[1]
|
陈晞, 吴国锋. 牙周炎治疗中的咬合控制——垫及其应用[J]. 实用口腔医学杂志, 2020, 36(5): 836-840.
|
[2]
|
王美青. 牙合学[M]. 第4版, 北京: 人民卫生出版社, 2021: 130-133.
|
[3]
|
张力, 孟佳丽, 张艺. 应用数字化牙合垫技术治疗颞下颌关节紊乱病的临床研究[J]. 医学研究生学报, 2022, 35(7): 720-725.
|
[4]
|
Patil, M., Kambale, S., Patil, A., et al. (2018) Digitalization in Dentistry: CAD/CAM—A Review. Acta Scientific Dental Sciences, 2, 12-16.
|
[5]
|
满毅. 数字化技术在口腔种植修复中的应用[J]. 口腔医学, 2017, 37(7): 577-582.
|
[6]
|
孟佳丽, 吴国锋. 数字化(牙合)垫设计技术的发展[J]. 实用口腔医学杂志, 2023, 39(5): 679-684.
|
[7]
|
Peng, T., Yang, Z., Ma, T., Zhang, M. and Ren, G. (2023) Comparative Evaluation of the Volume of Occlusal Adjustment of Repositioning Occlusal Devices Designed by Using an Average Value Digital Articulator and the Jaw Movement Analyzer. The Journal of Prosthetic Dentistry. https://doi.org/10.1016/j.prosdent.2023.06.018
|
[8]
|
Li, L., Chen, H., Zhao, Y., Wang, Y. and Sun, Y. (2022) Design of Occlusal Wear Facets of Fixed Dental Prostheses Driven by Personalized Mandibular Movement. The Journal of Prosthetic Dentistry, 128, 33-41. https://doi.org/10.1016/j.prosdent.2020.09.055
|
[9]
|
Berntsen, C., Kleven, M., Heian, M. and Hjortsjö, C. (2018) Clinical Comparison of Conventional and Additive Manufactured Stabilization Splints. Acta Biomaterialia Odontologica Scandinavica, 4, 81-89. https://doi.org/10.1080/23337931.2018.1497491
|
[10]
|
林瑞, 郁春华, 孙健. 数字化咬合板系统的构建与临床应用初探[J]. 中华口腔医学杂志, 2020, 55(12): 983-986.
|
[11]
|
张勉, 王贺林, 于世宾, 等. 带有压低个别伸长牙齿功能的稳定型咬合板[P]. 中国, CN201921315007.7. 2020-09-01.
|
[12]
|
Riley, P., Glenny, A., Worthington, H.V., Jacobsen, E., Robertson, C., Durham, J., et al. (2020) Oral Splints for Temporomandibular Disorder or Bruxism: A Systematic Review. British Dental Journal, 228, 191-197. https://doi.org/10.1038/s41415-020-1250-2
|
[13]
|
Gauer, R. and Semidey, M.J. (2015) Diagnosis and Treatment of Temporomandibular Disorders. American Family Physician, 91, 378-386.
|
[14]
|
Stokbro, K., Aagaard, E., Torkov, P., Bell, R.B. and Thygesen, T. (2014) Virtual Planning in Orthognathic Surgery. International Journal of Oral and Maxillofacial Surgery, 43, 957-965. https://doi.org/10.1016/j.ijom.2014.03.011
|
[15]
|
Aboul-Hosn Centenero, S. and Hernández-Alfaro, F. (2012) 3D Planning in Orthognathic Surgery: CAD/CAM Surgical Splints and Prediction of the Soft and Hard Tissues Results—Our Experience in 16 Cases. Journal of Cranio-Maxillofacial Surgery, 40, 162-168. https://doi.org/10.1016/j.jcms.2011.03.014
|
[16]
|
赵志河. 口腔正畸学[M]. 第7版. 北京: 人民卫生出版社, 2020: 223.
|
[17]
|
Stokbro, K., Aagaard, E., Torkov, P., Bell, R.B. and Thygesen, T. (2016) Surgical Accuracy of Three-Dimensional Virtual Planning: A Pilot Study of Bimaxillary Orthognathic Procedures Including Maxillary Segmentation. International Journal of Oral and Maxillofacial Surgery, 45, 8-18. https://doi.org/10.1016/j.ijom.2015.07.010
|
[18]
|
De Riu, G., Virdis, P.I., Meloni, S.M., Lumbau, A. and Vaira, L.A. (2018) Accuracy of Computer-Assisted Orthognathic Surgery. Journal of Cranio-Maxillofacial Surgery, 46, 293-298. https://doi.org/10.1016/j.jcms.2017.11.023
|
[19]
|
Kwon, T., Mori, Y., Minami, K. and Lee, S. (2002) Reproducibility of Maxillary Positioning in Le Fort I Osteotomy: A 3-Dimensional Evaluation. Journal of Oral and Maxillofacial Surgery, 60, 287-293. https://doi.org/10.1053/joms.2002.30583
|
[20]
|
Zizelmann, C., Hammer, B., Gellrich, N., Schwestka-Polly, R., Rana, M. and Bucher, P. (2012) An Evaluation of Face-Bow Transfer for the Planning of Orthognathic Surgery. Journal of Oral and Maxillofacial Surgery, 70, 1944-1950. https://doi.org/10.1016/j.joms.2011.08.025
|
[21]
|
Naini, F.B. and Gill, D.S. (2019) Challenges and Opportunities Facing Contemporary Orthognathic Surgery. Journal of Orthodontics, 46, 71-76. https://doi.org/10.1177/1465312519840044
|
[22]
|
Xia, J.J., Gateno, J. and Teichgraeber, J.F. (2005) Three-Dimensional Computer-Aided Surgical Simulation for Maxillofacial Surgery. Atlas of the Oral and Maxillofacial Surgery Clinics, 13, 25-39. https://doi.org/10.1016/j.cxom.2004.10.004
|
[23]
|
胡利. 数字化咬合板与传统咬合板在正颌手术中定位上颌骨的精确性临床研究[J]. 临床口腔医学杂志, 2023, 39(4): 228-232.
|
[24]
|
Ramfjord, S.P. and Ash, M.M. (1994) Reflections on the Michigan Occlusal Splint. Journal of Oral Rehabilitation, 21, 491-500. https://doi.org/10.1111/j.1365-2842.1994.tb01164.x
|
[25]
|
Dawson, P. (2008) Functional Occlusion: From TMJ to Smile Design. Elsevier. https://doi.org/10.4103/0972-4052.32520
|
[26]
|
王时敏. 全程数字化夜磨牙保护牙合垫的制作和初步应用[J]. 北京大学学报(医学版), 2019, 51(1): 105-110.
|
[27]
|
American Academy of Sleep Medicine (2005) International Classification of Sleep Disorder: Diagnostic and Coding Manual. American Academy of Sleep Medicine, 189-192.
|
[28]
|
Karakis, D., Dogan, A. and Bek, B. (2014) Evaluation of the Effect of Two Different Occlusal Splints on Maximum Occlusal Force in Patients with Sleep Bruxism: A Pilot Study. The Journal of Advanced Prosthodontics, 6, 103-108. https://doi.org/10.4047/jap.2014.6.2.103
|
[29]
|
Guaita, M. and Högl, B. (2016) Current Treatments of Bruxism. Current Treatment Options in Neurology, 18, Article No. 10. https://doi.org/10.1007/s11940-016-0396-3
|
[30]
|
Lauren, M. and McIntyre, F. (2008) A New Computer-Assisted Method for Design and Fabrication of Occlusal Splints. American Journal of Orthodontics and Dentofacial Orthopedics, 133, S130-S135. https://doi.org/10.1016/j.ajodo.2007.11.018
|
[31]
|
Dedem, P. and Turp, J.C. (2016) Digital Michigan Splint—From Intraoral Scanning to Plasterless Manufacturing. International Journal of Computerized Dentistry, 19, 63-76.
|
[32]
|
郁春华, 孙健, 林瑞. 一种数字化咬合板制作方法[P]. 中国, CN201910652878.6. 2021-04-30.
|
[33]
|
喻靓, 汪淑华, 郑园娜. 磨牙症各类(牙合)垫的临床治疗研究现状与展望[J]. 口腔医学, 2021, 41(10): 928-931.
|