[1]
|
Chen, X., Yang, L., Wu, Y., Wang, L. and Li, H. (2023) Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration. ACS Omega, 8, 46362-46375. https://doi.org/10.1021/acsomega.3c06944
|
[2]
|
Shen, J., Zhang, W., Qi, R., Mao, Z. and Shen, H. (2018) Engineering Functional Inorganic–organic Hybrid Systems: Advances in siRNA Therapeutics. Chemical Society Reviews, 47, 1969-1995. https://doi.org/10.1039/c7cs00479f
|
[3]
|
Fan, W., Huang, P. and Chen, X. (2016) Overcoming the Achilles’ Heel of Photodynamic Therapy. Chemical Society Reviews, 45, 6488-6519. https://doi.org/10.1039/c6cs00616g
|
[4]
|
Ban, Q., Bai, T., Duan, X. and Kong, J. (2017) Noninvasive Photothermal Cancer Therapy Nanoplatforms via Integrating Nanomaterials and Functional Polymers. Biomaterials Science, 5, 190-210. https://doi.org/10.1039/c6bm00600k
|
[5]
|
Abadeer, N.S. and Murphy, C.J. (2016) Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. The Journal of Physical Chemistry C, 120, 4691-4716. https://doi.org/10.1021/acs.jpcc.5b11232
|
[6]
|
Gai, S., Yang, G., Yang, P., He, F., Lin, J., Jin, D., et al. (2018) Recent Advances in Functional Nanomaterials for Light–triggered Cancer Therapy. Nano Today, 19, 146-187. https://doi.org/10.1016/j.nantod.2018.02.010
|
[7]
|
Liu, Y., Bhattarai, P., Dai, Z. and Chen, X. (2019) Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer. Chemical Society Reviews, 48, 2053-2108. https://doi.org/10.1039/c8cs00618k
|
[8]
|
Tong, L., Liao, Q., Zhao, Y., Huang, H., Gao, A., Zhang, W., et al. (2019) Near-Infrared Light Control of Bone Regeneration with Biodegradable Photothermal Osteoimplant. Biomaterials, 193, 1-11. https://doi.org/10.1016/j.biomaterials.2018.12.008
|
[9]
|
Knavel, E.M. and Brace, C.L. (2013) Tumor Ablation: Common Modalities and General Practices. Techniques in Vascular and Interventional Radiology, 16, 192-200. https://doi.org/10.1053/j.tvir.2013.08.002
|
[10]
|
Lin, H., Wang, Y., Gao, S., Chen, Y. and Shi, J. (2020) Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 32, e2003085. https://doi.org/10.1002/adma.202003085
|
[11]
|
Jung, H.S., Verwilst, P., Sharma, A., Shin, J., Sessler, J.L. and Kim, J.S. (2018) Organic Molecule-Based Photothermal Agents: An Expanding Photothermal Therapy Universe. Chemical Society Reviews, 47, 2280-2297. https://doi.org/10.1039/c7cs00522a
|
[12]
|
Cui, X., Ruan, Q., Zhuo, X., Xia, X., Hu, J., Fu, R., et al. (2023) Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 123, 6891-6952. https://doi.org/10.1021/acs.chemrev.3c00159
|
[13]
|
Ali, M.R.K., Rahman, M.A., Wu, Y., Han, T., Peng, X., Mackey, M.A., et al. (2017) Efficacy, Long-Term Toxicity, and Mechanistic Studies of Gold Nanorods Photothermal Therapy of Cancer in Xenograft Mice. Proceedings of the National Academy of Sciences of the United States of America, 114, E3110-E3118. https://doi.org/10.1073/pnas.1619302114
|
[14]
|
Chen, Q., Wen, J., Li, H., Xu, Y., Liu, F. and Sun, S. (2016) Recent Advances in Different Modal Imaging-Guided Photothermal Therapy. Biomaterials, 106, 144-166. https://doi.org/10.1016/j.biomaterials.2016.08.022
|
[15]
|
Zhang, S., Guo, W., Wei, J., Li, C., Liang, X. and Yin, M. (2017) Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Cancer Therapy. ACS Nano, 11, 3797-3805. https://doi.org/10.1021/acsnano.6b08720
|
[16]
|
Lu, X., Yuan, P., Zhang, W., Wu, Q., Wang, X., Zhao, M., et al. (2018) A Highly Water-Soluble Triblock Conjugated Polymer for in Vivo NIR-II Imaging and Photothermal Therapy of Cancer. Polymer Chemistry, 9, 3118-3126. https://doi.org/10.1039/c8py00215k
|
[17]
|
Yang, Z., Tian, R., Wu, J., Fan, Q., Yung, B.C., Niu, G., et al. (2017) Impact of Semiconducting Perylene Diimide Nanoparticle Size on Lymph Node Mapping and Cancer Imaging. ACS Nano, 11, 4247-4255. https://doi.org/10.1021/acsnano.7b01261
|
[18]
|
Zeng, J., Zhang, M., Peng, M., Gong, D. and Zhang, X. (2017) Porphyrinic Metal-Organic Frameworks Coated Gold Nanorods as a Versatile Nanoplatform for Combined Photodynamic/Photothermal/Chemotherapy of Tumor. Advanced Functional Materials, 28, Article ID: 1705451. https://doi.org/10.1002/adfm.201705451
|
[19]
|
Cao, D. and Ding, J. (2022) Recent Advances in Regenerative Biomaterials. Regenerative Biomaterials, 9, rbac098. https://doi.org/10.1093/rb/rbac098
|
[20]
|
Li, X., Shan, J., Zhang, W., Su, S., Yuwen, L. and Wang, L. (2016) Recent Advances in Synthesis and Biomedical Applications of Two‐Dimensional Transition Metal Dichalcogenide Nanosheets. Small, 13, Article ID: 1602660. https://doi.org/10.1002/smll.201602660
|
[21]
|
Huang, K., Li, Z., Lin, J., Han, G. and Huang, P. (2018) Correction: Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Biomedical Applications. Chemical Society Reviews, 47, 6889-6889. https://doi.org/10.1039/c8cs90090f
|
[22]
|
Zheng, Y.F., Gu, X.N. and Witte, F. (2014) Biodegradable Metals. Materials Science and Engineering: R: Reports, 77, 1-34. https://doi.org/10.1016/j.mser.2014.01.001
|
[23]
|
Huang, Y., Jin, F., Funato, Y., Xu, Z., Zhu, W., Wang, J., et al. (2021) Structural Basis for the Mg2+ Recognition and Regulation of the Corc Mg2+ Transporter. Science Advances, 7, eabe6140. https://doi.org/10.1126/sciadv.abe6140
|
[24]
|
Thirumurugan, S., Ramanathan, S., Muthiah, K.S., Lin, Y., Hsiao, M., Dhawan, U., et al. (2024) Inorganic Nanoparticles for Photothermal Treatment of Cancer. Journal of Materials Chemistry B, 12, 3569-3593. https://doi.org/10.1039/d3tb02797j
|
[25]
|
Long, J., Zhang, W., Chen, Y., Teng, B., Liu, B., Li, H., et al. (2021) Multifunctional Magnesium Incorporated Scaffolds by 3D-Printing for Comprehensive Postsurgical Management of Osteosarcoma. Biomaterials, 275, Article ID: 120950. https://doi.org/10.1016/j.biomaterials.2021.120950
|
[26]
|
Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314. https://doi.org/10.1126/science.123.3191.309
|
[27]
|
Jin, M., Cao, W., Chen, B., Xiong, M. and Cao, G. (2022) Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 10, Article 808859. https://doi.org/10.3389/fcell.2022.808859
|
[28]
|
Tian, Y., Zhang, Y., Wang, Y., Chen, Y., Fan, W., Zhou, J., et al. (2021) Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Frontiers in Physiology, 12, Article 789507. https://doi.org/10.3389/fphys.2021.789507
|
[29]
|
Hsu, Y., Lu, Y., Wang, S., Zheng, Y., Xia, D. and Liu, Y. (2023) Magnesium Alloys in Tumor Treatment: Current Research Status, Challenges and Future Prospects. Journal of Magnesium and Alloys, 11, 3399-3426. https://doi.org/10.1016/j.jma.2023.08.008
|
[30]
|
Veronese, N., Pizzol, D., Smith, L., Dominguez, L.J. and Barbagallo, M. (2022) Effect of Magnesium Supplementation on Inflammatory Parameters: A Meta-Analysis of Randomized Controlled Trials. Nutrients, 14, Article 679. https://doi.org/10.3390/nu14030679
|
[31]
|
Xie, J., Cheng, C., Zhu, X.Y., Shen, Y.H., Song, L.B., Chen, H., et al. (2019) Magnesium Transporter Protein Solute Carrier Family 41 Member 1 Suppresses Human Pancreatic Ductal Adenocarcinoma through Magnesium-Dependent Akt/mTOR Inhibition and Bax-Associated Mitochondrial Apoptosis. Aging, 11, 2681-2698. https://doi.org/10.18632/aging.101940
|
[32]
|
Jiang, Y., Liu, G., Zhang, L., Cheng, S., Luo, C., Liao, Y., et al. (2018) Therapeutic Efficacy of Hydrogen-Rich Saline Alone and in Combination with PI3K Inhibitor in Non-Small Cell Lung Cancer. Molecular Medicine Reports, 32, 2182-2190. https://doi.org/10.3892/mmr.2018.9168
|
[33]
|
Xu, B., Song, Y., Yang, K., Li, Y., Chen, B., Liao, X., et al. (2023) Magnesium Metal and Its Corrosion Products: Promising Materials for Tumor Interventional Therapy. Journal of Magnesium and Alloys, 11, 763-775. https://doi.org/10.1016/j.jma.2023.02.007
|
[34]
|
Li, H., Zheng, Y. and Qin, L. (2014) Progress of Biodegradable Metals. Progress in Natural Science: Materials International, 24, 414-422. https://doi.org/10.1016/j.pnsc.2014.08.014
|
[35]
|
Fiorentini, D., Cappadone, C., Farruggia, G. and Prata, C. (2021) Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients, 13, Article 1136. https://doi.org/10.3390/nu13041136
|
[36]
|
Waksman, R., Pakala, R., Kuchulakanti, P.K., Baffour, R., Hellinga, D., Seabron, R., et al. (2006) Safety and Efficacy of Bioabsorbable Magnesium Alloy Stents in Porcine Coronary Arteries. Catheterization and Cardiovascular Interventions, 68, 607-617. https://doi.org/10.1002/ccd.20727
|
[37]
|
Wang, S., Zhang, X., Li, J., Liu, C. and Guan, S. (2020) Investigation of Mg-Zn-Y-Nd Alloy for Potential Application of Biodegradable Esophageal Stent Material. Bioactive Materials, 5, 1-8. https://doi.org/10.1016/j.bioactmat.2020.01.002
|
[38]
|
Zhao, D., Witte, F., Lu, F., Wang, J., Li, J. and Qin, L. (2017) Current Status on Clinical Applications of Magnesium-Based Orthopaedic Implants: A Review from Clinical Translational Perspective. Biomaterials, 112, 287-302. https://doi.org/10.1016/j.biomaterials.2016.10.017
|
[39]
|
Kannan, S. and Nallaiyan, R. (2020) Anticancer Activity of Samarium-Coated Magnesium Implants for Immunocompromised Patients. ACS Applied Bio Materials Journal, 11, 763-775.
|
[40]
|
Globig, P., Madurawala, R., Willumeit-Römer, R., Martini, F., Mazzoni, E. and Luthringer-Feyerabend, B.J.C. (2023) Mg-Based Materials Diminish Tumor Spreading and Cancer Metastases. Bioactive Materials, 19, 594-610. https://doi.org/10.1016/j.bioactmat.2022.05.002
|
[41]
|
Zan, R., Wang, H., Cai, W., Ni, J., Luthringer-Feyerabend, B.J.C., Wang, W., et al. (2022) Controlled Release of Hydrogen by Implantation of Magnesium Induces P53-Mediated Tumor Cells Apoptosis. Bioactive Materials, 9, 385-396. https://doi.org/10.1016/j.bioactmat.2021.07.026
|
[42]
|
Qiao, S., Wang, Y., Zan, R., Wu, H., Sun, Y., Peng, H., et al. (2020) Biodegradable Mg Implants Suppress the Growth of Ovarian Tumor. ACS Biomaterials Science & Engineering, 6, 1755-1763. https://doi.org/10.1021/acsbiomaterials.9b01703
|
[43]
|
Anisimova, N., Kiselevskiy, M., Martynenko, N., Straumal, B., Willumeit‐Römer, R., Dobatkin, S., et al. (2019) Cytotoxicity of Biodegradable Magnesium Alloy WE43 to Tumor Cells in Vitro: Bioresorbable Implants with Antitumor Activity? Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108, 167-173. https://doi.org/10.1002/jbm.b.34375
|
[44]
|
Zan, R., Wang, H., Ni, J., Wang, W., Peng, H., Sun, Y., et al. (2021) Multifunctional Magnesium Anastomosis Staples for Wound Closure and Inhibition of Tumor Recurrence and Metastasis. ACS Biomaterials Science & Engineering, 7, 5269-5278. https://doi.org/10.1021/acsbiomaterials.1c00683
|
[45]
|
Peng, H., Fan, K., Zan, R., Gong, Z., Sun, W., Sun, Y., et al. (2021) Degradable Magnesium Implants Inhibit Gallbladder Cancer. Acta Biomaterialia, 128, 514-522. https://doi.org/10.1016/j.actbio.2021.04.051
|
[46]
|
Martin, R.C., Locatelli, E., Li, Y., Matteini, P., Monaco, I., Cui, G., et al. (2016) One-Pot Synthesis of Magnesium Nanoparticles Embedded in a Chitosan Microparticle Matrix: A Highly Biocompatible Tool for in Vivo Cancer Treatment. Journal of Materials Chemistry B, 4, 207-211. https://doi.org/10.1039/c5tb02499d
|
[47]
|
Yang, N., Gong, F., Liu, B., Hao, Y., Chao, Y., Lei, H., et al. (2022) Magnesium Galvanic Cells Produce Hydrogen and Modulate the Tumor Microenvironment to Inhibit Cancer Growth. Nature Communications, 13, Article 2336. https://doi.org/10.1038/s41467-022-29938-6
|
[48]
|
Zhao, J., Wu, H., Zhao, J., Yin, Y., Zhang, Z., Wang, S., et al. (2021) 2D LDH-MoS2 Clay Nanosheets: Synthesis, Catalase-Mimic Capacity, and Imaging-Guided Tumor Photo-Therapy. Journal of Nanobiotechnology, 19, Article No. 36. https://doi.org/10.1186/s12951-020-00763-7
|
[49]
|
Yuan, T., Yu, J., Cao, J., Gao, F., Zhu, Y., Cheng, Y., et al. (2016) Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer. Materials, 9, Article 384. https://doi.org/10.3390/ma9050384
|
[50]
|
Zan, R., Ji, W., Qiao, S., Wu, H., Wang, W., Ji, T., et al. (2020) Biodegradable Magnesium Implants: A Potential Scaffold for Bone Tumor Patients. Science China Materials, 64, 1007-1020. https://doi.org/10.1007/s40843-020-1509-2
|
[51]
|
Milenin, A., Wróbel, M., Kustra, P., Byrska-Wójcik, D., Sulej-Chojnacka, J., Płonka, B., et al. (2021) Microstructure and in Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires. Materials, 14, Article 6673. https://doi.org/10.3390/ma14216673
|
[52]
|
Li, M., Yao, M., Wang, W., Wan, P., Chu, X., Zheng, Y., et al. (2021) Nitrogen-Containing Bisphosphonate-Loaded Micro-Arc Oxidation Coating for Biodegradable Magnesium Alloy Pellets Inhibits Osteosarcoma through Targeting of the Mevalonate Pathway. Acta Biomaterialia, 121, 682-694. https://doi.org/10.1016/j.actbio.2020.11.019
|
[53]
|
Zhang, D., Cheng, S., Tan, J., Xie, J., Zhang, Y., Chen, S., et al. (2022) Black Mn-Containing Layered Double Hydroxide Coated Magnesium Alloy for Osteosarcoma Therapy, Bacteria Killing, and Bone Regeneration. Bioactive Materials, 17, 394-405. https://doi.org/10.1016/j.bioactmat.2022.01.032
|
[54]
|
Ma, H., Jiang, C., Zhai, D., Luo, Y., Chen, Y., Lv, F., et al. (2016) A Bifunctional Biomaterial with Photothermal Effect for Tumor Therapy and Bone Regeneration. Advanced Functional Materials, 26, 1197-1208. https://doi.org/10.1002/adfm.201504142
|
[55]
|
Wan, Z., Zhang, P., Lv, L. and Zhou, Y. (2020) NIR Light-Assisted Phototherapies for Bone-Related Diseases and Bone Tissue Regeneration: A Systematic Review. Theranostics, 10, 11837-11861. https://doi.org/10.7150/thno.49784
|
[56]
|
Ma, T., Zhai, X., Huang, Y., Zhang, M., Zhao, X., Du, Y., et al. (2021) A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing. Advanced Healthcare Materials, 10, e2100033. https://doi.org/10.1002/adhm.202100033
|
[57]
|
Liu, J., Liang, H., Li, M., Luo, Z., Zhang, J., Guo, X., et al. (2018) Tumor Acidity Activating Multifunctional Nanoplatform for Nir-Mediated Multiple Enhanced Photodynamic and Photothermal Tumor Therapy. Biomaterials, 157, 107-124. https://doi.org/10.1016/j.biomaterials.2017.12.003
|
[58]
|
Luo, M., Fan, T., Zhou, Y., Zhang, H. and Mei, L. (2019) 2D Black Phosphorus-Based Biomedical Applications. Advanced Functional Materials, 29, Article ID: 1808306. https://doi.org/10.1002/adfm.201808306
|
[59]
|
Li, Z., Liu, Q., Zhang, Y., Yang, Y., Zhou, X., Peng, W., et al. (2021) Charge-Reversal Nanomedicine Based on Black Phosphorus for the Development of a Novel Photothermal Therapy of Oral Cancer. Drug Delivery, 28, 700-708. https://doi.org/10.1080/10717544.2021.1909176
|
[60]
|
Dickerson, E.B., Dreaden, E.C., Huang, X., El-Sayed, I.H., Chu, H., Pushpanketh, S., et al. (2008) Gold Nanorod Assisted Near-Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinoma in Mice. Cancer Letters, 269, 57-66. https://doi.org/10.1016/j.canlet.2008.04.026
|
[61]
|
Matsumoto, Y., Nichols, J.W., Toh, K., Nomoto, T., Cabral, H., Miura, Y., et al. (2016) Vascular Bursts Enhance Permeability of Tumour Blood Vessels and Improve Nanoparticle Delivery. Nature Nanotechnology, 11, 533-538. https://doi.org/10.1038/nnano.2015.342
|
[62]
|
Chen, J., Li, Q., Wang, F., Yang, M., Xie, L. and Zeng, X. (2021) Biosafety, Nontoxic Nanoparticles for VL-NIR Photothermal Therapy against Oral Squamous Cell Carcinoma. ACS Omega, 6, 11240-11247. https://doi.org/10.1021/acsomega.1c00101
|
[63]
|
Zeng, S., Liu, S., Lan, Y., Qiu, T., Zhou, M., Gao, W., et al. (2021) Combined Photothermotherapy and Chemotherapy of Oral Squamous Cell Carcinoma Guided by Multifunctional Nanomaterials Enhanced Photoacoustic Tomography. International Journal of Nanomedicine, 16, 7373-7390. https://doi.org/10.2147/ijn.s336788
|
[64]
|
Sun, Q., Wu, J., Jin, L., Hong, L., Wang, F., Mao, Z., et al. (2020) Cancer Cell Membrane-Coated Gold Nanorods for Photothermal Therapy and Radiotherapy on Oral Squamous Cancer. Journal of Materials Chemistry B, 8, 7253-7263. https://doi.org/10.1039/d0tb01063d
|
[65]
|
Fornetti, J., Welm, A.L. and Stewart, S.A. (2018) Understanding the Bone in Cancer Metastasis. Journal of Bone and Mineral Research, 33, 2099-2113. https://doi.org/10.1002/jbmr.3618
|
[66]
|
Chen, H., Deng, J., Yao, X., He, Y., Li, H., Jian, Z., et al. (2021) Bone-Targeted Erythrocyte-Cancer Hybrid Membrane-Camouflaged Nanoparticles for Enhancing Photothermal and Hypoxia-Activated Chemotherapy of Bone Invasion by OSCC. Journal of Nanobiotechnology, 19, Article No. 342. https://doi.org/10.1186/s12951-021-01088-9
|
[67]
|
Rastinehad, A.R., Anastos, H., Wajswol, E., Winoker, J.S., Sfakianos, J.P., Doppalapudi, S.K., et al. (2019) Gold Nanoshell-Localized Photothermal Ablation of Prostate Tumors in a Clinical Pilot Device Study. Proceedings of the National Academy of Sciences of the United States of America, 116, 18590-18596. https://doi.org/10.1073/pnas.1906929116
|
[68]
|
Chen, W.R., Adams, R.L., Carubelli, R. and Nordquist, R.E. (1997) Laser-Photosensitizer Assisted Immunotherapy: A Novel Modality for Cancer Treatment. Cancer Letters, 115, 25-30. https://doi.org/10.1016/s0304-3835(97)04707-1
|
[69]
|
Li, X., Ferrel, G.L., Guerra, M.C., Hode, T., Lunn, J.A., Adalsteinsson, O., et al. (2011) Preliminary Safety and Efficacy Results of Laser Immunotherapy for the Treatment of Metastatic Breast Cancer Patients. Photochemical & Photobiological Sciences, 10, 817-821. https://doi.org/10.1039/c0pp00306a
|
[70]
|
Wang, S., Wang, F., Zhao, X., Yang, F., Xu, Y., Yan, F., et al. (2022) The Effect of Near-Infrared Light-Assisted Photothermal Therapy Combined with Polymer Materials on Promoting Bone Regeneration: A Systematic Review. Materials & Design, 217, Article ID: 110621. https://doi.org/10.1016/j.matdes.2022.110621
|