[1]
|
王裕新, 潘凯枫, 李文庆. 2022全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2024, 10(3): 1-16.
|
[2]
|
Abdolahi, S., Ghazvinian, Z., Muhammadnejad, S., Ahmadvand, M., Aghdaei, H.A., Ebrahimi-Barough, S., et al. (2021) Adaptive NK Cell Therapy Modulated by Anti-PD-1 Antibody in Gastric Cancer Model. Frontiers in Pharmacology, 12, Article 733075. https://doi.org/10.3389/fphar.2021.733075
|
[3]
|
Damele, L., Spaggiari, G.M., Parodi, M., Mingari, M.C., Vitale, M. and Vitale, C. (2022) Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More than a Promise? Cancers, 14, Article 4439. https://doi.org/10.3390/cancers14184439
|
[4]
|
Zhang, C., Burger, M.C., Jennewein, L., Genßler, S., Schönfeld, K., Zeiner, P., et al. (2015) Erbb2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. JNCI: Journal of the National Cancer Institute, 108, djv375. https://doi.org/10.1093/jnci/djv375
|
[5]
|
Vinay, D.S., Ryan, E.P., Pawelec, G., Talib, W.H., Stagg, J., Elkord, E., et al. (2015) Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Seminars in Cancer Biology, 35, S185-S198. https://doi.org/10.1016/j.semcancer.2015.03.004
|
[6]
|
Tie, Y., Tang, F., Wei, Y. and Wei, X. (2022) Immunosuppressive Cells in Cancer: Mechanisms and Potential Therapeutic Targets. Journal of Hematology & Oncology, 15, Article No. 61. https://doi.org/10.1186/s13045-022-01282-8
|
[7]
|
Li, L., Yu, R., Cai, T., Chen, Z., Lan, M., Zou, T., et al. (2020) Effects of Immune Cells and Cytokines on Inflammation and Immunosuppression in the Tumor Microenvironment. International Immunopharmacology, 88, Article 106939. https://doi.org/10.1016/j.intimp.2020.106939
|
[8]
|
Yi, M., Xu, L., Jiao, Y., Luo, S., Li, A. and Wu, K. (2020) The Role of Cancer-Derived MicroRNAs in Cancer Immune Escape. Journal of Hematology & Oncology, 13, Article No. 25. https://doi.org/10.1186/s13045-020-00848-8
|
[9]
|
Laskowski, T.J., Biederstädt, A. and Rezvani, K. (2022) Natural Killer Cells in Antitumour Adoptive Cell Immunotherapy. Nature Reviews Cancer, 22, 557-575. https://doi.org/10.1038/s41568-022-00491-0
|
[10]
|
Myers, J.A. and Miller, J.S. (2020) Exploring the NK Cell Platform for Cancer Immunotherapy. Nature Reviews Clinical Oncology, 18, 85-100. https://doi.org/10.1038/s41571-020-0426-7
|
[11]
|
Malmberg, K., Carlsten, M., Björklund, A., Sohlberg, E., Bryceson, Y.T. and Ljunggren, H. (2017) Natural Killer Cell-Mediated Immunosurveillance of Human Cancer. Seminars in Immunology, 31, 20-29. https://doi.org/10.1016/j.smim.2017.08.002
|
[12]
|
Lanier, L.L. (2008) Up on the Tightrope: Natural Killer Cell Activation and Inhibition. Nature Immunology, 9, 495-502. https://doi.org/10.1038/ni1581
|
[13]
|
Delconte, R.B., Kolesnik, T.B., Dagley, L.F., Rautela, J., Shi, W., Putz, E.M., et al. (2016) CIS Is a Potent Checkpoint in NK Cell-Mediated Tumor Immunity. Nature Immunology, 17, 816-824. https://doi.org/10.1038/ni.3470
|
[14]
|
Cooley, S., Xiao, F., Pitt, M., Gleason, M., McCullar, V., Bergemann, T.L., et al. (2007) A Subpopulation of Human Peripheral Blood NK Cells That Lacks Inhibitory Receptors for Self-MHC Is Developmentally Immature. Blood, 110, 578-586. https://doi.org/10.1182/blood-2006-07-036228
|
[15]
|
Wang, W. (2015) NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Frontiers in Immunology, 6, Article 368. https://doi.org/10.3389/fimmu.2015.00368
|
[16]
|
Sungur, C.M. and Murphy, W.J. (2014) Positive and Negative Regulation by NK Cells in Cancer. Critical Reviews in Oncogenesis, 19, 57-66. https://doi.org/10.1615/critrevoncog.2014010805
|
[17]
|
Wu, S., Fu, T., Jiang, Y. and Shao, Z. (2020) Natural Killer Cells in Cancer Biology and Therapy. Molecular Cancer, 19, Article No. 120. https://doi.org/10.1186/s12943-020-01238-x
|
[18]
|
Chu, J., Gao, F., Yan, M., Zhao, S., Yan, Z., Shi, B., et al. (2022) Natural Killer Cells: A Promising Immunotherapy for Cancer. Journal of Translational Medicine, 20, Article No. 240. https://doi.org/10.1186/s12967-022-03437-0
|
[19]
|
Liu, S., Galat, V., Galat4, Y., Lee, Y.K.A., Wainwright, D. and Wu, J. (2021) NK Cell-Based Cancer Immunotherapy: From Basic Biology to Clinical Development. Journal of Hematology & Oncology, 14, Article No. 7. https://doi.org/10.1186/s13045-020-01014-w
|
[20]
|
Shimasaki, N., Jain, A. and Campana, D. (2020) NK Cells for Cancer Immunotherapy. Nature Reviews Drug Discovery, 19, 200-218. https://doi.org/10.1038/s41573-019-0052-1
|
[21]
|
Cao, B., Liu, M., Huang, J., Zhou, J., Li, J., Lian, H., et al. (2021) Development of Mesothelin-Specific CAR NK-92 Cells for the Treatment of Gastric Cancer. International Journal of Biological Sciences, 17, 3850-3861. https://doi.org/10.7150/ijbs.64630
|
[22]
|
Peng, L., Zhang, J., Teng, Y., Zhao, Y., Wang, T., Mao, F., et al. (2017) Tumor-Associated Monocytes/Macrophages Impair NK-Cell Function via TGFβ1 in Human Gastric Cancer. Cancer Immunology Research, 5, 248-256. https://doi.org/10.1158/2326-6066.cir-16-0152
|
[23]
|
Velichinskii, R.A., Streltsova, M.A., Kust, S.A., Sapozhnikov, A.M. and Kovalenko, E.I. (2021) The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. International Journal of Molecular Sciences, 22, Article 11385. https://doi.org/10.3390/ijms222111385
|
[24]
|
Platonova, S., Cherfils-Vicini, J., Damotte, D., Crozet, L., Vieillard, V., Validire, P., et al. (2011) Profound Coordinated Alterations of Intratumoral NK Cell Phenotype and Function in Lung Carcinoma. Cancer Research, 71, 5412-5422. https://doi.org/10.1158/0008-5472.can-10-4179
|
[25]
|
Rosario, M., Liu, B., Kong, L., Collins, L.I., Schneider, S.E., Chen, X., et al. (2016) The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and in vivo Clearance of B Cell Lymphomas. Clinical Cancer Research, 22, 596-608. https://doi.org/10.1158/1078-0432.ccr-15-1419
|
[26]
|
Belli, C., Trapani, D., Viale, G., D’Amico, P., Duso, B.A., Della Vigna, P., et al. (2018) Targeting the Microenvironment in Solid Tumors. Cancer Treatment Reviews, 65, 22-32. https://doi.org/10.1016/j.ctrv.2018.02.004
|
[27]
|
Parkhurst, M.R., Riley, J.P., Dudley, M.E. and Rosenberg, S.A. (2011) Adoptive Transfer of Autologous Natural Killer Cells Leads to High Levels of Circulating Natural Killer Cells but Does Not Mediate Tumor Regression. Clinical Cancer Research, 17, 6287-6297. https://doi.org/10.1158/1078-0432.ccr-11-1347
|
[28]
|
Ishikawa, T., Okayama, T., Sakamoto, N., Ideno, M., Oka, K., Enoki, T., et al. (2018) Phase I Clinical Trial of Adoptive Transfer of Expanded Natural Killer Cells in Combination with IgG1 Antibody in Patients with Gastric or Colorectal Cancer. International Journal of Cancer, 142, 2599-2609. https://doi.org/10.1002/ijc.31285
|
[29]
|
Sun, C., Xu, J., Huang, Q., Huang, M., Wen, H., Zhang, C., et al. (2016) High NKG2A Expression Contributes to NK Cell Exhaustion and Predicts a Poor Prognosis of Patients with Liver Cancer. OncoImmunology, 6, e1264562. https://doi.org/10.1080/2162402x.2016.1264562
|
[30]
|
Sarvaria, A., Jawdat, D., Madrigal, J.A. and Saudemont, A. (2017) Umbilical Cord Blood Natural Killer Cells, Their Characteristics, and Potential Clinical Applications. Frontiers in Immunology, 8, Article 329. https://doi.org/10.3389/fimmu.2017.00329
|
[31]
|
Luevano, M., Daryouzeh, M., Alnabhan, R., Querol, S., Khakoo, S., Madrigal, A., et al. (2012) The Unique Profile of Cord Blood Natural Killer Cells Balances Incomplete Maturation and Effective Killing Function Upon Activation. Human Immunology, 73, 248-257. https://doi.org/10.1016/j.humimm.2011.12.015
|
[32]
|
Lian, G., Mak, T.S., Yu, X. and Lan, H. (2021) Challenges and Recent Advances in NK Cell-Targeted Immunotherapies in Solid Tumors. International Journal of Molecular Sciences, 23, Article 164. https://doi.org/10.3390/ijms23010164
|