绞股蓝皂苷抗肿瘤活性成分及机制研究进展
Research Progress on Anti-Tumor Active Components and Mechanisms of Gypenosides
DOI: 10.12677/jcpm.2024.34322, PDF, HTML, XML,    科研立项经费支持
作者: 刘梅玉*:赣南医科大学第一附属医院甲状腺疝外科,江西 赣州;赣州市甲状腺肿瘤重点实验室,江西 赣州;黄俊伟, 应 勇:赣南医科大学第一附属医院甲状腺疝外科,江西 赣州;廖海东:龙南市第一人民医院普外科,江西 赣州;曾祥泰#:赣南医科大学第一附属医院甲状腺疝外科,江西 赣州;龙南市第一人民医院普外科,江西 赣州
关键词: 绞股蓝皂苷肿瘤上皮–间充质转化凋亡细胞周期Gypenosides Cancer Epithelial-Mesenchymal Transition Apoptosis Cell Cycle
摘要: 绞股蓝皂苷作为绞股蓝中的一种重要天然活性成分,近年来受到广泛关注。研究表明,绞股蓝皂苷具有多种生物活性,包括抗氧化、抗炎、降糖、降脂、心血管保护及免疫调节等作用,其中抗肿瘤活性尤为突出,可能与其调节细胞增殖、诱导凋亡、抑制肿瘤细胞转移等机制密切相关。对绞股蓝皂苷的抗肿瘤活性成分及作用机制进行了系统归纳和分析,旨在为绞股蓝皂苷在抗癌药理作用领域的进一步研究提供参考。
Abstract: Gypenosides, as an important natural active ingredient found in Gynostemma pentaphyllum, has received widespread attention in recent years. Studies have shown that gypenosides exhibit various biological activities, including anti-oxidant, anti-inflammatory, hypoglycemic, hypolipidemic, cardiovascular protection and immunomodulatory effects, among which the antitumour activity is particularly prominent, which may be closely related to its mechanisms of regulating cell proliferation, inducing apoptosis and inhibiting tumour cell metastasis. This article systematically summarizes and analyzes the anti-tumor bioactive components and mechanisms of gypenosides, aiming to provide reference and support for further research on their pharmacological effects in cancer treatment.
文章引用:刘梅玉, 黄俊伟, 廖海东, 应勇, 曾祥泰. 绞股蓝皂苷抗肿瘤活性成分及机制研究进展[J]. 临床个性化医学, 2024, 3(4): 2262-2269. https://doi.org/10.12677/jcpm.2024.34322

1. 引言

癌症作为全球范围内最主要的公共卫生问题之一,其发病率和死亡率呈现逐年上升的趋势,据世界卫生组织2022年癌症相关数据显示,癌症是全球第二大致死原因,约有970万人死于癌症[1]。癌症的发病机制复杂,涵盖遗传突变、环境因素、免疫逃逸等多重因素,这些因素干扰了细胞增殖和生长的正常调控机制,导致细胞无限制增殖和转移[2]。目前,癌症治疗方法主要包括手术、放疗、化疗、靶向治疗和免疫治疗等[3] [4],尽管这些治疗手段在一定程度上提高了患者的生存率,但由于癌症的异质性和耐药性问题,临床治疗仍然面临着效果有限、复发率高等挑战。

绞股蓝是葫芦科的一种常见药用植物,被誉为“南方人参”,广泛应用于增强免疫力、调节血脂、抗疲劳和延缓衰老等[5]。绞股蓝皂苷(Gypenosides, Gyps)是其主要活性成分之一,属于三萜皂苷类化合物,主要由水解糖、苷元及特定的官能团组成[6]。绞股蓝皂苷因其种类繁多且展现出不同的生物活性,故被用于多种疾病的预防和治疗中。在绞股蓝皂苷的生物活性研究中,已有证据表明其具有抗氧化[7]、抗炎[8]、降糖[9]、降脂和保护心血管[10]、免疫调节、抗癌[11]等多种药理效应。本文通过总结多种具有抗癌作用的绞股蓝皂苷成分及其作用机制,为肿瘤的预防与治疗提供新的理论依据与思路,推动绞股蓝皂苷的研究和开发。

2. 绞股蓝皂苷的抗肿瘤活性成分分析

通过TCMSP数据库以“绞股蓝”为关键词进行检索,共获得了202种与绞股蓝相关的活性成分,分类和可视化分析发现,这些成分可被划分为23个类别(见图1),其中以绞股蓝皂苷类化合物为主,共有116种。结合PubMed和知网的相关文献,对具有抗癌活性的绞股蓝皂苷进行了归纳总结,不同的活性成分在相应的肿瘤中发挥抗癌作用(见表1)。Gypenoside L、Gypenoside LI是一对同分异构体,但在糖基的连接位置上有细微的差异,这种差异导致它们在药理作用、溶解性、代谢等方面的不同。Gypenosides、Gypenoside L、Gypenoside LI和Gypenoside LXXV等皂苷在抗肿瘤研究中应用较为广泛,涉及的癌症类型包括胃癌、膀胱癌、结肠癌、食管癌、肺癌、口腔癌、肝癌、白血病、乳腺癌等。

注:绿色代表绞股蓝,紫色代表绞股蓝活性成分的分类,蓝色代表所有的绞股蓝活性成分,已有研究中具有抗肿瘤活性的绞股蓝皂苷活性成分用红色标注。

Figure 1. Visualisation of 202 chemical constituents of gynostemma pentaphyllum in TCMSP database

1. TCMSP数据库中202种绞股蓝化学成分可视化图

Table 1. Chemical constituents of gypenoside with anti-cancer effects

1. 具有抗癌作用的绞股蓝皂苷化学成分

成分名称

摩尔号

分子式

肿瘤类型

参考文献

Gypenoside XXXVI_qt

MOL009888

C28H48O3

肾癌

[19]

Gypenoside L

MOL009893

C42H72O14

肝癌、食管癌、肺癌、肾癌

[17] [28] [36]

Gypenoside LI

MOL009895

C42H72O14

肺癌、肾癌、乳腺癌、黑色素瘤

[27] [28]

Gypenoside LVI

MOL009907

C53H90O23

肺癌

[15]

Gypenoside XLVI

MOL009918

C48H82O19

肝癌

[24]

Gypenoside LXXIV

MOL009928

C43H74O14

肾癌

[19]

Gypenoside LXXIX

MOL009929

C42H72O13

肾癌

[19]

Gypenoside LXXV

MOL009930

C42H72O13

宫颈癌、黑色素瘤、乳腺癌

[18]

Gypenoside XII

MOL009938

C42H70O14

肾癌

[19]

Gypenoside XL

MOL009943

C42H70O14

肾癌

[19]

Gypenoside XLIX

MOL009949

C52H86O21

口腔癌、乳腺癌

[16]

Gypenoside XVII

MOL009956

C48H82O18

头颈部鳞状细胞癌、肺癌

[25] [26]

Gypenoside XXII

MOL009961

C41H70O12

肺癌

[29]

Gypenoside XXXV_qt

MOL009969

C28H48O3

肾癌

[19]

续表

Gypenoside XXVII_qt

MOL009971

C27H46O3

肾癌

[19]

Gypenoside XXVIII_qt

MOL009973

C28H48O3

肾癌

[19]

Gypenoside XXXII

MOL009976

C41H70O14

肾癌

[19]

Gypenoside XXXVI_qt

MOL009888

C28H48O3

肾癌

[19]

Gypenosides

/

混合物

胃癌、膀胱癌、结肠癌、食管癌、肺癌、口腔癌、肝癌、白血病

[14] [19]-[23] [30]-[35] [37] [38]

3. 绞股蓝皂苷抗肿瘤活性成分的抗癌机制分析

癌症的发生发展涉及一系列复杂的分子机制,原癌基因如RAS、EGFR或抑癌基因如TP53、RB1等的突变导致细胞增殖失控,信号通路的异常激活推动肿瘤细胞的增殖、侵袭与转移。绞股蓝皂苷能影响多条重要的信号通路,如TGF-β、Wnt/β-catenin和PI3K/Akt等信号通路,抑制肿瘤细胞的增殖、侵袭和迁移、促进细胞凋亡、阻滞细胞周期、调控细胞代谢、调节免疫以及增强癌细胞对化疗药物的敏感性等机制发挥抗癌作用(见图2)。

Figure 2. Six major anti-tumour mechanisms of different active components of gypenoside

2. 绞股蓝皂苷不同活性成分的6种主要抗肿瘤作用机制

3.1. 抑制癌细胞的迁移与侵袭

EMT的发生有利于肿瘤发生转移,转录因子如Snail、Slug、Zeb1和Twist等通过抑制E-cadherin和激活N-cadherin等间质标志物表达使肿瘤细胞失去上皮细胞特征而获得间质细胞特征,促进肿瘤细胞迁移和侵袭[12]。基质金属蛋白酶(MMPs)广泛存在细胞外基质中,MMP2、MMP-9属于明胶酶家族,可以有效降解基底膜中天然胶原蛋白,促进肿瘤细胞穿越细胞外基质和血管基底膜进入淋巴管和血液[13]。绞股蓝皂苷调控Ras通路[14]降低MMP2和MMP9的表达抑制肿瘤细胞转移[15]。Gypenoside XLIX下调血管细胞粘附分子-1 (VCAM-1),抑制癌细胞的迁移能力[16]。Gypenoside L、Gypenoside LI通过调控TGF-β、Wnt/β-catenin及PI3K/Akt通路改变上皮标志物和间质标志物的表达水平逆转EMT [17],Gypenoside LXXV也被证明能够有效抑制癌细胞的转移[18]

3.2. 诱导癌细胞凋亡

细胞凋亡是一种由外源性或内源性信号介导在生物体高度调控的自杀机制,最终导致细胞有序死亡而不引起炎症。外源性通路通过细胞膜上的死亡受体(如Fas受体)接收信号,激活下游caspases。内源性通路则由细胞内部的损伤或压力(如DNA损伤)引发,涉及线粒体膜电位变化和细胞色素C的释放,从而激活caspases。有研究表明,绞股蓝皂苷抑制PI3K/AKT/mTOR通路,上调凋亡相关蛋白(如Bax)并下调抗凋亡蛋白(如Bcl-2)以诱导胃癌和肾癌细胞凋亡[19] [20]。此外,绞股蓝皂苷调控线粒体膜电位,促进细胞色素C释放,进一步激活caspase-9和caspase-3促进细胞凋亡[21],活性氧(ROS)的增加促进细胞内氧化应激反应,进一步推动癌细胞凋亡[22] [23]。研究还发现,Gypenoside XLIX、Gypenoside XLVI [24]、Gypenoside XVII [25] [26]、Gypenoside XXII、Gypenoside XII、Gypenoside XL和Gypenoside LXXIX等均能诱导细胞凋亡。

3.3. 阻滞细胞周期

细胞周期是细胞生长和分裂的有序过程,包括G0/G1期、S期和G2/M期。细胞周期蛋白(Cyclins)在不同阶段按特定规律合成与降解,并与周期蛋白依赖性激酶(CDKs)结合,共同调控细胞周期的进程。Gypenoside LI一方面通过下调E2F1导致细胞周期停滞在G0/G1期,另一方面,通过下调ERCC6L的表达表现出抗肿瘤活性[27]。Gypenoside L和Gypenoside LI下调细胞周期蛋白Cyclin D1及细胞周期依赖性激酶CDK4的表达,分别将A549细胞阻滞在G0/G1期和G2/M期[28]。研究表明,绞股蓝皂苷激活p53基因,促进p21的表达,导致A549细胞在S期和G2/M期发生周期停滞[29]。此外,绞股蓝皂苷可抑制DNA聚合酶的活性,减少DNA合成,阻碍细胞周期。

3.4. 抑制糖酵解

癌细胞的一个重要特征是能量代谢重编程,表现为“有氧糖酵解”状态,Hippo信号通路被认为是调控糖酵解的关键通路,YAP作为该通路的核心因子发挥重要作用[30]。研究表明,绞股蓝皂苷诱导LATS1/2蛋白上调,增加YAP的磷酸化并降低TAZ蛋白表达,YAP激动剂XMU-MP-1能逆转绞股蓝皂苷对胃癌细胞增殖的抑制作用[31]。乳酸的产生可以导致抑癌蛋白p53失活,增强癌细胞的DNA修复能力,从而提高化疗的抵抗性。绞股蓝皂苷显著降低HepG2细胞的葡萄糖消耗,减少乳酸的生成[32]。这些结果表明,绞股蓝皂苷通过抑制癌细胞的糖酵解过程,阻碍肿瘤增殖。

3.5. 免疫调节作用

免疫逃逸是癌细胞自我保护的重要机制之一,因此抑制免疫逃逸已成为癌症治疗的研究热点。STim-3是Th1细胞可选择性剪接生成的蛋白,能抑制免疫反应,而flTim-3是天然存在的膜蛋白,参与免疫反应激活。谭先胜等人发现,Gypenoside XLIX提高STim-3/Tim-3的比率,抑制非小细胞肺癌细胞的免疫逃逸[33]。此外,绞股蓝皂苷还能够下调胃癌细胞中PD-L1的表达,增强CD8+T细胞的抗肿瘤免疫反应[34]。这些结果表明,绞股蓝皂苷能增强免疫反应,为癌症免疫治疗提供新策略。

3.6. 增强癌细胞对化疗的敏感性

随着癌细胞耐药性的出现,许多已被批准用于临床治疗的化疗药物疗效受到限制。多种化疗药物被联合应用于针对多种阶段的肿瘤细胞,产生更佳治疗效果,并减少单一药物不良反应的影响。研究表明,绞股蓝皂苷调控MAPK14/STAT3信号通路发挥抗肺癌作用,并增强顺铂的药效[35]。此外,Gypenoside L能增强临床常用化疗药物(如5-氟尿嘧啶和顺铂)对肝癌和食管癌细胞的细胞毒性,提高化疗敏感性[36] [37],Gypenoside XLIX也能显著增强长春新碱(VCR)的抗癌作用[38]。作为一种潜在的化疗增敏剂,绞股蓝皂苷与化疗药物之间展现出良好的协同效应,这有助于抑制癌细胞增殖。

4. 展望

基于绞股蓝皂苷对EMT、细胞周期和凋亡的调控作用,可以推测其在肿瘤治疗中的潜力。绞股蓝皂苷的多靶点作用使其能够与传统治疗方法(如化疗、放疗)联合使用,从而增强抗肿瘤效果。此外,绞股蓝皂苷对正常细胞的毒性较低,可作为辅助治疗药物,为患者提供更安全的治疗选择。当前研究也在探索绞股蓝皂苷与其他药物联合应用的效果,特别是与靶向药物的联合。尽管已有相关研究揭示了绞股蓝皂苷对EMT、凋亡和细胞周期的影响,但其具体作用机制及在临床应用中的有效性仍需进一步深入探讨。未来的研究可深入探讨绞股蓝皂苷通过何种信号通路发挥抗癌作用,并验证这些机制在不同类型肿瘤中的普适性。开展大规模临床试验,评估绞股蓝皂苷在不同癌症患者中的安全性和有效性,特别是在联合疗法中的应用。同时,研究绞股蓝皂苷的核心靶点,以期为精准治疗提供依据。这些研究将有助于揭示绞股蓝皂苷的临床应用潜力,为肿瘤治疗提供新的治疗策略。

基金项目

2023年度江西省中医药科技计划项目(编号:2023B0202);赣州市甲状腺肿瘤重点实验室(编号:20220101-24)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Kiri, S. and Ryba, T. (2024) Cancer, Metastasis, and the Epigenome. Molecular Cancer, 23, Article No. 154.
https://doi.org/10.1186/s12943-024-02069-w
[3] Wang, Y., Suarez, E.R., Kastrunes, G., de Campos, N.S.P., Abbas, R., Pivetta, R.S., et al. (2024) Evolution of Cell Therapy for Renal Cell Carcinoma. Molecular Cancer, 23, Article No. 8.
https://doi.org/10.1186/s12943-023-01911-x
[4] Butterfield, L.H. and Najjar, Y.G. (2023) Immunotherapy Combination Approaches: Mechanisms, Biomarkers and Clinical Observations. Nature Reviews Immunology, 24, 399-416.
https://doi.org/10.1038/s41577-023-00973-8
[5] 李倩, 陈雨萌, 王煦焱, 等. 绞股蓝的化学成分及其药理作用研究进展[J/OL]. 辽宁中医药大学学报, 1-20.
https://kns.cnki.net/kcms2/article/abstract?v=Mw9fkKjKljoG7GO54X-t0ffRfLven0hJ9DQJs7drKiLb9pbCvFx12HfJ4rQ54AxBJD7QOy5TKUEusy-y2jN9Q3Ac41bPEkHC94C61MUnBiY8kH22mDvm_HZOsl_MH57Liw3xObMJexG7ss4mpOEIZkthSNT0qFtOMrebqLuDWDU=&uniplatform=NZKPT, 2024-12-27.
[6] 杨册, 翟新房, 段宇, 等. 绞股蓝中皂苷类与黄酮类化合物的分离与鉴定[J]. 中华中医药杂志, 2022, 37(1): 401-406.
[7] Liang, H., Lu, P., Chu, L., Li, G., Li, C., Chen, X., et al. (2023) Dammarane-Type Saponins from Gynostemma pentaphyllum and Their Anti-Aging Activities via Up-Regulating Mitochondria Related Proteins. Phytochemistry, 213, Article ID: 113744.
https://doi.org/10.1016/j.phytochem.2023.113744
[8] Yue, S., Tan, Y., Zhang, L., Zhang, B., Jiang, F., Ji, G., et al. (2022) Gynostemma pentaphyllum Polysaccharides Ameliorate Non-Alcoholic Steatohepatitis in Mice Associated with Gut Microbiota and the TLR2/NLRP3 Pathway. Frontiers in Endocrinology, 13, Article 885039.
https://doi.org/10.3389/fendo.2022.885039
[9] Zhang, H., Chen, X., Zong, B., Yuan, H., Wang, Z., Wei, Y., et al. (2018) Gypenosides Improve Diabetic Cardiomyopathy by Inhibiting ROS‐Mediated NLRP3 Inflammasome Activation. Journal of Cellular and Molecular Medicine, 22, 4437-4448.
https://doi.org/10.1111/jcmm.13743
[10] Li, Y., Ouyang, Q., Li, X., Alolgal, R.N., Fan, Y., Sun, Y., et al. (2023) The Role of Gynostemma pentaphyllum in Regulating Hyperlipidemia. The American Journal of Chinese Medicine, 51, 953-978.
https://doi.org/10.1142/s0192415x23500441
[11] Cheng, T., Lu, J., Wang, J., Lin, L., Kuo, H. and Chen, B. (2011) Antiproliferation Effect and Apoptosis Mechanism of Prostate Cancer Cell PC-3 by Flavonoids and Saponins Prepared from Gynostemma pentaphyllum. Journal of Agricultural and Food Chemistry, 59, 11319-11329.
https://doi.org/10.1021/jf2018758
[12] Wang, L., Peng, X., Ma, C., Hu, L., Li, M. and Wang, Y. (2024) Research Progress of Epithelial-Mesenchymal Transformation-Related Transcription Factors in Peritoneal Metastases. Journal of Cancer, 15, 5367-5375.
https://doi.org/10.7150/jca.98409
[13] Lazar, A.M., Costea, D.O., Popp, C.G. and Mastalier, B. (2024) Skin Malignant Melanoma and Matrix Metalloproteinases: Promising Links to Efficient Therapies. International Journal of Molecular Sciences, 25, Article 7804.
https://doi.org/10.3390/ijms25147804
[14] Lu, K., Chen, J., Lai, T., Yang, J., Weng, S., Ma, Y., et al. (2010) Gypenosides Inhibits Migration and Invasion of Human Oral Cancer SAS Cells through the Inhibition of Matrix Metalloproteinase-2-9 and Urokinase-Plasminogen by ERK1/2 and NF-κB Signaling Pathways. Human & Experimental Toxicology, 30, 406-415.
https://doi.org/10.1177/0960327110372405
[15] Qi, Y., Xie, J., Xie, P., Duan, Y., Ling, Y., Gu, Y., et al. (2021) Uncovering the Anti-NSCLC Effects and Mechanisms of Gypenosides by Metabolomics and Network Pharmacology Analysis. Journal of Ethnopharmacology, 281, Article ID: 114506.
https://doi.org/10.1016/j.jep.2021.114506
[16] Huang, T.H., Tran, V.H., Roufogalis, B.D. and Li, Y. (2007) Gypenoside XLIX, a Naturally Occurring PPAR-α Activator, Inhibits Cytokine-Induced Vascular Cell Adhesion Molecule-1 Expression and Activity in Human Endothelial Cells. European Journal of Pharmacology, 565, 158-165.
https://doi.org/10.1016/j.ejphar.2007.03.013
[17] Xiao, M., Pei, W., Li, S., Li, F., Xie, P., Luo, H., et al. (2024) Gypenoside L Inhibits Hepatocellular Carcinoma by Targeting the SREBP2-HMGCS1 Axis and Enhancing Immune Response. Bioorganic Chemistry, 150, Article ID: 107539.
https://doi.org/10.1016/j.bioorg.2024.107539
[18] Cui, C., Kim, D.J., Jung, S., Kim, S. and Im, W. (2017) Enhanced Production of Gypenoside LXXV Using a Novel Ginsenoside-Transforming β-Glucosidase from Ginseng-Cultivating Soil Bacteria and Its Anti-Cancer Property. Molecules, 22, Article 844.
https://doi.org/10.3390/molecules22050844
[19] Liu, H., Li, X., Duan, Y., Xie, J. and Piao, X. (2021) Mechanism of Gypenosides of Gynostemma pentaphyllum Inducing Apoptosis of Renal Cell Carcinoma by PI3K/AKT/mTOR Pathway. Journal of Ethnopharmacology, 271, Article ID: 113907.
https://doi.org/10.1016/j.jep.2021.113907
[20] Li, X., Liu, H., Lv, C., Du, J., Lian, F., Zhang, S., et al. (2022) Gypenoside-Induced Apoptosis via the PI3K/AKT/mTOR Signaling Pathway in Bladder Cancer. BioMed Research International, 2022, Article ID: 9304552.
https://doi.org/10.1155/2022/9304552
[21] Xing, S., Jang, M., Wang, Y. and Piao, X. (2016) A New Dammarane-Type Saponin from Gynostemma pentaphyllum Induces Apoptosis in A549 Human Lung Carcinoma Cells. Bioorganic & Medicinal Chemistry Letters, 26, 1754-1759.
https://doi.org/10.1016/j.bmcl.2016.02.046
[22] Yan, H., Wang, X., Wang, Y., Wang, P. and Xiao, Y. (2013) Antiproliferation and Anti-Migration Induced by Gypenosides in Human Colon Cancer SW620 and Esophageal Cancer Eca-109 Cells. Human & Experimental Toxicology, 33, 522-533.
https://doi.org/10.1177/0960327113497771
[23] Yan, H., Wang, X., Niu, J., Wang, Y., Wang, P. and Liu, Q. (2014) Anti-Cancer Effect and the Underlying Mechanisms of Gypenosides on Human Colorectal Cancer SW-480 Cells. PLOS ONE, 9, e95609.
https://doi.org/10.1371/journal.pone.0095609
[24] Zheng, Y., Zheng, Z., Ming, Y., Lin, M., Chen, L., Huang, W., et al. (2018) Gynosaponin TN-1 Producing from the Enzymatic Conversion of Gypenoside XLVI by Naringinase and Its Cytotoxicity on Hepatoma Cell Lines. Food and Chemical Toxicology, 119, 161-168.
https://doi.org/10.1016/j.fct.2018.05.007
[25] Madhukar, G. and Subbarao, N. (2023) Potential Inhibitors of RPS6KB2 and NRF2 in Head and Neck Squamous Cell Carcinoma. Journal of Biomolecular Structure and Dynamics, 42, 1875-1900.
https://doi.org/10.1080/07391102.2023.220594
[26] Tran, T.N.A., Nahar, J., Park, J., Murugesan, M., Ko, J., Ahn, J.C., et al. (2024) Cloning, Characterization of β-Glucosidase from Furfurilactobacillus rossiae in Bioconversion and Its Efficacy. Archives of Microbiology, 206, Article No. 423.
https://doi.org/10.1007/s00203-024-04148-4
[27] Zu, M., Duan, Y., Xie, J., Qi, Y., Xie, P., Borjigidai, A., et al. (2021) Gypenoside LI Arrests the Cell Cycle of Breast Cancer in G0/G1 Phase by Down-Regulating E2f1. Journal of Ethnopharmacology, 273, Article ID: 114017.
https://doi.org/10.1016/j.jep.2021.114017
[28] Xing, S., Liu, L., Zu, M., Ding, X., Cui, W., Chang, T., et al. (2018) The Inhibitory Effect of Gypenoside Stereoisomers, Gypenoside L and Gypenoside LI, Isolated from Gynostemma pentaphyllum on the Growth of Human Lung Cancer A549 Cells. Journal of Ethnopharmacology, 219, 161-172.
https://doi.org/10.1016/j.jep.2018.03.012
[29] Liu, J., Chiang, T., Wang, J., Lin, L., Chao, W., Inbaraj, B.S., et al. (2015) Induction of P53‐Independent Growth Inhibition in Lung Carcinoma Cell A549 by Gypenosides. Journal of Cellular and Molecular Medicine, 19, 1697-1709.
https://doi.org/10.1111/jcmm.12546
[30] Song, H., Qiu, Z., Wang, Y., Xi, C., Zhang, G., Sun, Z., et al. (2023) Hif-1α/yap Signaling Rewrites Glucose/Iodine Metabolism Program to Promote Papillary Thyroid Cancer Progression. International Journal of Biological Sciences, 19, 225-241.
https://doi.org/10.7150/ijbs.75459
[31] Pan, L., Lan, B., Li, S., Jin, Y., Cui, M., Xia, Y., et al. (2024) Gypenoside Inhibits Gastric Cancer Proliferation by Suppressing Glycolysis via the Hippo Pathway. Scientific Reports, 14, Article No. 19003.
https://doi.org/10.1038/s41598-024-69435-y
[32] 文利, 郑新, 刘飞, 等. 绞股蓝皂苷抑制HepG2细胞无氧糖酵解的检测分析[J]. 检验医学与临床, 2017, 14(4): 484-486.
[33] 谭先胜, 李锴男, 苗亚军. 绞股蓝皂苷通过上调sTim-3/Tim-3比率抑制非小细胞肺癌细胞免疫逃逸因子的表达[J]. 免疫学杂志, 2021, 37(6): 520-527.
[34] Wu, H., Lai, W., Wang, Q., Zhou, Q., Zhang, R. and Zhao, Y. (2024) Gypenoside Induces Apoptosis by Inhibiting the PI3K/AKT/mTOR Pathway and Enhances T-Cell Antitumor Immunity by Inhibiting PD-L1 in Gastric Cancer. Frontiers in Pharmacology, 15, Article 1243353.
https://doi.org/10.3389/fphar.2024.1243353
[35] Qi, Y., Xiao, M., Xie, P., Xie, J., Guo, M., Li, F., et al. (2022) Comprehensive Serum Metabolomics and Network Analysis to Reveal the Mechanism of Gypenosides in Treating Lung Cancer and Enhancing the Pharmacological Effects of Cisplatin. Frontiers in Pharmacology, 13, Article 1070948.
https://doi.org/10.3389/fphar.2022.1070948
[36] Ma, J., Hu, X., Liao, C., Xiao, H., Zhu, Q., Li, Y., et al. (2019) Gypenoside L Inhibits Proliferation of Liver and Esophageal Cancer Cells by Inducing Senescence. Molecules, 24, Article 1054.
https://doi.org/10.3390/molecules24061054
[37] Kong, L., Wang, X., Zhang, K., Yuan, W., Yang, Q., Fan, J., et al. (2015) Gypenosides Synergistically Enhances the Anti-Tumor Effect of 5-Fluorouracil on Colorectal Cancer in Vitro and in Vivo: A Role for Oxidative Stress-Mediated DNA Damage and P53 Activation. PLOS ONE, 10, e0137888.
https://doi.org/10.1371/journal.pone.0137888
[38] Zhu, H., Liu, Z., Tang, L., Liu, J., Zhou, M., Xie, F., et al. (2012) Reversal of P-gp and MRP1-Mediated Multidrug Resistance by H6, a Gypenoside Aglycon from Gynostemma pentaphyllum, in Vincristine-Resistant Human Oral Cancer (KB/VCR) Cells. European Journal of Pharmacology, 696, 43-53.
https://doi.org/10.1016/j.ejphar.2012.09.046