|
[1]
|
王裕新, 潘凯枫, 李文庆. 2022全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2024, 10(3): 1-16.
|
|
[2]
|
Abdolahi, S., Ghazvinian, Z., Muhammadnejad, S., Ahmadvand, M., Aghdaei, H.A., Ebrahimi-Barough, S., et al. (2021) Adaptive NK Cell Therapy Modulated by Anti-PD-1 Antibody in Gastric Cancer Model. Frontiers in Pharmacology, 12, Article 733075. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Damele, L., Spaggiari, G.M., Parodi, M., Mingari, M.C., Vitale, M. and Vitale, C. (2022) Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More than a Promise? Cancers, 14, Article 4439. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, C., Burger, M.C., Jennewein, L., Genßler, S., Schönfeld, K., Zeiner, P., et al. (2015) Erbb2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. JNCI: Journal of the National Cancer Institute, 108, djv375. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vinay, D.S., Ryan, E.P., Pawelec, G., Talib, W.H., Stagg, J., Elkord, E., et al. (2015) Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Seminars in Cancer Biology, 35, S185-S198. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tie, Y., Tang, F., Wei, Y. and Wei, X. (2022) Immunosuppressive Cells in Cancer: Mechanisms and Potential Therapeutic Targets. Journal of Hematology & Oncology, 15, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, L., Yu, R., Cai, T., Chen, Z., Lan, M., Zou, T., et al. (2020) Effects of Immune Cells and Cytokines on Inflammation and Immunosuppression in the Tumor Microenvironment. International Immunopharmacology, 88, Article 106939. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yi, M., Xu, L., Jiao, Y., Luo, S., Li, A. and Wu, K. (2020) The Role of Cancer-Derived MicroRNAs in Cancer Immune Escape. Journal of Hematology & Oncology, 13, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Laskowski, T.J., Biederstädt, A. and Rezvani, K. (2022) Natural Killer Cells in Antitumour Adoptive Cell Immunotherapy. Nature Reviews Cancer, 22, 557-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Myers, J.A. and Miller, J.S. (2020) Exploring the NK Cell Platform for Cancer Immunotherapy. Nature Reviews Clinical Oncology, 18, 85-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Malmberg, K., Carlsten, M., Björklund, A., Sohlberg, E., Bryceson, Y.T. and Ljunggren, H. (2017) Natural Killer Cell-Mediated Immunosurveillance of Human Cancer. Seminars in Immunology, 31, 20-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lanier, L.L. (2008) Up on the Tightrope: Natural Killer Cell Activation and Inhibition. Nature Immunology, 9, 495-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Delconte, R.B., Kolesnik, T.B., Dagley, L.F., Rautela, J., Shi, W., Putz, E.M., et al. (2016) CIS Is a Potent Checkpoint in NK Cell-Mediated Tumor Immunity. Nature Immunology, 17, 816-824. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cooley, S., Xiao, F., Pitt, M., Gleason, M., McCullar, V., Bergemann, T.L., et al. (2007) A Subpopulation of Human Peripheral Blood NK Cells That Lacks Inhibitory Receptors for Self-MHC Is Developmentally Immature. Blood, 110, 578-586. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, W. (2015) NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Frontiers in Immunology, 6, Article 368. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sungur, C.M. and Murphy, W.J. (2014) Positive and Negative Regulation by NK Cells in Cancer. Critical Reviews in Oncogenesis, 19, 57-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wu, S., Fu, T., Jiang, Y. and Shao, Z. (2020) Natural Killer Cells in Cancer Biology and Therapy. Molecular Cancer, 19, Article No. 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chu, J., Gao, F., Yan, M., Zhao, S., Yan, Z., Shi, B., et al. (2022) Natural Killer Cells: A Promising Immunotherapy for Cancer. Journal of Translational Medicine, 20, Article No. 240. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, S., Galat, V., Galat4, Y., Lee, Y.K.A., Wainwright, D. and Wu, J. (2021) NK Cell-Based Cancer Immunotherapy: From Basic Biology to Clinical Development. Journal of Hematology & Oncology, 14, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Shimasaki, N., Jain, A. and Campana, D. (2020) NK Cells for Cancer Immunotherapy. Nature Reviews Drug Discovery, 19, 200-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cao, B., Liu, M., Huang, J., Zhou, J., Li, J., Lian, H., et al. (2021) Development of Mesothelin-Specific CAR NK-92 Cells for the Treatment of Gastric Cancer. International Journal of Biological Sciences, 17, 3850-3861. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Peng, L., Zhang, J., Teng, Y., Zhao, Y., Wang, T., Mao, F., et al. (2017) Tumor-Associated Monocytes/Macrophages Impair NK-Cell Function via TGFβ1 in Human Gastric Cancer. Cancer Immunology Research, 5, 248-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Velichinskii, R.A., Streltsova, M.A., Kust, S.A., Sapozhnikov, A.M. and Kovalenko, E.I. (2021) The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. International Journal of Molecular Sciences, 22, Article 11385. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Platonova, S., Cherfils-Vicini, J., Damotte, D., Crozet, L., Vieillard, V., Validire, P., et al. (2011) Profound Coordinated Alterations of Intratumoral NK Cell Phenotype and Function in Lung Carcinoma. Cancer Research, 71, 5412-5422. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Rosario, M., Liu, B., Kong, L., Collins, L.I., Schneider, S.E., Chen, X., et al. (2016) The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and in vivo Clearance of B Cell Lymphomas. Clinical Cancer Research, 22, 596-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Belli, C., Trapani, D., Viale, G., D’Amico, P., Duso, B.A., Della Vigna, P., et al. (2018) Targeting the Microenvironment in Solid Tumors. Cancer Treatment Reviews, 65, 22-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Parkhurst, M.R., Riley, J.P., Dudley, M.E. and Rosenberg, S.A. (2011) Adoptive Transfer of Autologous Natural Killer Cells Leads to High Levels of Circulating Natural Killer Cells but Does Not Mediate Tumor Regression. Clinical Cancer Research, 17, 6287-6297. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ishikawa, T., Okayama, T., Sakamoto, N., Ideno, M., Oka, K., Enoki, T., et al. (2018) Phase I Clinical Trial of Adoptive Transfer of Expanded Natural Killer Cells in Combination with IgG1 Antibody in Patients with Gastric or Colorectal Cancer. International Journal of Cancer, 142, 2599-2609. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sun, C., Xu, J., Huang, Q., Huang, M., Wen, H., Zhang, C., et al. (2016) High NKG2A Expression Contributes to NK Cell Exhaustion and Predicts a Poor Prognosis of Patients with Liver Cancer. OncoImmunology, 6, e1264562. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sarvaria, A., Jawdat, D., Madrigal, J.A. and Saudemont, A. (2017) Umbilical Cord Blood Natural Killer Cells, Their Characteristics, and Potential Clinical Applications. Frontiers in Immunology, 8, Article 329. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Luevano, M., Daryouzeh, M., Alnabhan, R., Querol, S., Khakoo, S., Madrigal, A., et al. (2012) The Unique Profile of Cord Blood Natural Killer Cells Balances Incomplete Maturation and Effective Killing Function Upon Activation. Human Immunology, 73, 248-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lian, G., Mak, T.S., Yu, X. and Lan, H. (2021) Challenges and Recent Advances in NK Cell-Targeted Immunotherapies in Solid Tumors. International Journal of Molecular Sciences, 23, Article 164. [Google Scholar] [CrossRef] [PubMed]
|