[1]
|
De Oliveira, D.M.P., Forde, B.M., Kidd, T.J., Harris, P.N.A., Schembri, M.A., Beatson, S.A., et al. (2020) Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 33, e00181-19. https://doi.org/10.1128/cmr.00181-19
|
[2]
|
Choby, J.E., Howard‐Anderson, J. and Weiss, D.S. (2019) Hypervirulent Klebsiella pneumoniae—Clinical and Molecular Perspectives. Journal of Internal Medicine, 287, 283-300. https://doi.org/10.1111/joim.13007
|
[3]
|
Effah, C.Y., Sun, T., Liu, S. and Wu, Y. (2020) Klebsiella pneumoniae: An Increasing Threat to Public Health. Annals of Clinical Microbiology and Antimicrobials, 19, Article No. 1. https://doi.org/10.1186/s12941-019-0343-8
|
[4]
|
Petrosillo, N., Giannella, M., Lewis, R. and Viale, P. (2013) Treatment of Carbapenem-Resistant Klebsiella pneumoniae: The State of the Art. Expert Review of Anti-Infective Therapy, 11, 159-177. https://doi.org/10.1586/eri.12.162
|
[5]
|
Tzouvelekis, L.S., Markogiannakis, A., Psichogiou, M., Tassios, P.T. and Daikos, G.L. (2012) Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. Clinical Microbiology Reviews, 25, 682-707. https://doi.org/10.1128/cmr.05035-11
|
[6]
|
Gupta, N., Limbago, B.M., Patel, J.B. and Kallen, A.J. (2011) Carbapenem-Resistant Enterobacteriaceae: Epidemiology and Prevention. Clinical Infectious Diseases, 53, 60-67. https://doi.org/10.1093/cid/cir202
|
[7]
|
Nordmann, P., Cuzon, G. and Naas, T. (2009) The Real Threat of Klebsiella pneumoniae Carbapenemase-Producing Bacteria. The Lancet Infectious Diseases, 9, 228-236. https://doi.org/10.1016/s1473-3099(09)70054-4
|
[8]
|
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., et al. (2018) Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. The Lancet Infectious Diseases, 18, 318-327. https://doi.org/10.1016/s1473-3099(17)30753-3
|
[9]
|
Wang, J., Liu, Y., Lee, S.S., Yen, M., Wang, Y.C., Wann, S., et al. (1998) Clinical Infectious Diseases, 26, 1434-1438. https://doi.org/10.1086/516369
|
[10]
|
Liu, Y., Cheng, D.L. and Lin, C.L. (1986) Klebsiella pneumoniae Liver Abscess Associated with Septic Endophthalmitis. Archives of Internal Medicine, 146, 1913-1916. https://doi.org/10.1001/archinte.1986.00360220057011
|
[11]
|
Xu, M., Fu, Y., Fang, Y., Xu, H., Kong, H., Liu, Y., et al. (2019) High Prevalence of Kpc-2-Producing Hypervirulent Klebsiella pneumoniae causing Meningitis in Eastern China. Infection and Drug Resistance, 12, 641-653. https://doi.org/10.2147/idr.s191892
|
[12]
|
Pu, D., Zhao, J., Chang, K., Zhuo, X. and Cao, B. (2023) “Superbugs” with Hypervirulence and Carbapenem Resistance in Klebsiella pneumoniae: The Rise of Such Emerging Nosocomial Pathogens in China. Science Bulletin, 68, 2658-2670. https://doi.org/10.1016/j.scib.2023.09.040
|
[13]
|
Zhou, K., Xiao, T., David, S., Wang, Q., Zhou, Y., Guo, L., et al. (2020) Novel Subclone of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 with Enhanced Virulence and Transmissibility, China. Emerging Infectious Diseases, 26, 289-297. https://doi.org/10.3201/eid2602.190594
|
[14]
|
Yang, Q., Jia, X., Zhou, M., Zhang, H., Yang, W., Kudinha, T., et al. (2020) Emergence of ST11-K47 and ST11-K64 Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae in Bacterial Liver Abscesses from China: A Molecular, Biological, and Epidemiological Study. Emerging Microbes & Infections, 9, 320-331. https://doi.org/10.1080/22221751.2020.1721334
|
[15]
|
Cejas, D., Fernández Canigia, L., Rincón Cruz, G., Elena, A.X., Maldonado, I., Gutkind, G.O., et al. (2014) First Isolate of Kpc-2-Producing Klebsiella pneumoniae Sequence Type 23 from the Americas. Journal of Clinical Microbiology, 52, 3483-3485. https://doi.org/10.1128/jcm.00726-14
|
[16]
|
Chiang, T., Yang, Y., Yeh, K., Chiu, S., Wang, N., Lin, T., et al. (2016). Journal of Microbiology, Immunology and In-fection, 49, 83-90. https://doi.org/10.1016/j.jmii.2015.08.011
|
[17]
|
Shankar, C., Nabarro, L.E.B., Devanga Ragupathi, N.K., Muthuirulandi Sethuvel, D.P., Daniel, J.L.K., Doss C, G.P., et al. (2016) Draft Genome Sequences of Three Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Isolates from Bacteremia. Genome Announcements, 4, e01081-16. https://doi.org/10.1128/genomea.01081-16
|
[18]
|
Shaidullina, E., Shelenkov, A., Yanushevich, Y., Mikhaylova, Y., Shagin, D., Alexandrova, I., et al. (2020) Antimicrobial Resistance and Genomic Characterization of OXA-48-and CTX-M-15-Co-Producing Hypervirulent Klebsiella pneumoniae ST23 Recovered from Nosocomial Outbreak. Antibiotics (Basel, Switzerland), 9, Article No. 862. https://doi.org/10.3390/antibiotics9120862
|
[19]
|
Ahmed, M.A.E.E., Yang, Y., Yang, Y., Yan, B., Chen, G., Hassan, R.M., et al. (2021) Emergence of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Coharboring a bla(NDM-1)-Carrying Virulent Plasmid and a bla(KPC-2)-Carrying Plasmid in an Egyptian Hospital. mSphere, 6, e00088-21. https://doi.org/10.1128/msphere.00088-21
|
[20]
|
Di Pilato, V., Errico, G., Monaco, M., Giani, T., Del Grosso, M., Antonelli, A., et al. (2020) The Changing Epidemiology of Carbapenemase-Producing Klebsiella pneumoniae in Italy: Toward Polyclonal Evolution with Emergence of High-Risk Lineages. Journal of Antimicrobial Chemotherapy, 76, 355-361. https://doi.org/10.1093/jac/dkaa431
|
[21]
|
Beyrouthy, R., Dalmasso, G., Birer, A., Robin, F. and Bonnet, R. (2020) Carbapenem Resistance Conferred by OXA-48 in K2-ST86 Hypervirulent Klebsiella pneumoniae, France. Emerging Infectious Diseases, 26, 1529-1533. https://doi.org/10.3201/eid2607.191490
|
[22]
|
Becker, L., Kaase, M., Pfeifer, Y., Fuchs, S., Reuss, A., von Laer, A., et al. (2018) Genome-Based Analysis of Carbapenemase-Producing Klebsiella pneumoniae Isolates from German Hospital Patients, 2008-2014. Antimicrobial Resistance & Infection Control, 7, Article No. 62. https://doi.org/10.1186/s13756-018-0352-y
|
[23]
|
Sanikhani, R., Moeinirad, M., Solgi, H., Hadadi, A., Shahcheraghi, F. and Badmasti, F. (2021) The Face of Hypervirulent Klebsiella pneumoniae Isolated from Clinical Samples of Two Iranian Teaching Hospitals. Annals of Clinical Microbiology and Antimicrobials, 20, Article No. 58. https://doi.org/10.1186/s12941-021-00467-2
|
[24]
|
Chen, Y., Marimuthu, K., Teo, J., Venkatachalam, I., Cherng, B.P.Z., De Wang, L., et al. (2020) Acquisition of Plasmid with Carbapenem-Resistance Gene bla(KPC2) in Hypervirulent Klebsiella pneumoniae, Singapore. Emerging Infectious Diseases, 26, 549-559. https://doi.org/10.3201/eid2603.191230
|
[25]
|
Wyres, K.L., Wick, R.R., Judd, L.M., Froumine, R., Tokolyi, A., Gorrie, C.L., et al. (2019) Distinct Evolutionary Dynamics of Horizontal Gene Transfer in Drug Resistant and Virulent Clones of Klebsiella pneumoniae. PLOS Genetics, 15, e1008114. https://doi.org/10.1371/journal.pgen.1008114
|
[26]
|
Han, Y., Wen, X., Zhao, W., Cao, X., Wen, J., Wang, J., et al. (2022) Epidemiological Characteristics and Molecular Evolution Mechanisms of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 13, Article ID: 1003783. https://doi.org/10.3389/fmicb.2022.1003783
|
[27]
|
Liao, W., Liu, Y. and Zhang, W. (2020) Virulence Evolution, Molecular Mechanisms of Resistance and Prevalence of ST11 Carbapenem-Resistant Klebsiella pneumoniae in China: A Review over the Last 10 Years. Journal of Global Antimicrobial Resistance, 23, 174-180. https://doi.org/10.1016/j.jgar.2020.09.004
|
[28]
|
Zhang, Y., Jin, L., Ouyang, P., Wang, Q., Wang, R., Wang, J., et al. (2019) Evolution of Hypervirulence in Carbapenem-Resistant Klebsiella pneumoniae in China: A Multicentre, Molecular Epidemiological Analysis. Journal of Antimicrobial Chemotherapy, 75, 327-336. https://doi.org/10.1093/jac/dkz446
|
[29]
|
Lev, A.I., Astashkin, E.I., Kislichkina, A.A., Solovieva, E.V., Kombarova, T.I., Korobova, O.V., et al. (2018) Comparative Analysis of Klebsiella pneumoniae Strains Isolated in 2012-2016 That Differ by Antibiotic Resistance Genes and Virulence Genes Profiles. Pathogens and Global Health, 112, 142-151. https://doi.org/10.1080/20477724.2018.1460949
|
[30]
|
Turton, J.F., Payne, Z., Coward, A., Hopkins, K.L., Turton, J.A., Doumith, M., et al. (2018) Virulence Genes in Isolates of Klebsiella pneumoniae from the UK during 2016, Including among Carbapenemase Gene-Positive Hypervirulent K1-ST23 and “Non-Hypervirulent” Types ST147, ST15 and ST383. Journal of Medical Microbiology, 67, 118-128. https://doi.org/10.1099/jmm.0.000653
|
[31]
|
Karlsson, M., Stanton, R.A., Ansari, U., McAllister, G., Chan, M.Y., Sula, E., et al. (2019) Identification of a Carbapenemase-Producing Hypervirulent Klebsiella pneumoniae Isolate in the United States. Antimicrobial Agents and Chemotherapy, 63, e00519-19. https://doi.org/10.1128/aac.00519-19
|
[32]
|
Mataseje, L.F., Boyd, D.A., Mulvey, M.R. and Longtin, Y. (2019) Two Hypervirulent Klebsiella pneumoniae Isolates Producing a blaKPC-2 Carbapenemase from a Canadian Patient. Antimicrobial Agents and Chemotherapy, 63, e00517-19. https://doi.org/10.1128/aac.00517-19
|
[33]
|
Cui, X., Zhang, H. and Du, H. (2019) Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Frontiers in Microbiology, 10, Article No. 1823. https://doi.org/10.3389/fmicb.2019.01823
|
[34]
|
Zhang, R., Lin, D., Chan, E.W., Gu, D., Chen, G. and Chen, S. (2016) Emergence of Carbapenem-Resistant Serotype K1 Hypervirulent Klebsiella pneumoniae Strains in China. Antimicrobial Agents and Chemotherapy, 60, 709-711. https://doi.org/10.1128/aac.02173-15
|
[35]
|
Russo, T.A. and Marr, C.M. (2019) Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews, 32, e00001-19. https://doi.org/10.1128/cmr.00001-19
|
[36]
|
Smillie, C., Garcillán-Barcia, M.P., Francia, M.V., Rocha, E.P.C. and de la Cruz, F. (2010) Mobility of Plasmids. Microbiology and Molecular Biology Reviews, 74, 434-452. https://doi.org/10.1128/mmbr.00020-10
|
[37]
|
Xu, Y., Zhang, J., Wang, M., Liu, M., Liu, G., Qu, H., et al. (2021) Mobilization of the Nonconjugative Virulence Plasmid from Hypervirulent Klebsiella pneumoniae. Genome Medicine, 13, Article No. 119. https://doi.org/10.1186/s13073-021-00936-5
|
[38]
|
Yang, X., Liu, X., Xu, Y., Chan, E.W., Zhang, R. and Chen, S. (2022) An IncB/O/K/Z Conjugative Plasmid Encodes Resistance to Azithromycin and Mediates Transmission of Virulence Plasmid in Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 60, Article ID: 106683. https://doi.org/10.1016/j.ijantimicag.2022.106683
|
[39]
|
Yang, X., Xie, M., Xu, Q., Ye, L., Yang, C., Dong, N., et al. (2022) Transmission of pLVPK-Like Virulence Plasmid in Klebsiella pneumoniae Mediated by an Incl1 Conjugative Helper Plasmid. iScience, 25, Article ID: 104428. https://doi.org/10.1016/j.isci.2022.104428
|
[40]
|
Wang, X., Tang, B., Liu, G., Wang, M., Sun, J., Tan, R., et al. (2022) Transmission of Nonconjugative Virulence or Resistance Plasmids Mediated by a Self-Transferable Incn3 Plasmid from Carbapenem-Resistant Klebsiella pneumoniae. Microbiology Spectrum, 10, e0136422. https://doi.org/10.1128/spectrum.01364-22
|
[41]
|
Zhang, J., Xu, Y., Wang, M., Li, X., Liu, Z., Kuang, D., et al. (2023) Mobilizable Plasmids Drive the Spread of Antimicrobial Resistance Genes and Virulence Genes in Klebsiella pneumoniae. Genome Medicine, 15, Article No. 106. https://doi.org/10.1186/s13073-023-01260-w
|
[42]
|
Yang, X., Wai-Chi Chan, E., Zhang, R. and Chen, S. (2019) A Conjugative Plasmid That Augments Virulence in Klebsiella pneumoniae. Nature Microbiology, 4, 2039-2043. https://doi.org/10.1038/s41564-019-0566-7
|
[43]
|
Xie, M., Chen, K., Ye, L., Yang, X., Xu, Q., Yang, C., et al. (2020) Conjugation of Virulence Plasmid in Clinical Klebsiella pneumoniae Strains through Formation of a Fusion Plasmid. Advanced Biosystems, 4, e1900239. https://doi.org/10.1002/adbi.201900239
|
[44]
|
Conlan, S., Park, M., Deming, C., Thomas, P.J., Young, A.C., Coleman, H., et al. (2016) Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization. mBio, 7, e00742-16. https://doi.org/10.1128/mbio.00742-16
|
[45]
|
Buckner, M.M.C., Saw, H.T.H., Osagie, R.N., McNally, A., Ricci, V., Wand, M.E., et al. (2018) Clinically Relevant Plasmid-Host Interactions Indicate That Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids. mBio, 9, e02303-17. https://doi.org/10.1128/mbio.02303-17
|
[46]
|
Martin, J., Phan, H.T.T., Findlay, J., Stoesser, N., Pankhurst, L., Navickaite, I., et al. (2017) Covert Dissemination of Carbapenemase-Producing Klebsiella pneumoniae (KPC) in a Successfully Controlled Outbreak: Long-and Short-Read Whole-Genome Sequencing Demonstrate Multiple Genetic Modes of Transmission. Journal of Antimicrobial Chemotherapy, 72, 3025-3034. https://doi.org/10.1093/jac/dkx264
|
[47]
|
Wyres, K.L., Lam, M.M.C. and Holt, K.E. (2020) Population Genomics of Klebsiella pneumoniae. Nature Reviews Microbiology, 18, 344-359. https://doi.org/10.1038/s41579-019-0315-1
|
[48]
|
Dong, N., Lin, D., Zhang, R., Chan, E.W. and Chen, S. (2018) Carriage of blaKPC-2 by a Virulence Plasmid in Hypervirulent Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 73, 3317-3321. https://doi.org/10.1093/jac/dky358
|
[49]
|
Jin, L., Wang, R., Gao, H., Wang, Q. and Wang, H. (2021) Identification of a Novel Hybrid Plasmid Encoding KPC-2 and Virulence Factors in Klebsiella pneumoniae Sequence Type 11. Antimicrobial Agents and Chemotherapy, 65, e02435-20. https://doi.org/10.1128/aac.02435-20
|
[50]
|
Turton, J., Davies, F., Turton, J., Perry, C., Payne, Z. and Pike, R. (2019) Hybrid Resistance and Virulence Plasmids in “High-Risk” Clones of Klebsiella pneumoniae, Including Those Carrying bla(NDM-5). Microorganisms, 7, Article No. 326. https://doi.org/10.3390/microorganisms7090326
|
[51]
|
Xie, M., Yang, X., Xu, Q., Ye, L., Chen, K., Zheng, Z., et al. (2021) Clinical Evolution of ST11 Carbapenem Resistant and Hypervirulent Klebsiella pneumoniae. Communications Biology, 4, Article No. 650. https://doi.org/10.1038/s42003-021-02148-4
|
[52]
|
Gu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., et al. (2018) A Fatal Outbreak of ST11 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae in a Chinese Hospital: A Molecular Epidemiological Study. The Lancet Infectious Diseases, 18, 37-46. https://doi.org/10.1016/s1473-3099(17)30489-9
|
[53]
|
Zhao, Y., Zhang, X., Torres, V.V.L., Liu, H., Rocker, A., Zhang, Y., et al. (2019) An Outbreak of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Wenzhou, China. Frontiers in Public Health, 7, Article No. 229. https://doi.org/10.3389/fpubh.2019.00229
|
[54]
|
Zhao, X., Li, S., Zhang, Y., Wang, J., Wang, C., Qin, X., et al. (2023) Ceftazidime-Avibactam-Based Combination Therapy for Hospital-Acquired Central Nervous System Infections Caused by Carbapenem-Resistant Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 61, Article ID: 106777. https://doi.org/10.1016/j.ijantimicag.2023.106777
|
[55]
|
Bianco, G., Boattini, M., Iannaccone, M., Bondi, A., Ghibaudo, D., Zanotto, E., et al. (2021) Carbapenemase Detection Testing in the Era of Ceftazidime/avibactam-Resistant Kpc-Producing Enterobacterales: A 2-Year Experience. Journal of Global Antimicrobial Resistance, 24, 411-414. https://doi.org/10.1016/j.jgar.2021.02.008
|
[56]
|
Ding, L., Shen, S., Chen, J., Tian, Z., Shi, Q., Han, R., et al. (2023) Klebsiella pneumoniae Carbapenemase Variants: The New Threat to Global Public Health. Clinical Microbiology Reviews, 36, e0000823. https://doi.org/10.1128/cmr.00008-23
|
[57]
|
Nang, S.C., Azad, M.A.K., Velkov, T., Zhou, Q.(. and Li, J. (2021) Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacological Reviews, 73, 679-728. https://doi.org/10.1124/pharmrev.120.000020
|
[58]
|
Qu, J., Xu, J., Liu, Y., Hu, C., Zhong, C. and Lv, X. (2023) Real-World Effectiveness of Ceftazidime/Avibactam versus Polymyxin B in Treating Patients with Carbapenem-Resistant Gram-Negative Bacterial Infections. International Journal of Antimicrobial Agents, 62, Article ID: 106872. https://doi.org/10.1016/j.ijantimicag.2023.106872
|
[59]
|
Olsson, A., Allander, L., Shams, A., Al-Farsi, H., Lagerbäck, P. and Tängdén, T. (2023) Activity of Polymyxin B Combinations against Genetically Well-Characterised Klebsiella pneumoniae Producing NDM-1 and OXA-48-Like Carbapenemases. International Journal of Antimicrobial Agents, 62, Article ID: 106967. https://doi.org/10.1016/j.ijantimicag.2023.106967
|
[60]
|
Sharma, R., Garcia, E., Diep, J.K., Lee, V.H., Minhaj, F., Jermain, B., et al. (2022) Pharmacodynamic and Immunomodulatory Effects of Polymyxin B in Combination with Fosfomycin against KPC-2-Producing Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 59, Article ID: 106566. https://doi.org/10.1016/j.ijantimicag.2022.106566
|
[61]
|
Zhou, C., Jin, L., Wang, Q., Wang, X., Chen, F., Gao, Y., et al. (2021) Bloodstream Infections Caused by Carbapenem-Resistant Enterobacterales: Risk Factors for Mortality, Antimicrobial Therapy and Treatment Outcomes from a Prospective Multicenter Study. Infection and Drug Resistance, 14, 731-742. https://doi.org/10.2147/idr.s294282
|
[62]
|
Xie, M., Ye, L., Chen, K., Xu, Q., Yang, C., Chen, X., et al. (2024) Clinical Use of Tigecycline May Contribute to the Widespread Dissemination of Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Strains. Emerging Microbes & Infections, 13, Article ID: 2306957. https://doi.org/10.1080/22221751.2024.2306957
|
[63]
|
Feng, Y., Fang, Q., Luo, H., Li, J., Yin, X. and Zong, Z. (2024) Safety and Efficacy of a Phage Cocktail on Murine Wound Infections Caused by Carbapenem-Resistant Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 63, Article ID: 107088. https://doi.org/10.1016/j.ijantimicag.2024.107088
|
[64]
|
Gan, L., Feng, Y., Du, B., Fu, H., Tian, Z., Xue, G., et al. (2023) Bacteriophage Targeting Microbiota Alleviates Non-Alcoholic Fatty Liver Disease Induced by High Alcohol-Producing Klebsiella pneumoniae. Nature Communications, 14, Article No. 3215. https://doi.org/10.1038/s41467-023-39028-w
|
[65]
|
Melo, L.D.R., Oliveira, H., Pires, D.P., Dabrowska, K. and Azeredo, J. (2020) Phage Therapy Efficacy: A Review of the Last 10 Years of Preclinical Studies. Critical Reviews in Microbiology, 46, 78-99. https://doi.org/10.1080/1040841x.2020.1729695
|
[66]
|
Eskenazi, A., Lood, C., Wubbolts, J., Hites, M., Balarjishvili, N., Leshkasheli, L., et al. (2022) Combination of Pre-Adapted Bacteriophage Therapy and Antibiotics for Treatment of Fracture-Related Infection Due to Pandrug-Resistant Klebsiella pneumoniae. Nature Communications, 13, Article No. 302. https://doi.org/10.1038/s41467-021-27656-z
|
[67]
|
Onsea, J., Wagemans, J., Pirnay, J., Di Luca, M., Gonzalez-Moreno, M., Lavigne, R., et al. (2020) Bacteriophage Therapy as a Treatment Strategy for Orthopaedic-Device-Related Infections: Where Do We Stand? European Cells and Materials, 39, 193-210. https://doi.org/10.22203/ecm.v039a13
|