[1]
|
Zvěřová, M. (2019) Clinical Aspects of Alzheimer’s Disease. Clinical Biochemistry, 72, 3-6. https://doi.org/10.1016/j.clinbiochem.2019.04.015
|
[2]
|
Dumurgier, J. and Tzourio, C. (2020) Epidemiology of Neurological Diseases in Older Adults. Revue Neurologique, 176, 642-648. https://doi.org/10.1016/j.neurol.2020.01.356
|
[3]
|
Leifer, B.P. (2003) Early Diagnosis of Alzheimer’s Disease: Clinical and Economic Benefits. Journal of the American Geriatrics Society, 51, S281-S288. https://doi.org/10.1046/j.1532-5415.5153.x
|
[4]
|
De Strooper, B. and Karran, E. (2016) The Cellular Phase of Alzheimer’s Disease. Cell, 164, 603-615. https://doi.org/10.1016/j.cell.2015.12.056
|
[5]
|
Cai, W., Wu, T. and Chen, N. (2023) The Amyloid-Beta Clearance: From Molecular Targets to Glial and Neural Cells. Biomolecules, 13, Article No. 313. https://doi.org/10.3390/biom13020313
|
[6]
|
Dubois, B., Hampel, H., Feldman, H.H., et al. (2016) Preclinical Alzheimer’s Disease: Definition, Natural History, and Diagnostic Criteria. Alzheimer’s & Dementia, 12, 292-323.
|
[7]
|
Rocchi, A., Pellegrini, S., Siciliano, G. and Murri, L. (2003) Causative and Susceptibility Genes for Alzheimer’s Disease: A Review. Brain Research Bulletin, 61, 1-24. https://doi.org/10.1016/s0361-9230(03)00067-4
|
[8]
|
Cummings, J., Lee, G., Ritter, A., Sabbagh, M. and Zhong, K. (2020) Alzheimer’s Disease Drug Development Pipeline: 2020. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 6, e12050. https://doi.org/10.1002/trc2.12050
|
[9]
|
Knopman, D.S., Jones, D.T. and Greicius, M.D. (2020) Failure to Demonstrate Efficacy of Aducanumab: An Analysis of the EMERGE and ENGAGE Trials as Reported by Biogen, December 2019. Alzheimer’s & Dementia, 17, 696-701. https://doi.org/10.1002/alz.12213
|
[10]
|
Kurkinen, M.T. (2023) Lecanemab (Leqembi) Is Not the Right Drug for Patients with Alzheimer’s Disease. Advances in Clinical and Experimental Medicine, 32, 943-947. https://doi.org/10.17219/acem/171379
|
[11]
|
Tarawneh, R. and Pankratz, V.S. (2024) The Search for Clarity Regarding “Clinically Meaningful Outcomes” in Alzheimer Disease Clinical Trials: CLARITY-AD and beyond. Alzheimer’s Research & Therapy, 16, Article No. 37. https://doi.org/10.1186/s13195-024-01412-z
|
[12]
|
Terao, I. and Kodama, W. (2024) Comparative Efficacy, Tolerability and Acceptability of Donanemab, Lecanemab, Aducanumab and Lithium on Cognitive Function in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Ageing Research Reviews, 94, Article ID: 102203. https://doi.org/10.1016/j.arr.2024.102203
|
[13]
|
芦锰, 周雨慧, 李晓宁, 等. 基于数据挖掘中医药治疗阿尔茨海默病用药规律研究[J]. 中国中药杂志, 2021, 46(6): 1558-1563.
|
[14]
|
Wang, Z., Zhu, Y., Yi, X., Zhou, Z., He, Y., Zhou, Y., et al. (2020) Bioguided Isolation, Identification and Activity Evaluation of Antifungal Compounds from Acorus tatarinowii Schott. Journal of Ethnopharmacology, 261, Article ID: 113119. https://doi.org/10.1016/j.jep.2020.113119
|
[15]
|
Chellian, R., Pandy, V. and Mohamed, Z. (2017) Pharmacology and Toxicology of α-and β-Asarone: A Review of Preclinical Evidence. Phytomedicine, 32, 41-58. https://doi.org/10.1016/j.phymed.2017.04.003
|
[16]
|
Lam, K.Y.C., Wu, Q., Hu, W., Yao, P., Wang, H., Dong, T.T.X., et al. (2019) Asarones from Acori Tatarinowii Rhizoma Stimulate Expression and Secretion of Neurotrophic Factors in Cultured Astrocytes. Neuroscience Letters, 707, Article ID: 134308. https://doi.org/10.1016/j.neulet.2019.134308
|
[17]
|
卢成淑, 冯宁, 南国, 等. 石菖蒲及其活性成分防治阿尔茨海默病的研究进展[J]. 中草药, 2016, 47(7): 1236-1242.
|
[18]
|
林晨, 安红梅. 石菖蒲的中枢神经系统药理作用研究[J]. 长春中医药大学学报, 2014, 30(2): 230-233.
|
[19]
|
Saki, G., Eidi, A., Mortazavi, P., Panahi, N. and Vahdati, A. (2020) Effect of β-Asarone in Normal and β-Amyloid-Induced Alzheimeric Rats. Archives of Medical Science, 16, 699-706. https://doi.org/10.5114/aoms.2020.94659
|
[20]
|
Madhu, P. and Mukhopadhyay, S. (2021) Distinct Types of Amyloid‐β Oligomers Displaying Diverse Neurotoxicity Mechanisms in Alzheimer’s Disease. Journal of Cellular Biochemistry, 122, 1594-1608. https://doi.org/10.1002/jcb.30141
|
[21]
|
Mo, Z., Fang, Y., He, Y. and Zhang, S. (2012) β-Asarone Protects PC12 Cells against OGD/R-Induced Injury via Attenuating Beclin-1-Dependent Autophagy. Acta Pharmacologica Sinica, 33, 737-742. https://doi.org/10.1038/aps.2012.35
|
[22]
|
An, H.M., Li, G.W., Lin, C., Gu, C., et al. (2014) Acorus tatarinowii Schott Extract Protects PC12 Cells from Amyloid-β Induced Neurotoxicity. Pharmazie, 69, 391-395.
|
[23]
|
杨娟. 石菖蒲对D-半乳糖诱导AD模型小鼠认知障碍的影响及机制研究[D]: [硕士学位论文]. 天津: 天津中医药大学, 2022.
|
[24]
|
Lyman, M., Lloyd, D.G., Ji, X., Vizcaychipi, M.P. and Ma, D. (2014) Neuroinflammation: The Role and Consequences. Neuroscience Research, 79, 1-12. https://doi.org/10.1016/j.neures.2013.10.004
|
[25]
|
Saldanha, A.A., Vieira, L., de Oliveira, F.M., Lopes, D.d.O., Ribeiro, R.I.M.d.A., Thomé, R.G., et al. (2019) Anti-inflammatory and Central and Peripheral Anti-Nociceptive Activities of α-Asarone through the Inhibition of TNF-α Production, Leukocyte Recruitment and iNOS Expression, and Participation of the Adenosinergic and Opioidergic Systems. Inflammopharmacology, 28, 1039-1052. https://doi.org/10.1007/s10787-019-00679-1
|
[26]
|
Kim, B., Koppula, S., Kumar, H., Park, J., Kim, I., More, S.V., et al. (2015) α-Asarone Attenuates Microglia-Mediated Neuroinflammation by Inhibiting NF Kappa β Activation and Mitigates MPTP-Induced Behavioral Deficits in a Mouse Model of Parkinson’s Disease. Neuropharmacology, 97, 46-57. https://doi.org/10.1016/j.neuropharm.2015.04.037
|
[27]
|
Zeng, L., Zhang, D., Liu, Q., Zhang, J., Mu, K., Gao, X., et al. (2021) Alpha-Asarone Improves Cognitive Function of APP/PS1 Mice and Reducing Aβ42, P-Tau and Neuroinflammation, and Promoting Neuron Survival in the Hippocampus. Neuroscience, 458, 141-152. https://doi.org/10.1016/j.neuroscience.2020.12.026
|
[28]
|
Han, Y., Wang, N., Kang, J. and Fang, Y. (2020) β-Asarone Improves Learning and Memory in Aβ1-42-Induced Alzheimer’s Disease Rats by Regulating Pink1-Parkin-Mediated Mitophagy. Metabolic Brain Disease, 35, 1109-1117. https://doi.org/10.1007/s11011-020-00587-2
|
[29]
|
Skondia, V. (1979) Criteria for Clinical Development and Classification of Nootropic Drugs. Clinical Therapeutics, 2, 316-332.
|
[30]
|
Villardita, C., Parini, J., Grioli, S., et al. (1987) Clinical and Neuropsychological Study with Oxiracetam versus Placebo in Patients with Mild to Moderate Dementia. Journal of Neural Transmission, Supplementum, 24, 293-298.
|
[31]
|
Baumel, B., Eisner, L., Karukin, M., Macnamara, R., Katz, R.J. and Deveaugh-Geiss, J. (1989) Oxiracetam in the Treatment of Multi-Infarct Dementia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 13, 673-682. https://doi.org/10.1016/0278-5846(89)90054-7
|
[32]
|
Sanyal, I., Shukla, B., Barman, P.D. and Banerjee, A.K. (2013) Stereoselective Synthesis of (S)-Oxiracetam and (S)-GABOB from (R)-Glyceraldehyde Acetonide. Tetrahedron Letters, 54, 2637-2640. https://doi.org/10.1016/j.tetlet.2013.03.035
|
[33]
|
Chiodini, L., Pepeu, G., et al. (1993) Smithkline Beecham Farmaceutici SPA, Assignee. Composition Comprising S-oxiracetam for Use as Nootropic. EP. WO.
|
[34]
|
Li, W., Liu, H., Jiang, H., Wang, C., Guo, Y., Sun, Y., et al. (2017) (S)-Oxiracetam Is the Active Ingredient in Oxiracetam That Alleviates the Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion in Rats. Scientific Reports, 7, Article No. 10052. https://doi.org/10.1038/s41598-017-10283-4
|
[35]
|
Banfi, S. and Dorigotti, L. (1986) Experimental Behavioral Studies with Oxiracetam on Different Types of Chronic Cerebral Impairment. Clinical Neuropharmacology, 9, S19-S26. https://doi.org/10.1097/00002826-198600093-00005
|
[36]
|
Zhang, H., Jia, L. and Jia, J. (2020) Oxiracetam Offers Neuroprotection by Reducing Amyloid β-Induced Microglial Activation and Inflammation in Alzheimer’s Disease. Frontiers in Neurology, 11, Article No. 623. https://doi.org/10.3389/fneur.2020.00623
|
[37]
|
Maina, G., Fiori, L., Torta, R., Fagiani, M.B., Ravizza, L., Bonavita, E., et al. (1989) Oxiracetam in the Treatment of Primary Degenerative and Multi-Infarct Dementia: A Double-Blind, Placebo-Controlled Study. Neuropsychobiology, 21, 141-145. https://doi.org/10.1159/000118567
|
[38]
|
Chen, J., Hao, W., Zhang, C., Cui, M., Sun, Y., Zhang, Y., et al. (2022) Explore the Therapeutic Composition and Mechanism of Schisandra Chinensis-Acorus tatarinowii Schott on Alzheimer’s Disease by Using an Integrated Approach on Chemical Profile, Network Pharmacology, and UPLC-QTOF/MS-Based Metabolomics Analysis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 6362617. https://doi.org/10.1155/2022/6362617
|
[39]
|
Huang, J., Xu, Z., Yu, C., Liu, L., Ji, L., Qiu, P., et al. (2024) The Volatile Oil of Acorus tatarinowii Schott Ameliorates Alzheimer’s Disease through Improving Insulin Resistance via Activating the PI3K/AKT Pathway. Phytomedicine, 135, Article ID: 156168. https://doi.org/10.1016/j.phymed.2024.156168
|
[40]
|
方永奇, 魏刚, 吴启端, 等. 石菖蒲醒脑开窍作用物质基础及其作用机制研究[J]. 医学研究杂志, 2007(9): 60.
|
[41]
|
田小海, 常亮, 王莘. 奥拉西坦联合石菖蒲对AD大鼠氧化应激能力及空间学习记忆功能的影响[J]. 中国老年学杂志, 2022, 42(14): 3581-3583.
|
[42]
|
王东辉, 田小海, 李冬梅. 石菖蒲联合奥拉西坦对阿尔茨海默病大鼠神经相关蛋白和炎性因子的影响[J]. 中国老年学杂志, 2022, 42(5): 1189-1191.
|