碳青霉烯类耐药高毒力肺炎克雷伯菌的研究进展
Research Progress of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae
DOI: 10.12677/acm.2024.14123242, PDF, HTML, XML,   
作者: 上官小容:山东大学齐鲁医学院公共卫生学院职业与环境健康学系,山东 济南
关键词: 肺炎克雷伯菌高毒力碳青霉烯类耐药Klebsiella pneumoniae Hypervirulence Carbapenem-Resistance
摘要: 高毒力和碳青霉烯类耐药已成为肺炎克雷伯菌(KP)的两个不同的进化方向,在临床环境中构成巨大威胁。然而,近年来发现越来越多的KP菌株整合了这两种表型,导致了毁灭性的临床结果。碳青霉烯耐药高毒力肺炎克雷伯菌(CR-hvKP)出现在2010年代初期,此后变得越来越普遍。CR-hvKP主要流行于亚洲,尤其是中国,但世界各地都有报道。CR-hvKP出现的机制可以总结为三种模式:1) 获得碳青霉烯类耐药表型的高毒力肺炎克雷伯菌(hvKP);2) 耐碳青霉烯类肺炎克雷伯菌(CRKP)获得高毒力表型;3) 肺炎克雷伯菌获得碳青霉烯类耐药和高毒力的融合质粒。随着CR-hvKP的全球传播,应更加重视对CR-hvKP的持续监测。
Abstract: High virulence and carbapenem resistance have become two different evolutionary directions of Klebsiella pneumoniae (KP), posing a great threat in clinical settings. However, in recent years, more and more KP strains have been found to integrate these two phenotypes, leading to devastating clinical outcomes. Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) emerged in the early 2010s and has since become more common. CR-hvKP is mainly prevalent in Asia, especially China, but has been reported around the world. The mechanism of the emergence of CR-hvKP can be summarized into three patterns: 1) Hypervirulent Klebsiella pneumoniae (hvKP) which obtained carbapenem-resistant phenotype; 2) Carbapenem-resistant Klebsiella pneumoniae (CRKP) obtained a hypervirulent phenotype; 3) Klebsiella pneumoniae obtained carbapenem-resistance and high virulence fusion plasmid. With the global spread of CR-hvKP, more attention should be paid to the continuous monitoring of CR-hvKP.
文章引用:上官小容. 碳青霉烯类耐药高毒力肺炎克雷伯菌的研究进展[J]. 临床医学进展, 2024, 14(12): 1479-1486. https://doi.org/10.12677/acm.2024.14123242

1. 前言

肺炎克雷伯菌(KP)是医院最常见的条件致病细菌之一,近几十年在世界范围内越来越受到关注,这主要是由于其增强的耐药性和近期聚焦的高毒力[1] [2]。碳青霉烯类耐药肺炎克雷伯菌(CRKP)在KP菌株中的发生率已达到30.0%以上[3]。CRKP在世界范围内迅速传播,由于其高发病率和死亡率、治疗选择有限、住院时间长和治疗费用高,对人类健康和公共卫生构成严重威胁[4]-[8]。肺炎克雷伯菌通常分为经典肺炎克雷伯菌(cKP)和hvKP两种类型。hvKP因其高毒性而备受关注,它能引发严重的感染,特别是化脓性肝脓肿[9]、眼内炎[10]和危及生命的脑膜炎[11]。然而,hvKP和CRKP这两者的界限正在消失。近来分离出越来越多同时具有碳青霉烯耐药性和高毒力特征的KP菌株(CR-hvKP) [12]。CR-hvKP的出现是毁灭性的,因为它同时具有多重耐药性、高毒力和高度传染性,将给临床治疗带来巨大的挑战[13]。本综述的目的是总结当前对CR-hvKP的相关研究,深入阐述其流行病学特征、形成机制及治疗和预防措施,为其防控提供科学依据。

2. CR-hvKP的流行病学特征

CR-hvKP最早在2012年中国检出[14],随后逐渐被临床所关注,陆续在其他国家都有检出,例如美国[15] [16]、印度[17]、俄罗斯[18]、埃及[19]、意大利[20]、法国[21]、德国[22]、伊朗[23]、新加坡[24]、澳大利亚[25]等许多国家。因此,CR-hvKP的感染非常严峻,已在全球蔓延。

CR-hvKP的发病率在全球范围内一直在增加[26]。大多数CR-hvKP病例在亚洲临床环境中报道,特别是中国已被确定为CR-hvKP的主要流行地区,其报告病例数最多[27]。CR-hvKP的发病率在中国大陆一半以上的地区一直在增加,并且存在显著的地区差异。发病率最高的是浙江、江苏和北京,其次是河南、山东和河北[12]。根据中国CR-hvKP的流行病学分析,ST11是中国最常见的CRKP克隆,并且80%的CR-hvKP菌株属于ST11和产KPC-2型[28]。2016年以来,中国ST11 CRKP的优势克隆由于重组从KL47转移到KL64 [13]。ST11-KL64菌株对恶劣条件的抵抗力更强,毒力也更高,并且在ST11-KL64克隆中更频繁地发现pLVPK样毒力质粒[13]。欧洲和美洲的CR-hvKP发病率第二高,主要以ST23和K1/K2 荚膜血清型菌株为代表。欧洲的主要碳青霉烯类耐药基因是blaNDMblaOXA [22] [29] [30],而blaKPC-2在美洲更为普遍[31] [32]

3. CR-hvKP的形成机制

复杂多样的进化机制可提高KP菌株的毒力和抗生素耐药性,是增加相关传染病发病率和死亡率的关键因素。这就是低毒力cKP和CRKP菌株或抗生素耐药性低的菌株进化为具有更强毒力、高碳青霉烯类耐药性和全球传播特征的“超级细菌”CR-hvKP的主要原因。据文献报道,CR-hvKP的形成可主要分为三种模式,具体如下。

3.1. hvKP菌株获得碳青霉烯类耐药质粒

CRKP中携带可移动碳青霉烯类抗性基因的质粒、转座子、噬菌体和插入元件可以水平转移到hvKP菌株上,形成CR-hvKP菌株[26]。根据不同的地理区域,获得性碳青霉烯类耐药表型与流行耐药机制相关。例如,blaKPC是中国和美国最常见的碳青霉烯酶基因[33]blaKPC阳性的CR-hvKP菌株在这些地区的报道也更频繁。2014 年,美国的一项研究首次报道了一种高粘液粘性ST23 KP菌株,该菌株获得了blaKPC-2并进化成多重耐药性CR-hvKP [15]。同样,中国报道了5种K1 hvKP菌株,它们通过获得含有blaKPC-2基因的毒力质粒或组合携带blaKPC-2的可移动DNA片段形成 K1 CR-hvKP [34]。此外,NDM和OXA在俄罗斯和印度更为常见。2018年,俄罗斯研究人员首次报道ST23和K1 hvKP获得同时携带blaCTX-M-15blaOXA-48的质粒,并进化成CR-hvKP [29]。印度还报道了一种携带blaOXAblaNDM基因的hvKP菌株导致两人死亡[17]

值得注意的是,与多重耐药(MDR)基因组相比,高毒力谱系的复制子标志物明显较少,尤其是CG23 谱系;同时高毒力克隆的质粒多样性也低于MDR克隆[25]。这些证据可能表明,高毒力克隆不太容易获得额外的质粒,或者在维持已经获得的质粒方面存在缺陷。

3.2. CRKP菌株获得毒力质粒

毒力质粒的获得是CRKP菌株毒力增加的关键机制,这是三种机制中最普遍的。最著名的毒力质粒是来自肺炎克雷伯菌NTUH-K2044的质粒 pK2044 (224 kb)和来自肺炎克雷伯菌CG43的质粒pLVPK (219 kb) [35]。这种毒力质粒是非偶联性的,并且由于缺乏包含tra基因的完整偶联模块,因此在cKP菌株中不存在[36]。然而,近年来CRKP菌株获得pLVPK样毒力质粒的报道频发,并且以这种方式形成的产KPC碳青霉烯酶的ST11 CR-hvKP菌株在中国占绝对优势。有相关研究表明,在特定条件下,hvKP菌株的非共轭毒力质粒可以被属于不相容组F (IncF)的共轭质粒动员到ST11 CRKP菌株中[37]。在此之后,属于不同不相容基团的几个共轭辅助质粒(包括IncN3,IncB/O/K/Z和Incl1)可以动员共存的非共轭毒力质粒[38]-[40]。与共轭质粒相反,毒力质粒可以逃避成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)系统防御机制,并在受体菌株中稳定存在[41]。这些研究强调了可动员质粒作为肺炎克雷伯菌毒力基因传播的关键载体的威胁。此外,将hv质粒的片段整合到偶联的IncFIB/IncFIA质粒中可产生偶联毒力质粒[42] [43]。鉴于有证据表明CRKP菌株可以以较低的适应成本维持多个质粒[44] [45],并且这些质粒的获得或丢失经常发生在医院环境中的肺炎克雷伯菌株之间[46]。这个过程可能有助于毒力编码元件在CRKP菌株之间快速传播,并且很容易传播并导致爆发。

3.3. KP获得携带毒力和碳青霉烯类耐药基因的融合质粒

近年来,许多研究报道了CR和毒力相结合的融合质粒。融合质粒的形成可能是由不同质粒之间的各种相互作用引起的,包括毒力和CR质粒骨架的重组、毒力决定簇插入CR质粒或将CR决定簇插入毒力质粒[47]。在KP菌株中已有不同序列类型的杂交质粒报道,包括典型的cKP (ST11、ST15 和 ST147)和hvKP类型(ST23和ST86) [30] [48]-[51]。关于融合质粒形成的机制,有研究表明两个单链片段可以在特定位点进行同源重组或进行独特的融合,最终导致融合质粒的产生[37]。这一结果阐明了融合质粒发育的基础过程,并强调了质粒的动态性质及其交换遗传信息的能力,这可能导致具有不同遗传性状的融合质粒的出现。这些趋同菌株和质粒的适应性和传播性仍不清楚,未来需要更加深入的研究。

4. CR-hvKP治疗和预防措施

高水平的耐药性和致病性通常会导致不良的临床结局[52] [53]。到目前为止,尚无针对CR-hvKP的确定性治疗方法,大多参照碳青霉烯耐药肠杆菌科细菌(CRE)的治疗指南。头孢他啶/阿维巴坦(CZA)是一种新型的β-内酰胺/β-内酰胺酶抑制剂组合,治疗CRKP引起的中枢神经系统感染时,以CZA为基础的联合治疗更成功[54]。然而,在临床使用过程中,极易诱导blaKPC-2blaKPC-3突变并获得对CZA的耐药[55] [56]。多粘菌素E和多粘菌素B(PMB)是两种临床可用的多粘菌素,它被认为是由MDR革兰氏阴性菌引起的感染的最后一线治疗选择[57],但真正的疗效却不尽如人意[58]。但联合治疗可增强抗菌活性,例如PMB与米诺环素或利福平的组合对NDM-1和OXA-48样KP有效[59];PMB与磷霉素联合使用具有免疫调节作用和显着的细菌杀灭作用[60]。另外,经验性使用替加环素是ST11-KL64 CRKP感染患者死亡的独立危险因素[61],并导致CR-hvKP菌株的广泛传播[62]

此外,噬菌体疗法可以治疗由高毒力和耐碳青霉烯类肺炎克雷伯菌引起的呼吸道、胃肠道、皮肤软骨组织和尿路感染,以及非酒精性脂肪肝和菌血症[63]-[65]。预适应噬菌体疗法与抗生素联合治疗有望治疗CR-hvKP,因为它们可以减少抗生素的剂量并抑制耐药细菌的出现[66] [67]

CR-hvKP的预防要从控制传染源,切断传播途径和保护易感人群三方面展开。首先,对于CR-hvKP感染患者,应当及时发现并隔离治疗。针对性且合理化的抗生素治疗十分关键,早日使患者恢复。其次是切断CR-hvKP的传播途径。高危患者应在入院时接受筛查,并在住院期间定期进行CRKP/hvKP的监测。另外,医务工作者的手部消毒也是必不可少的。最后保护易感人群是预防CR-hvKP感染的重要环节。开发针对CR-hvKP菌株的疫苗将建立起人群屏障。此外,提高个体免疫力也至关重要,提倡健康饮食、体育锻炼和规律作息等。

5. 小结

总之,CR-hvKP出现在2010年代初期,此后变得越来越普遍。CR-hvKP主要流行于亚洲,尤其是中国,并在世界各地都有报道。CR-hvKP出现的机制可归纳为三种模式:(1) hvKP获得碳青霉烯类耐药表型;(2) CRKP获得高毒力表型;(3) 肺炎克雷伯菌获得碳青霉烯类耐药和高毒力的融合质粒。随着CR-hvKP 的全球传播,应更加重视对CR-hvKP出现的持续监测。

参考文献

[1] De Oliveira, D.M.P., Forde, B.M., Kidd, T.J., Harris, P.N.A., Schembri, M.A., Beatson, S.A., et al. (2020) Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 33, e00181-19.
https://doi.org/10.1128/cmr.00181-19
[2] Choby, J.E., Howard‐Anderson, J. and Weiss, D.S. (2019) Hypervirulent Klebsiella pneumoniae—Clinical and Molecular Perspectives. Journal of Internal Medicine, 287, 283-300.
https://doi.org/10.1111/joim.13007
[3] Effah, C.Y., Sun, T., Liu, S. and Wu, Y. (2020) Klebsiella pneumoniae: An Increasing Threat to Public Health. Annals of Clinical Microbiology and Antimicrobials, 19, Article No. 1.
https://doi.org/10.1186/s12941-019-0343-8
[4] Petrosillo, N., Giannella, M., Lewis, R. and Viale, P. (2013) Treatment of Carbapenem-Resistant Klebsiella pneumoniae: The State of the Art. Expert Review of Anti-Infective Therapy, 11, 159-177.
https://doi.org/10.1586/eri.12.162
[5] Tzouvelekis, L.S., Markogiannakis, A., Psichogiou, M., Tassios, P.T. and Daikos, G.L. (2012) Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. Clinical Microbiology Reviews, 25, 682-707.
https://doi.org/10.1128/cmr.05035-11
[6] Gupta, N., Limbago, B.M., Patel, J.B. and Kallen, A.J. (2011) Carbapenem-Resistant Enterobacteriaceae: Epidemiology and Prevention. Clinical Infectious Diseases, 53, 60-67.
https://doi.org/10.1093/cid/cir202
[7] Nordmann, P., Cuzon, G. and Naas, T. (2009) The Real Threat of Klebsiella pneumoniae Carbapenemase-Producing Bacteria. The Lancet Infectious Diseases, 9, 228-236.
https://doi.org/10.1016/s1473-3099(09)70054-4
[8] Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. (2018) Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. The Lancet Infectious Diseases, 18, 318-327.
https://doi.org/10.1016/s1473-3099(17)30753-3
[9] Wang, J., Liu, Y., Lee, S.S., Yen, M., Wang, Y.C., Wann, S., et al. (1998) Clinical Infectious Diseases, 26, 1434-1438.
https://doi.org/10.1086/516369
[10] Liu, Y., Cheng, D.L. and Lin, C.L. (1986) Klebsiella pneumoniae Liver Abscess Associated with Septic Endophthalmitis. Archives of Internal Medicine, 146, 1913-1916.
https://doi.org/10.1001/archinte.1986.00360220057011
[11] Xu, M., Fu, Y., Fang, Y., Xu, H., Kong, H., Liu, Y., et al. (2019) High Prevalence of Kpc-2-Producing Hypervirulent Klebsiella pneumoniae causing Meningitis in Eastern China. Infection and Drug Resistance, 12, 641-653.
https://doi.org/10.2147/idr.s191892
[12] Pu, D., Zhao, J., Chang, K., Zhuo, X. and Cao, B. (2023) “Superbugs” with Hypervirulence and Carbapenem Resistance in Klebsiella pneumoniae: The Rise of Such Emerging Nosocomial Pathogens in China. Science Bulletin, 68, 2658-2670.
https://doi.org/10.1016/j.scib.2023.09.040
[13] Zhou, K., Xiao, T., David, S., Wang, Q., Zhou, Y., Guo, L., et al. (2020) Novel Subclone of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 with Enhanced Virulence and Transmissibility, China. Emerging Infectious Diseases, 26, 289-297.
https://doi.org/10.3201/eid2602.190594
[14] Yang, Q., Jia, X., Zhou, M., Zhang, H., Yang, W., Kudinha, T., et al. (2020) Emergence of ST11-K47 and ST11-K64 Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae in Bacterial Liver Abscesses from China: A Molecular, Biological, and Epidemiological Study. Emerging Microbes & Infections, 9, 320-331.
https://doi.org/10.1080/22221751.2020.1721334
[15] Cejas, D., Fernández Canigia, L., Rincón Cruz, G., Elena, A.X., Maldonado, I., Gutkind, G.O., et al. (2014) First Isolate of Kpc-2-Producing Klebsiella pneumoniae Sequence Type 23 from the Americas. Journal of Clinical Microbiology, 52, 3483-3485.
https://doi.org/10.1128/jcm.00726-14
[16] Chiang, T., Yang, Y., Yeh, K., Chiu, S., Wang, N., Lin, T., et al. (2016). Journal of Microbiology, Immunology and In-fection, 49, 83-90.
https://doi.org/10.1016/j.jmii.2015.08.011
[17] Shankar, C., Nabarro, L.E.B., Devanga Ragupathi, N.K., Muthuirulandi Sethuvel, D.P., Daniel, J.L.K., Doss C, G.P., et al. (2016) Draft Genome Sequences of Three Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Isolates from Bacteremia. Genome Announcements, 4, e01081-16.
https://doi.org/10.1128/genomea.01081-16
[18] Shaidullina, E., Shelenkov, A., Yanushevich, Y., Mikhaylova, Y., Shagin, D., Alexandrova, I., et al. (2020) Antimicrobial Resistance and Genomic Characterization of OXA-48-and CTX-M-15-Co-Producing Hypervirulent Klebsiella pneumoniae ST23 Recovered from Nosocomial Outbreak. Antibiotics (Basel, Switzerland), 9, Article No. 862.
https://doi.org/10.3390/antibiotics9120862
[19] Ahmed, M.A.E.E., Yang, Y., Yang, Y., Yan, B., Chen, G., Hassan, R.M., et al. (2021) Emergence of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Coharboring a bla(NDM-1)-Carrying Virulent Plasmid and a bla(KPC-2)-Carrying Plasmid in an Egyptian Hospital. mSphere, 6, e00088-21.
https://doi.org/10.1128/msphere.00088-21
[20] Di Pilato, V., Errico, G., Monaco, M., Giani, T., Del Grosso, M., Antonelli, A., et al. (2020) The Changing Epidemiology of Carbapenemase-Producing Klebsiella pneumoniae in Italy: Toward Polyclonal Evolution with Emergence of High-Risk Lineages. Journal of Antimicrobial Chemotherapy, 76, 355-361.
https://doi.org/10.1093/jac/dkaa431
[21] Beyrouthy, R., Dalmasso, G., Birer, A., Robin, F. and Bonnet, R. (2020) Carbapenem Resistance Conferred by OXA-48 in K2-ST86 Hypervirulent Klebsiella pneumoniae, France. Emerging Infectious Diseases, 26, 1529-1533.
https://doi.org/10.3201/eid2607.191490
[22] Becker, L., Kaase, M., Pfeifer, Y., Fuchs, S., Reuss, A., von Laer, A., et al. (2018) Genome-Based Analysis of Carbapenemase-Producing Klebsiella pneumoniae Isolates from German Hospital Patients, 2008-2014. Antimicrobial Resistance & Infection Control, 7, Article No. 62.
https://doi.org/10.1186/s13756-018-0352-y
[23] Sanikhani, R., Moeinirad, M., Solgi, H., Hadadi, A., Shahcheraghi, F. and Badmasti, F. (2021) The Face of Hypervirulent Klebsiella pneumoniae Isolated from Clinical Samples of Two Iranian Teaching Hospitals. Annals of Clinical Microbiology and Antimicrobials, 20, Article No. 58.
https://doi.org/10.1186/s12941-021-00467-2
[24] Chen, Y., Marimuthu, K., Teo, J., Venkatachalam, I., Cherng, B.P.Z., De Wang, L., et al. (2020) Acquisition of Plasmid with Carbapenem-Resistance Gene bla(KPC2) in Hypervirulent Klebsiella pneumoniae, Singapore. Emerging Infectious Diseases, 26, 549-559.
https://doi.org/10.3201/eid2603.191230
[25] Wyres, K.L., Wick, R.R., Judd, L.M., Froumine, R., Tokolyi, A., Gorrie, C.L., et al. (2019) Distinct Evolutionary Dynamics of Horizontal Gene Transfer in Drug Resistant and Virulent Clones of Klebsiella pneumoniae. PLOS Genetics, 15, e1008114.
https://doi.org/10.1371/journal.pgen.1008114
[26] Han, Y., Wen, X., Zhao, W., Cao, X., Wen, J., Wang, J., et al. (2022) Epidemiological Characteristics and Molecular Evolution Mechanisms of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 13, Article ID: 1003783.
https://doi.org/10.3389/fmicb.2022.1003783
[27] Liao, W., Liu, Y. and Zhang, W. (2020) Virulence Evolution, Molecular Mechanisms of Resistance and Prevalence of ST11 Carbapenem-Resistant Klebsiella pneumoniae in China: A Review over the Last 10 Years. Journal of Global Antimicrobial Resistance, 23, 174-180.
https://doi.org/10.1016/j.jgar.2020.09.004
[28] Zhang, Y., Jin, L., Ouyang, P., Wang, Q., Wang, R., Wang, J., et al. (2019) Evolution of Hypervirulence in Carbapenem-Resistant Klebsiella pneumoniae in China: A Multicentre, Molecular Epidemiological Analysis. Journal of Antimicrobial Chemotherapy, 75, 327-336.
https://doi.org/10.1093/jac/dkz446
[29] Lev, A.I., Astashkin, E.I., Kislichkina, A.A., Solovieva, E.V., Kombarova, T.I., Korobova, O.V., et al. (2018) Comparative Analysis of Klebsiella pneumoniae Strains Isolated in 2012-2016 That Differ by Antibiotic Resistance Genes and Virulence Genes Profiles. Pathogens and Global Health, 112, 142-151.
https://doi.org/10.1080/20477724.2018.1460949
[30] Turton, J.F., Payne, Z., Coward, A., Hopkins, K.L., Turton, J.A., Doumith, M., et al. (2018) Virulence Genes in Isolates of Klebsiella pneumoniae from the UK during 2016, Including among Carbapenemase Gene-Positive Hypervirulent K1-ST23 and “Non-Hypervirulent” Types ST147, ST15 and ST383. Journal of Medical Microbiology, 67, 118-128.
https://doi.org/10.1099/jmm.0.000653
[31] Karlsson, M., Stanton, R.A., Ansari, U., McAllister, G., Chan, M.Y., Sula, E., et al. (2019) Identification of a Carbapenemase-Producing Hypervirulent Klebsiella pneumoniae Isolate in the United States. Antimicrobial Agents and Chemotherapy, 63, e00519-19.
https://doi.org/10.1128/aac.00519-19
[32] Mataseje, L.F., Boyd, D.A., Mulvey, M.R. and Longtin, Y. (2019) Two Hypervirulent Klebsiella pneumoniae Isolates Producing a blaKPC-2 Carbapenemase from a Canadian Patient. Antimicrobial Agents and Chemotherapy, 63, e00517-19.
https://doi.org/10.1128/aac.00517-19
[33] Cui, X., Zhang, H. and Du, H. (2019) Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Frontiers in Microbiology, 10, Article No. 1823.
https://doi.org/10.3389/fmicb.2019.01823
[34] Zhang, R., Lin, D., Chan, E.W., Gu, D., Chen, G. and Chen, S. (2016) Emergence of Carbapenem-Resistant Serotype K1 Hypervirulent Klebsiella pneumoniae Strains in China. Antimicrobial Agents and Chemotherapy, 60, 709-711.
https://doi.org/10.1128/aac.02173-15
[35] Russo, T.A. and Marr, C.M. (2019) Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews, 32, e00001-19.
https://doi.org/10.1128/cmr.00001-19
[36] Smillie, C., Garcillán-Barcia, M.P., Francia, M.V., Rocha, E.P.C. and de la Cruz, F. (2010) Mobility of Plasmids. Microbiology and Molecular Biology Reviews, 74, 434-452.
https://doi.org/10.1128/mmbr.00020-10
[37] Xu, Y., Zhang, J., Wang, M., Liu, M., Liu, G., Qu, H., et al. (2021) Mobilization of the Nonconjugative Virulence Plasmid from Hypervirulent Klebsiella pneumoniae. Genome Medicine, 13, Article No. 119.
https://doi.org/10.1186/s13073-021-00936-5
[38] Yang, X., Liu, X., Xu, Y., Chan, E.W., Zhang, R. and Chen, S. (2022) An IncB/O/K/Z Conjugative Plasmid Encodes Resistance to Azithromycin and Mediates Transmission of Virulence Plasmid in Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 60, Article ID: 106683.
https://doi.org/10.1016/j.ijantimicag.2022.106683
[39] Yang, X., Xie, M., Xu, Q., Ye, L., Yang, C., Dong, N., et al. (2022) Transmission of pLVPK-Like Virulence Plasmid in Klebsiella pneumoniae Mediated by an Incl1 Conjugative Helper Plasmid. iScience, 25, Article ID: 104428.
https://doi.org/10.1016/j.isci.2022.104428
[40] Wang, X., Tang, B., Liu, G., Wang, M., Sun, J., Tan, R., et al. (2022) Transmission of Nonconjugative Virulence or Resistance Plasmids Mediated by a Self-Transferable Incn3 Plasmid from Carbapenem-Resistant Klebsiella pneumoniae. Microbiology Spectrum, 10, e0136422.
https://doi.org/10.1128/spectrum.01364-22
[41] Zhang, J., Xu, Y., Wang, M., Li, X., Liu, Z., Kuang, D., et al. (2023) Mobilizable Plasmids Drive the Spread of Antimicrobial Resistance Genes and Virulence Genes in Klebsiella pneumoniae. Genome Medicine, 15, Article No. 106.
https://doi.org/10.1186/s13073-023-01260-w
[42] Yang, X., Wai-Chi Chan, E., Zhang, R. and Chen, S. (2019) A Conjugative Plasmid That Augments Virulence in Klebsiella pneumoniae. Nature Microbiology, 4, 2039-2043.
https://doi.org/10.1038/s41564-019-0566-7
[43] Xie, M., Chen, K., Ye, L., Yang, X., Xu, Q., Yang, C., et al. (2020) Conjugation of Virulence Plasmid in Clinical Klebsiella pneumoniae Strains through Formation of a Fusion Plasmid. Advanced Biosystems, 4, e1900239.
https://doi.org/10.1002/adbi.201900239
[44] Conlan, S., Park, M., Deming, C., Thomas, P.J., Young, A.C., Coleman, H., et al. (2016) Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization. mBio, 7, e00742-16.
https://doi.org/10.1128/mbio.00742-16
[45] Buckner, M.M.C., Saw, H.T.H., Osagie, R.N., McNally, A., Ricci, V., Wand, M.E., et al. (2018) Clinically Relevant Plasmid-Host Interactions Indicate That Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids. mBio, 9, e02303-17.
https://doi.org/10.1128/mbio.02303-17
[46] Martin, J., Phan, H.T.T., Findlay, J., Stoesser, N., Pankhurst, L., Navickaite, I., et al. (2017) Covert Dissemination of Carbapenemase-Producing Klebsiella pneumoniae (KPC) in a Successfully Controlled Outbreak: Long-and Short-Read Whole-Genome Sequencing Demonstrate Multiple Genetic Modes of Transmission. Journal of Antimicrobial Chemotherapy, 72, 3025-3034.
https://doi.org/10.1093/jac/dkx264
[47] Wyres, K.L., Lam, M.M.C. and Holt, K.E. (2020) Population Genomics of Klebsiella pneumoniae. Nature Reviews Microbiology, 18, 344-359.
https://doi.org/10.1038/s41579-019-0315-1
[48] Dong, N., Lin, D., Zhang, R., Chan, E.W. and Chen, S. (2018) Carriage of blaKPC-2 by a Virulence Plasmid in Hypervirulent Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 73, 3317-3321.
https://doi.org/10.1093/jac/dky358
[49] Jin, L., Wang, R., Gao, H., Wang, Q. and Wang, H. (2021) Identification of a Novel Hybrid Plasmid Encoding KPC-2 and Virulence Factors in Klebsiella pneumoniae Sequence Type 11. Antimicrobial Agents and Chemotherapy, 65, e02435-20.
https://doi.org/10.1128/aac.02435-20
[50] Turton, J., Davies, F., Turton, J., Perry, C., Payne, Z. and Pike, R. (2019) Hybrid Resistance and Virulence Plasmids in “High-Risk” Clones of Klebsiella pneumoniae, Including Those Carrying bla(NDM-5). Microorganisms, 7, Article No. 326.
https://doi.org/10.3390/microorganisms7090326
[51] Xie, M., Yang, X., Xu, Q., Ye, L., Chen, K., Zheng, Z., et al. (2021) Clinical Evolution of ST11 Carbapenem Resistant and Hypervirulent Klebsiella pneumoniae. Communications Biology, 4, Article No. 650.
https://doi.org/10.1038/s42003-021-02148-4
[52] Gu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., et al. (2018) A Fatal Outbreak of ST11 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae in a Chinese Hospital: A Molecular Epidemiological Study. The Lancet Infectious Diseases, 18, 37-46.
https://doi.org/10.1016/s1473-3099(17)30489-9
[53] Zhao, Y., Zhang, X., Torres, V.V.L., Liu, H., Rocker, A., Zhang, Y., et al. (2019) An Outbreak of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Wenzhou, China. Frontiers in Public Health, 7, Article No. 229.
https://doi.org/10.3389/fpubh.2019.00229
[54] Zhao, X., Li, S., Zhang, Y., Wang, J., Wang, C., Qin, X., et al. (2023) Ceftazidime-Avibactam-Based Combination Therapy for Hospital-Acquired Central Nervous System Infections Caused by Carbapenem-Resistant Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 61, Article ID: 106777.
https://doi.org/10.1016/j.ijantimicag.2023.106777
[55] Bianco, G., Boattini, M., Iannaccone, M., Bondi, A., Ghibaudo, D., Zanotto, E., et al. (2021) Carbapenemase Detection Testing in the Era of Ceftazidime/avibactam-Resistant Kpc-Producing Enterobacterales: A 2-Year Experience. Journal of Global Antimicrobial Resistance, 24, 411-414.
https://doi.org/10.1016/j.jgar.2021.02.008
[56] Ding, L., Shen, S., Chen, J., Tian, Z., Shi, Q., Han, R., et al. (2023) Klebsiella pneumoniae Carbapenemase Variants: The New Threat to Global Public Health. Clinical Microbiology Reviews, 36, e0000823.
https://doi.org/10.1128/cmr.00008-23
[57] Nang, S.C., Azad, M.A.K., Velkov, T., Zhou, Q.(. and Li, J. (2021) Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacological Reviews, 73, 679-728.
https://doi.org/10.1124/pharmrev.120.000020
[58] Qu, J., Xu, J., Liu, Y., Hu, C., Zhong, C. and Lv, X. (2023) Real-World Effectiveness of Ceftazidime/Avibactam versus Polymyxin B in Treating Patients with Carbapenem-Resistant Gram-Negative Bacterial Infections. International Journal of Antimicrobial Agents, 62, Article ID: 106872.
https://doi.org/10.1016/j.ijantimicag.2023.106872
[59] Olsson, A., Allander, L., Shams, A., Al-Farsi, H., Lagerbäck, P. and Tängdén, T. (2023) Activity of Polymyxin B Combinations against Genetically Well-Characterised Klebsiella pneumoniae Producing NDM-1 and OXA-48-Like Carbapenemases. International Journal of Antimicrobial Agents, 62, Article ID: 106967.
https://doi.org/10.1016/j.ijantimicag.2023.106967
[60] Sharma, R., Garcia, E., Diep, J.K., Lee, V.H., Minhaj, F., Jermain, B., et al. (2022) Pharmacodynamic and Immunomodulatory Effects of Polymyxin B in Combination with Fosfomycin against KPC-2-Producing Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 59, Article ID: 106566.
https://doi.org/10.1016/j.ijantimicag.2022.106566
[61] Zhou, C., Jin, L., Wang, Q., Wang, X., Chen, F., Gao, Y., et al. (2021) Bloodstream Infections Caused by Carbapenem-Resistant Enterobacterales: Risk Factors for Mortality, Antimicrobial Therapy and Treatment Outcomes from a Prospective Multicenter Study. Infection and Drug Resistance, 14, 731-742.
https://doi.org/10.2147/idr.s294282
[62] Xie, M., Ye, L., Chen, K., Xu, Q., Yang, C., Chen, X., et al. (2024) Clinical Use of Tigecycline May Contribute to the Widespread Dissemination of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Strains. Emerging Microbes & Infections, 13, Article ID: 2306957.
https://doi.org/10.1080/22221751.2024.2306957
[63] Feng, Y., Fang, Q., Luo, H., Li, J., Yin, X. and Zong, Z. (2024) Safety and Efficacy of a Phage Cocktail on Murine Wound Infections Caused by Carbapenem-Resistant Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 63, Article ID: 107088.
https://doi.org/10.1016/j.ijantimicag.2024.107088
[64] Gan, L., Feng, Y., Du, B., Fu, H., Tian, Z., Xue, G., et al. (2023) Bacteriophage Targeting Microbiota Alleviates Non-Alcoholic Fatty Liver Disease Induced by High Alcohol-Producing Klebsiella pneumoniae. Nature Communications, 14, Article No. 3215.
https://doi.org/10.1038/s41467-023-39028-w
[65] Melo, L.D.R., Oliveira, H., Pires, D.P., Dabrowska, K. and Azeredo, J. (2020) Phage Therapy Efficacy: A Review of the Last 10 Years of Preclinical Studies. Critical Reviews in Microbiology, 46, 78-99.
https://doi.org/10.1080/1040841x.2020.1729695
[66] Eskenazi, A., Lood, C., Wubbolts, J., Hites, M., Balarjishvili, N., Leshkasheli, L., et al. (2022) Combination of Pre-Adapted Bacteriophage Therapy and Antibiotics for Treatment of Fracture-Related Infection Due to Pandrug-Resistant Klebsiella pneumoniae. Nature Communications, 13, Article No. 302.
https://doi.org/10.1038/s41467-021-27656-z
[67] Onsea, J., Wagemans, J., Pirnay, J., Di Luca, M., Gonzalez-Moreno, M., Lavigne, R., et al. (2020) Bacteriophage Therapy as a Treatment Strategy for Orthopaedic-Device-Related Infections: Where Do We Stand? European Cells and Materials, 39, 193-210.
https://doi.org/10.22203/ecm.v039a13