[1]
|
Wang, X., Zhang, L., Li, P., Zheng, Y., Yang, Y. and Ji, S. (2022) Apelin/APJ System in Inflammation. International Immunopharmacology, 109, Article ID: 108822. https://doi.org/10.1016/j.intimp.2022.108822
|
[2]
|
Zhou, J., Shuai, N., Wang, B., Jin, X., Kuang, X. and Tian, S. (2021) Neuroprotective Gain of Apelin/APJ System. Neuropeptides, 87, Article ID: 102131. https://doi.org/10.1016/j.npep.2021.102131
|
[3]
|
Steyger, P.S. (2021) Mechanisms of Aminoglycoside-And Cisplatin-Induced Ototoxicity. American Journal of Audiology, 30, 887-900. https://doi.org/10.1044/2021_aja-21-00006
|
[4]
|
Gopal, K.V., Wu, C., Shrestha, B., Campbell, K.C.M., Moore, E.J. and Gross, G.W. (2012) D-Methionine Protects against Cisplatin-Induced Neurotoxicity in Cortical Networks. Neurotoxicology and Teratology, 34, 495-504. https://doi.org/10.1016/j.ntt.2012.06.002
|
[5]
|
Hinduja, S., Kraus, K.S., Manohar, S. and Salvi, R.J. (2014) D-Methionine Protects against Cisplatin-Induced Neurotoxicity in the Hippocampus of the Adult Rat. Neurotoxicity Research, 27, 199-204. https://doi.org/10.1007/s12640-014-9503-y
|
[6]
|
Centers for Disease Control and Prevention (CDC) (2004) Economic Costs Associated with Mental Retardation, Cerebral Palsy, Hearing Loss, and Vision Impairment—United States, 2003. Morbidity and Mortality Weekly Report, 53, 57-59.
|
[7]
|
Elson, E.C., Meier, E. and Oermann, C.M. (2021) The Implementation of an Aminoglycoside Induced Ototoxicity Algorithm for People with Cystic Fibrosis. Journal of Cystic Fibrosis, 20, 284-287. https://doi.org/10.1016/j.jcf.2020.08.002
|
[8]
|
Garinis, A.C., Cross, C.P., Srikanth, P., Carroll, K., Feeney, M.P., Keefe, D.H., et al. (2017) The Cumulative Effects of Intravenous Antibiotic Treatments on Hearing in Patients with Cystic Fibrosis. Journal of Cystic Fibrosis, 16, 401-409. https://doi.org/10.1016/j.jcf.2017.01.006
|
[9]
|
Garinis, A.C., Liao, S., Cross, C.P., Galati, J., Middaugh, J.L., Mace, J.C., et al. (2017) Effect of Gentamicin and Levels of Ambient Sound on Hearing Screening Outcomes in the Neonatal Intensive Care Unit: A Pilot Study. International Journal of Pediatric Otorhinolaryngology, 97, 42-50. https://doi.org/10.1016/j.ijporl.2017.03.025
|
[10]
|
Nyberg, S., Abbott, N.J., Shi, X., Steyger, P.S. and Dabdoub, A. (2019) Delivery of Therapeutics to the Inner Ear: The Challenge of the Blood-Labyrinth Barrier. Science Translational Medicine, 11, eaao0935. https://doi.org/10.1126/scitranslmed.aao0935
|
[11]
|
Wangemann, P. (2006) Supporting Sensory Transduction: Cochlear Fluid Homeostasis and the Endocochlear Potential. The Journal of Physiology, 576, 11-21. https://doi.org/10.1113/jphysiol.2006.112888
|
[12]
|
Hellberg, V., Wallin, I., Ehrsson, H. and Laurell, G. (2013) Cochlear Pharmacokinetics of Cisplatin: An in Vivo Study in the Guinea Pig. The Laryngoscope, 123, 3172-3177. https://doi.org/10.1002/lary.24235
|
[13]
|
Li, H. and Steyger, P.S. (2011) Systemic Aminoglycosides Are Trafficked via Endolymph into Cochlear Hair Cells. Scientific Reports, 1, Article No. 159. https://doi.org/10.1038/srep00159
|
[14]
|
Koo, J., Quintanilla-Dieck, L., Jiang, M., Liu, J., Urdang, Z.D., Allensworth, J.J., et al. (2015) Endotoxemia-Mediated Inflammation Potentiates Aminoglycoside-Induced Ototoxicity. Science Translational Medicine, 7, 298ra118. https://doi.org/10.1126/scitranslmed.aac5546
|
[15]
|
Li, H., Kachelmeier, A., Furness, D.N. and Steyger, P.S. (2015) Local Mechanisms for Loud Sound-Enhanced Aminoglycoside Entry into Outer Hair Cells. Frontiers in Cellular Neuroscience, 9, Article No. 130. https://doi.org/10.3389/fncel.2015.00130
|
[16]
|
Groves, A.K. (2010) The Challenge of Hair Cell Regeneration. Experimental Biology and Medicine, 235, 434-446. https://doi.org/10.1258/ebm.2009.009281
|
[17]
|
Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. and Humphreys, B.D. (2013) Differentiated Kidney Epithelial Cells Repair Injured Proximal Tubule. Proceedings of the National Academy of Sciences of the United States of America, 111, 1527-1532. https://doi.org/10.1073/pnas.1310653110
|
[18]
|
Lombardi, D., Becherucci, F. and Romagnani, P. (2015) How Much Can the Tubule Regenerate and Who Does It? An Open Question. Nephrology Dialysis Transplantation, 31, 1243-1250. https://doi.org/10.1093/ndt/gfv262
|
[19]
|
Karasawa, T., Wang, Q., David, L.L. and Steyger, P.S. (2011) Calreticulin Binds to Gentamicin and Reduces Drug-Induced Ototoxicity. Toxicological Sciences, 124, 378-387. https://doi.org/10.1093/toxsci/kfr196
|
[20]
|
Jiang, M., Karasawa, T. and Steyger, P.S. (2017) Aminoglycoside-Induced Cochleotoxicity: A Review. Frontiers in Cellular Neuroscience, 11, Article No. 308. https://doi.org/10.3389/fncel.2017.00308
|
[21]
|
Oishi, N., Duscha, S., Boukari, H., Meyer, M., Xie, J., Wei, G., et al. (2015) XBP1 Mitigates Aminoglycoside-Induced Endoplasmic Reticulum Stress and Neuronal Cell Death. Cell Death & Disease, 6, e1763. https://doi.org/10.1038/cddis.2015.108
|
[22]
|
Esterberg, R., Linbo, T., Pickett, S.B., Wu, P., Ou, H.C., Rubel, E.W., et al. (2016) Mitochondrial Calcium Uptake Underlies ROS Generation during Aminoglycoside-Induced Hair Cell Death. Journal of Clinical Investigation, 126, 3556-3566. https://doi.org/10.1172/jci84939
|
[23]
|
Zhang, X. and Yu, J. (2019) Baicalin Attenuates Gentamicin‐induced Cochlear Hair Cell Ototoxicity. Journal of Applied Toxicology, 39, 1208-1214. https://doi.org/10.1002/jat.3806
|
[24]
|
Prasad, K.N. and Bondy, S.C. (2020) Increased Oxidative Stress, Inflammation, and Glutamate: Potential Preventive and Therapeutic Targets for Hearing Disorders. Mechanisms of Ageing and Development, 185, Article ID: 111191. https://doi.org/10.1016/j.mad.2019.111191
|
[25]
|
Shulman, E., Belakhov, V., Wei, G., Kendall, A., Meyron-Holtz, E.G., Ben-Shachar, D., et al. (2014) Designer Aminoglycosides That Selectively Inhibit Cytoplasmic Rather than Mitochondrial Ribosomes Show Decreased Ototoxicity: A Strategy for the Treatment of Genetic Diseases. Journal of Biological Chemistry, 289, 2318-2330. https://doi.org/10.1074/jbc.m113.533588
|
[26]
|
Ojano-Dirain, C.P., Antonelli, P.J. and Le Prell, C.G. (2014) Mitochondria-Targeted Antioxidant MitoQ Reduces Gentamicin-Induced Ototoxicity. Otology & Neurotology, 35, 533-539. https://doi.org/10.1097/mao.0000000000000192
|
[27]
|
He, Z., Guo, L., Shu, Y., Fang, Q., Zhou, H., Liu, Y., et al. (2017) Autophagy Protects Auditory Hair Cells against Neomycin-Induced Damage. Autophagy, 13, 1884-1904. https://doi.org/10.1080/15548627.2017.1359449
|
[28]
|
O'Carroll, A., Lolait, S.J., Harris, L.E. and Pope, G.R. (2013) The Apelin Receptor APJ: Journey from an Orphan to a Multifaceted Regulator of Homeostasis. Journal of Endocrinology, 219, R13-R35. https://doi.org/10.1530/joe-13-0227
|
[29]
|
Tatemoto, K., Hosoya, M., Habata, Y., Fujii, R., Kakegawa, T., Zou, M., et al. (1998) Isolation and Characterization of a Novel Endogenous Peptide Ligand for the Human APJ Receptor. Biochemical and Biophysical Research Communications, 251, 471-476. https://doi.org/10.1006/bbrc.1998.9489
|
[30]
|
Ilaghi, M., Soltanizadeh, A., Amiri, S., et al. (2022) The Apelin/APJ Signaling System and Cytoprotection: Role of Its Cross-Talk with Kappa Opioid Receptor. European Journal of Pharmacology, 936, Article 175353.
|
[31]
|
Vafaei-Nezhad, S., Niknazar, S., Norouzian, M., Abdollahifar, M., Aliaghaei, A. and Abbaszadeh, H.A. (2021) Therapeutics Effects of [Pyr1] Apelin-13 on Rat Contusion Model of Spinal Cord Injury: An Experimental Study. Journal of Chemical Neuroanatomy, 113, Article ID: 101924. https://doi.org/10.1016/j.jchemneu.2021.101924
|
[32]
|
Kılınç, S., Ölçüoğlu, R., Arzu Yiğit, A., Güneşer, Ö. and Eylül Aydemir, B. (2024) Effects of Apelin-13 on Auditory System in STZ-Induced Diabetic Rats. Neuroscience Letters, 842, Article ID: 137996. https://doi.org/10.1016/j.neulet.2024.137996
|
[33]
|
Guo, Q., Liu, Q., Zhou, S., Lin, Y., Lv, A., Zhang, L., et al. (2024) Apelin Regulates Mitochondrial Dynamics by Inhibiting Mst1-JNK-Drp1 Signaling Pathway to Reduce Neuronal Apoptosis after Spinal Cord Injury. Neurochemistry International, 180, Article ID: 105885. https://doi.org/10.1016/j.neuint.2024.105885
|
[34]
|
Shokrollahi, B., Zheng, H., Ma, X. and Shang, J. (2023) The Effects of Apelin on IGF1/FSH-Induced Steroidogenesis, Proliferation, Bax Expression, and Total Antioxidant Capacity in Granulosa Cells of Buffalo Ovarian Follicles. Veterinary Research Communications, 47, 1523-1533. https://doi.org/10.1007/s11259-023-10107-z
|
[35]
|
Foussal, C., Lairez, O., Calise, D., Pathak, A., Guilbeau-Frugier, C., Valet, P., et al. (2010) Activation of Catalase by Apelin Prevents Oxidative Stress‐Linked Cardiac Hypertrophy. FEBS Letters, 584, 2363-2370. https://doi.org/10.1016/j.febslet.2010.04.025
|
[36]
|
Pouresmaeili-Babaki, E., Esmaeili-Mahani, S., Abbasnejad, M. and Ravan, H. (2018) Protective Effect of Neuropeptide Apelin-13 on 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Dopaminergic Cells: Involvement of Its Antioxidant and Antiapoptotic Properties. Rejuvenation Research, 21, 162-167. https://doi.org/10.1089/rej.2017.1951
|
[37]
|
Bircan, B., Çakır, M., Kırbağ, S. and Gül, H.F. (2016) Effect of Apelin Hormone on Renal Ischemia/Reperfusion Induced Oxidative Damage in Rats. Renal Failure, 38, 1122-1128. https://doi.org/10.1080/0886022x.2016.1184957
|
[38]
|
Azizi, Y., Faghihi, M., Imani, A., Roghani, M. and Nazari, A. (2013) Post-infarct Treatment with [Pyr1]-Apelin-13 Reduces Myocardial Damage through Reduction of Oxidative Injury and Nitric Oxide Enhancement in the Rat Model of Myocardial Infarction. Peptides, 46, 76-82. https://doi.org/10.1016/j.peptides.2013.05.006
|
[39]
|
Keskin-Aktan, A. and Kutlay, Ö. (2023) Exogenous Apelin-13 Administration Ameliorates Cyclophosphamide-Induced Oxidative Stress, Inflammation, and Apoptosis in Rat Lungs. Protein & Peptide Letters, 30, 743-753. https://doi.org/10.2174/0929866530666230824142516
|
[40]
|
Majumder, P., Duchen, M.R. and Gale, J.E. (2015) Cellular Glutathione Content in the Organ of Corti and Its Role during Ototoxicity. Frontiers in Cellular Neuroscience, 9, Article No. 143. https://doi.org/10.3389/fncel.2015.00143
|