-010159
[20] 杨少玲, 朱旅云, 马利成, 等. 腰围身高比值与2型糖尿病关系的随访研究[J]. 中国医药, 2010, 5(2): 127-129.
[21] Sadeghi, E., Khodadadiyan, A., Hosseini, S.A., Hosseini, S.M., Aminorroaya, A., Amini, M., et al. (2024) Novel Anthropometric Indices for Predicting Type 2 Diabetes Mellitus. BMC Public Health, 24, Article No. 1033.
https://doi.org/10.1186/s12889-024-18541-7
[22] Er, L., Wu, S., Chou, H., Hsu, L., Teng, M., Sun, Y., et al. (2016) Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLOS ONE, 11, e0149731.
https://doi.org/10.1371/journal.pone.0149731
[23] 葛旭红, 胡洁怡, 白云瑞, 等. 三酰甘油-葡萄糖指数及其衍生指数与2型糖尿病发病关系的巢式病例对照研究[J]. 中国全科医学, 2023, 26(12): 1456-1462.
[24] Wang, X., Liu, J., Cheng, Z., Zhong, Y., Chen, X. and Song, W. (2021) Triglyceride Glucose-Body Mass Index and the Risk of Diabetes: A General Population-Based Cohort Study. Lipids in Health and Disease, 20, Article No. 99.
https://doi.org/10.1186/s12944-021-01532-7
[25] Zheng, S., Shi, S., Ren, X., Han, T., Li, Y., Chen, Y., et al. (2016) Triglyceride Glucose-Waist Circumference, a Novel and Effective Predictor of Diabetes in First-Degree Relatives of Type 2 Diabetes Patients: Cross-Sectional and Prospective Cohort Study. Journal of Translational Medicine, 14, Article No. 260.
https://doi.org/10.1186/s12967-016-1020-8
[26] Bazyar, H., Zare Javid, A., Masoudi, M.R., Haidari, F., Heidari, Z., Hajializadeh, S., et al. (2024) Assessing the Predictive Value of Insulin Resistance Indices for Metabolic Syndrome Risk in Type 2 Diabetes Mellitus Patients. Scientific Reports, 14, Article No. 8917.
https://doi.org/10.1038/s41598-024-59659-3
[27] Wang, Y., Zhang, X., Li, Y., Gui, J., Mei, Y., Yang, X., et al. (2024) Obesity-and Lipid-Related Indices as a Predictor of Type 2 Diabetes in a National Cohort Study. Frontiers in Endocrinology, 14, Article ID: 1331739.
https://doi.org/10.3389/fendo.2023.1331739
[28] Li, X., Sun, M., Yang, Y., Yao, N., Yan, S., Wang, L., et al. (2022) Predictive Effect of Triglyceride Glucose-Related Parameters, Obesity Indices, and Lipid Ratios for Diabetes in a Chinese Population: A Prospective Cohort Study. Frontiers in Endocrinology, 13, Article ID: 862919.
https://doi.org/10.3389/fendo.2022.862919