Apelin的抗氧化性对氨基糖苷药物所致听力损失保护作用的研究进展
Research Progress on the Protective Effect of Apelin’s Antioxidant Activity on Aminoglycoside Induced Hearing Loss
DOI: 10.12677/jcpm.2024.34330, PDF, HTML, XML,   
作者: 牛鹏昊*:济宁医学院临床医学院,山东 济宁;杨欣欣#:济宁医学院附属医院耳鼻咽喉科,山东 济宁
关键词: Apelin氧化应激氨基糖苷类抗生素听力损失耳毒性Apelin Oxidative Stress Aminoglycoside Antibiotic Hearing Loss Ototoxicity
摘要: Apelin是指G蛋白偶联受体APJ中的一种特异性内源性配体,其在体内外均可抑制氧化应激和细胞凋亡。氨基糖苷类抗生素所导致的耳毒性即指氨基糖苷类抗生素所致的机体内耳机构(耳蜗和前庭器官)及其功能(听力和平衡觉)的损害。目前部分研究已经证明apelin对于氧化应激的调节有助于改善氨基糖苷类抗生素所带来的药物耳毒性影响。本文将从Apelin对氧化应激机制的调控和活性氧(ROS)过量堆积是氨基糖苷类抗生素所致的耳毒性的重要原因,以及apelin可以通过抑制氧化应激从而减轻氨基糖苷抗生素所导致的听力损失进行综述,旨在为氨基糖苷类临床药物所致耳毒性的毒副作用寻找科学可行的临床思路及新型防治策略。
Abstract: Apelin refers to a specific endogenous ligand in G protein-coupled receptor APJ that inhibits oxidative stress and apoptosis both in vivo and in vitro. Ototoxicity caused by aminoglycoside antibiotics refers to the impairment of inner ear organs (cochlea and vestibular organs) and their functions (hearing and balance) caused by aminoglycoside antibiotics. Some studies have shown that Apelin’s regulation of oxidative stress helps to ameliorate the ototoxic effects of aminoglycoside antibiotics. This article will review the regulation of oxidative stress mechanism by Apelin and the important cause of ototoxicity caused by aminoglycoside antibiotics due to excessive accumulation of reactive oxygen species (ROS), and how apelin can reduce hearing loss caused by aminoglycoside antibiotics by inhibiting oxidative stress. The aim is to find scientific and feasible clinical ideas and new prevention strategies for the side effects of ototoxicity caused by aminoglycoside drugs.
文章引用:牛鹏昊, 杨欣欣. Apelin的抗氧化性对氨基糖苷药物所致听力损失保护作用的研究进展[J]. 临床个性化医学, 2024, 3(4): 2315-2320. https://doi.org/10.12677/jcpm.2024.34330

1. 引言

Apelin是G蛋白偶联受体(APJ)中的一种内源性的配体,其大范围分布于人和动物的多种器官系统之中[1]。近年来,诸多研究证实了Apelin/APJ系统在抗炎、抗凋亡、抗氧化应激、调节自噬、阻断兴奋性毒性等神经保护作用,比如Apelin13可以抑制小胶质细胞、星胶质细胞等炎症细胞,也可显著抑制缺血脑组织氧化应激的产生,提高超氧化物歧化酶(SOD)的含量,证明了其有可能成为神经系统疾病的一个新颖的治疗靶点研究方向[2]。听力损失常见原因就是由于内耳耳蜗毛细胞、螺旋神经节等不可逆的死亡,这些细胞死亡原因可能与细胞过氧化即活性氧(ROS)过量堆积密切相关。因此,Apelin的抗氧化应激等机制方面的研究将有助于帮助我们为氨基糖苷类药物所致听力损失带来新的思路。

2. 耳毒性

耳毒性于2018年经过听力损失药物干预耳毒性工作组的共同研究决定,将其的定义定为由于暴露于某些某些药物、化学物质及相关电离辐射造成的内耳损害(主要是对耳蜗和前庭器官的损害) [3]。耳毒性通常被认为是一种对于耳部尤其是内耳的一种现象,由于内耳的大多数感觉功能与神经系统密不可分,耳毒性药物也会影响某些相关的中枢神经通路,当然其中也有包含有关听觉的神经通路,因而耳毒性的发生常常与神经损害密不可分[4] [5]。听觉是我们人类敏锐的感知能力之一,丧失良好听觉功能的人群将会不可避免地减少自身与亲朋好友之间的言语互动,并减少对周围环境声音的捕捉,相较于听力水平正常的人群变得不易产生安全感[6]。氨基糖苷类药物在临床上的广泛应用时期较早,同时相关的剂量分层方案和有限的纯音测听测试结果并不总是包括听力测定中高于8 kHz的频率,因而氨基糖苷类抗生素治疗后导致的听力下降发病率目前并不完全清楚,虽然如此,有数据统计表明接受氨基糖苷类抗生素治疗数天的患者中发生听力下降的患者约占到20%~63% [7]-[9]

2.1. 氨基糖苷类药物进入内耳的方式

血迷路屏障(BLB)将内耳中的耳蜗细胞及液体环境与血液分隔开来,与血脑屏障作用机理相似。内耳耳蜗血管的内皮细胞通常以紧密连接的方式结合在一起,通过这种紧密连接形成初级的血迷路屏障,因此大分子物质和血细胞并不容易通过血迷路屏障[10],内耳耳蜗内的淋巴液由其他细胞外液所含有的典型离子组成,并且液体的分子量体积较大[11]。尽管全身静脉给药的氨基糖苷类抗生素可以通过血液循环而进入内耳毛细胞基底外侧膜周围的外淋巴间隙,但是通常情况下氨基糖苷类抗生素较少通过此结构进入耳蜗毛细胞[12] [13]并且耳蜗内淋巴较血液或耳蜗外淋巴具有+80 mV的正电位,这对于听力的敏感性有重要意义。通过紧密连接的血管上皮细胞包围较小体积的内淋巴,以防止内淋巴与外淋巴相混合(由此避免听力损失),同时内淋巴的高电位和其含有的离子组成是由耳蜗侧壁血管纹的高代谢活性细胞造成[14] [15]。其中对于系统给药的氨基糖苷类抗生素和顺铂药物在耳蜗的主要运输途径均为主要从血管纹处的毛细血管进入耳蜗,其中氨基糖苷类抗生素进入内淋巴的离子通道或转运蛋白尚未完全确定[3]

2.2. 氨基糖苷类抗生素导致耳毒性的相关机制

对于哺乳动物而言,氨基糖苷类抗生素对于肾脏的近端小管细胞和内耳的耳蜗毛细胞都具有明显的毒副作用,有研究表明,如果可以及时停药,由于肾脏近端小管细胞具有再生能力,氨基糖苷类抗生素对于肾脏近端小管的毒性作用是可以逆转的,但是对于内耳的耳蜗毛细胞而言,由于耳蜗毛细胞几乎没有再生功能,所以药物导致的损伤通常将不可逆转[16]-[18]。在耳蜗毛细胞内,氨基糖苷类抗生素可与多种蛋白质结合,这些结合可以诱导毛细胞死亡的多种机制,比如内质网应激和线粒体完整性的破坏,该过程可以导致过量活性氧的产生使得ROS大量堆积进而导致细胞死亡,尤其是毛细胞死亡[19]-[22]。比如庆大霉素对内耳耳蜗毛细胞的毒性作用就与氧化应激过程中产生的大量ROS密切相关[23]。目前已有相关研究表明,氧化应激有可能是氨基糖苷类抗生素导致耳毒性的重要原因[24] [25]。耳蜗毛细胞在被氨基糖苷类抗生素损伤后,其内含有的活性氧(ROS)将显著增多。有报道称多种类型的抗氧化剂通过抑制过氧化减少ROS的产生对于保护耳蜗毛细胞有重要作用,说明抑制氧化应激可以使得耳蜗毛细胞对于氨基糖苷类抗生素的耳毒性有一定抗性[26]。同时有研究表明被新霉素处理的内耳耳蜗毛细胞中,自噬活性会显著增强,被经典自噬抑制剂3-MA处理过后会导致毛细胞中ROS高积累,表明自噬对于降低氨基糖苷类抗生素所导致耳毒性的作用机理上发挥着重要的抗氧化作用[27]

3. Apelin

Apelin是由基因APLN编码产生,APLN基因位于X染色体Xq25-26位,可编码氨基酸前肽高达77种[28],它有一个强疏水性的N末端区域结构,有可能是与受体相互影响的作用序列,还有一个C末端,与其生物活性相关[29],成熟的Apelin不具有桥结构而是以单体的形式存在[30],是G蛋白偶联受体APJ的内源性配体。后来有研究表明Apelin是一种可以由牛胃中提取的神经肽,根据最终产物氨基酸长度被划分为Apelin-36、Apelin-17、Apelin-13不同的亚型,与其余的Apelin亚型相比,Apelin-13表现出的活性最高[29]。研究表明,Apelin-13对神经退行性疾病中的氧化应激状态具有一定程度的神经保护作用[31]

3.1. Apelin的抗氧化性

有相关研究表明,经过Apelin治疗的糖尿病大鼠的耳蜗总抗氧化状态(TAS)较未经处理的糖尿病大鼠显著升高,同时其总氧化状态(TOS)和氧化应激指数(OSI)明显下降[32]。研究表明,Apelin可以增强线粒体膜电位,以此提高过氧化能力清除过量的ROS,最终减少细胞凋亡保护脊髓受损后损伤的神经元[33]。也有研究表明,Apelin可以增强水牛卵巢卵泡颗粒细胞的抗氧化能力[34]。综合来看,Apelin抗氧化清除ROS的功能已得到广泛认可,但到目前为止,Apelin在听力保护方面发挥抗氧化作用的研究相对较少,这意味着Apelin在听力保护的应用方面或许存在巨大潜力。

3.2. Apelin抗氧化的意义及作用机制

由于Apelin其所具有一定程度上的抗氧化能力,因此其在某些涉及到细胞层面损伤的疾病上具有一定的保护及治疗作用[35] [36]比如,Apelin可以通过促进线粒体超氧化物歧化酶以及过氧化氢酶和谷胱甘肽过氧化物酶的活性,来抑制羟基自由基以及丙二醛的生成,进而减少肾缺血再灌注后所导致的损伤[37]。同样的,Apelin也可以通过减少心肌梗死后血清中LDH、CK-MB和MDA水平,减少心肌梗死大鼠模型中氧化应激所带来的心肌损伤,这个过程中同样抑制了损伤组织的脂质过氧化,以此来达到保护心脏的作用[38]。而且,近期有研究表明,伴随着Sirt1的上调和NF-κB/p53的下调,Apelin-13可以抑制环磷酰胺诱导的氧化应激[39]。过量的ROS的产生及线粒体功能的障碍是耳蜗细胞凋亡的因素,也是顺铂导致药物性耳聋的关键因素[40],而Apelin对于抑制氧化应激,清除过量ROS的作用,或许可以成为我们防治氨基糖苷类药物所致耳毒性的关键靶点。

4. 讨论与展望

目前,通过查阅相关资料我们不难发现,药物性听力损失仍然是国内乃至国际普遍关注的热点问题,这其中尤其是氨基糖苷类抗生素所致的药物性耳聋更由于氨基糖苷类抗生素应用的广泛性而备受关注,虽然目前临床上对于氨基糖苷类药物的使用已远远不及较早时期的使用规模,但对于已经由于药物造成听力损失或正在经历听力下降的患者我们仍然应予以重视。目前对于Apelin用以改善氨基糖苷类抗生素所致药物性耳聋的研究还少之又少,相关机制也尚不明确,但是Apelin在其它系统如:代谢、神经、循环疾病的发生发展上,已被证实通过其抗氧化的作用确实起到了一定的改善效果。而且通过以上趋势及apelin用于治疗其他疾病的研究来看,我们有理由相信Apelin用于治疗氨基糖苷类抗生素所致药物性耳聋上有较高的临床价值。如前所述,值得我们关注的是,虽然氨基糖苷类抗生素所致耳毒性的相关机制已有较为广泛的研究,但在Apelin和其对治疗药物耳毒性所致听力下降相关联方面的研究仍有不足,尤其在对于氨基糖苷类药物所致听力下降的研究中相对空白,因而以Apelin作为临床药物用于氨基糖苷类抗生素所致药物性耳毒性的防治是极具前瞻性的,研究Apelin在听力保护领域方面的作用将可能为日后临床上药物性耳聋的患者的治疗带来新的思路。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Wang, X., Zhang, L., Li, P., Zheng, Y., Yang, Y. and Ji, S. (2022) Apelin/APJ System in Inflammation. International Immunopharmacology, 109, Article ID: 108822.
https://doi.org/10.1016/j.intimp.2022.108822
[2] Zhou, J., Shuai, N., Wang, B., Jin, X., Kuang, X. and Tian, S. (2021) Neuroprotective Gain of Apelin/APJ System. Neuropeptides, 87, Article ID: 102131.
https://doi.org/10.1016/j.npep.2021.102131
[3] Steyger, P.S. (2021) Mechanisms of Aminoglycoside-And Cisplatin-Induced Ototoxicity. American Journal of Audiology, 30, 887-900.
https://doi.org/10.1044/2021_aja-21-00006
[4] Gopal, K.V., Wu, C., Shrestha, B., Campbell, K.C.M., Moore, E.J. and Gross, G.W. (2012) D-Methionine Protects against Cisplatin-Induced Neurotoxicity in Cortical Networks. Neurotoxicology and Teratology, 34, 495-504.
https://doi.org/10.1016/j.ntt.2012.06.002
[5] Hinduja, S., Kraus, K.S., Manohar, S. and Salvi, R.J. (2014) D-Methionine Protects against Cisplatin-Induced Neurotoxicity in the Hippocampus of the Adult Rat. Neurotoxicity Research, 27, 199-204.
https://doi.org/10.1007/s12640-014-9503-y
[6] Centers for Disease Control and Prevention (CDC) (2004) Economic Costs Associated with Mental Retardation, Cerebral Palsy, Hearing Loss, and Vision Impairment—United States, 2003. Morbidity and Mortality Weekly Report, 53, 57-59.
[7] Elson, E.C., Meier, E. and Oermann, C.M. (2021) The Implementation of an Aminoglycoside Induced Ototoxicity Algorithm for People with Cystic Fibrosis. Journal of Cystic Fibrosis, 20, 284-287.
https://doi.org/10.1016/j.jcf.2020.08.002
[8] Garinis, A.C., Cross, C.P., Srikanth, P., Carroll, K., Feeney, M.P., Keefe, D.H., et al. (2017) The Cumulative Effects of Intravenous Antibiotic Treatments on Hearing in Patients with Cystic Fibrosis. Journal of Cystic Fibrosis, 16, 401-409.
https://doi.org/10.1016/j.jcf.2017.01.006
[9] Garinis, A.C., Liao, S., Cross, C.P., Galati, J., Middaugh, J.L., Mace, J.C., et al. (2017) Effect of Gentamicin and Levels of Ambient Sound on Hearing Screening Outcomes in the Neonatal Intensive Care Unit: A Pilot Study. International Journal of Pediatric Otorhinolaryngology, 97, 42-50.
https://doi.org/10.1016/j.ijporl.2017.03.025
[10] Nyberg, S., Abbott, N.J., Shi, X., Steyger, P.S. and Dabdoub, A. (2019) Delivery of Therapeutics to the Inner Ear: The Challenge of the Blood-Labyrinth Barrier. Science Translational Medicine, 11, eaao0935.
https://doi.org/10.1126/scitranslmed.aao0935
[11] Wangemann, P. (2006) Supporting Sensory Transduction: Cochlear Fluid Homeostasis and the Endocochlear Potential. The Journal of Physiology, 576, 11-21.
https://doi.org/10.1113/jphysiol.2006.112888
[12] Hellberg, V., Wallin, I., Ehrsson, H. and Laurell, G. (2013) Cochlear Pharmacokinetics of Cisplatin: An in Vivo Study in the Guinea Pig. The Laryngoscope, 123, 3172-3177.
https://doi.org/10.1002/lary.24235
[13] Li, H. and Steyger, P.S. (2011) Systemic Aminoglycosides Are Trafficked via Endolymph into Cochlear Hair Cells. Scientific Reports, 1, Article No. 159.
https://doi.org/10.1038/srep00159
[14] Koo, J., Quintanilla-Dieck, L., Jiang, M., Liu, J., Urdang, Z.D., Allensworth, J.J., et al. (2015) Endotoxemia-Mediated Inflammation Potentiates Aminoglycoside-Induced Ototoxicity. Science Translational Medicine, 7, 298ra118.
https://doi.org/10.1126/scitranslmed.aac5546
[15] Li, H., Kachelmeier, A., Furness, D.N. and Steyger, P.S. (2015) Local Mechanisms for Loud Sound-Enhanced Aminoglycoside Entry into Outer Hair Cells. Frontiers in Cellular Neuroscience, 9, Article No. 130.
https://doi.org/10.3389/fncel.2015.00130
[16] Groves, A.K. (2010) The Challenge of Hair Cell Regeneration. Experimental Biology and Medicine, 235, 434-446.
https://doi.org/10.1258/ebm.2009.009281
[17] Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. and Humphreys, B.D. (2013) Differentiated Kidney Epithelial Cells Repair Injured Proximal Tubule. Proceedings of the National Academy of Sciences of the United States of America, 111, 1527-1532.
https://doi.org/10.1073/pnas.1310653110
[18] Lombardi, D., Becherucci, F. and Romagnani, P. (2015) How Much Can the Tubule Regenerate and Who Does It? An Open Question. Nephrology Dialysis Transplantation, 31, 1243-1250.
https://doi.org/10.1093/ndt/gfv262
[19] Karasawa, T., Wang, Q., David, L.L. and Steyger, P.S. (2011) Calreticulin Binds to Gentamicin and Reduces Drug-Induced Ototoxicity. Toxicological Sciences, 124, 378-387.
https://doi.org/10.1093/toxsci/kfr196
[20] Jiang, M., Karasawa, T. and Steyger, P.S. (2017) Aminoglycoside-Induced Cochleotoxicity: A Review. Frontiers in Cellular Neuroscience, 11, Article No. 308.
https://doi.org/10.3389/fncel.2017.00308
[21] Oishi, N., Duscha, S., Boukari, H., Meyer, M., Xie, J., Wei, G., et al. (2015) XBP1 Mitigates Aminoglycoside-Induced Endoplasmic Reticulum Stress and Neuronal Cell Death. Cell Death & Disease, 6, e1763.
https://doi.org/10.1038/cddis.2015.108
[22] Esterberg, R., Linbo, T., Pickett, S.B., Wu, P., Ou, H.C., Rubel, E.W., et al. (2016) Mitochondrial Calcium Uptake Underlies ROS Generation during Aminoglycoside-Induced Hair Cell Death. Journal of Clinical Investigation, 126, 3556-3566.
https://doi.org/10.1172/jci84939
[23] Zhang, X. and Yu, J. (2019) Baicalin Attenuates Gentamicin‐induced Cochlear Hair Cell Ototoxicity. Journal of Applied Toxicology, 39, 1208-1214.
https://doi.org/10.1002/jat.3806
[24] Prasad, K.N. and Bondy, S.C. (2020) Increased Oxidative Stress, Inflammation, and Glutamate: Potential Preventive and Therapeutic Targets for Hearing Disorders. Mechanisms of Ageing and Development, 185, Article ID: 111191.
https://doi.org/10.1016/j.mad.2019.111191
[25] Shulman, E., Belakhov, V., Wei, G., Kendall, A., Meyron-Holtz, E.G., Ben-Shachar, D., et al. (2014) Designer Aminoglycosides That Selectively Inhibit Cytoplasmic Rather than Mitochondrial Ribosomes Show Decreased Ototoxicity: A Strategy for the Treatment of Genetic Diseases. Journal of Biological Chemistry, 289, 2318-2330.
https://doi.org/10.1074/jbc.m113.533588
[26] Ojano-Dirain, C.P., Antonelli, P.J. and Le Prell, C.G. (2014) Mitochondria-Targeted Antioxidant MitoQ Reduces Gentamicin-Induced Ototoxicity. Otology & Neurotology, 35, 533-539.
https://doi.org/10.1097/mao.0000000000000192
[27] He, Z., Guo, L., Shu, Y., Fang, Q., Zhou, H., Liu, Y., et al. (2017) Autophagy Protects Auditory Hair Cells against Neomycin-Induced Damage. Autophagy, 13, 1884-1904.
https://doi.org/10.1080/15548627.2017.1359449
[28] O'Carroll, A., Lolait, S.J., Harris, L.E. and Pope, G.R. (2013) The Apelin Receptor APJ: Journey from an Orphan to a Multifaceted Regulator of Homeostasis. Journal of Endocrinology, 219, R13-R35.
https://doi.org/10.1530/joe-13-0227
[29] Tatemoto, K., Hosoya, M., Habata, Y., Fujii, R., Kakegawa, T., Zou, M., et al. (1998) Isolation and Characterization of a Novel Endogenous Peptide Ligand for the Human APJ Receptor. Biochemical and Biophysical Research Communications, 251, 471-476.
https://doi.org/10.1006/bbrc.1998.9489
[30] Ilaghi, M., Soltanizadeh, A., Amiri, S., et al. (2022) The Apelin/APJ Signaling System and Cytoprotection: Role of Its Cross-Talk with Kappa Opioid Receptor. European Journal of Pharmacology, 936, Article 175353.
[31] Vafaei-Nezhad, S., Niknazar, S., Norouzian, M., Abdollahifar, M., Aliaghaei, A. and Abbaszadeh, H.A. (2021) Therapeutics Effects of [Pyr1] Apelin-13 on Rat Contusion Model of Spinal Cord Injury: An Experimental Study. Journal of Chemical Neuroanatomy, 113, Article ID: 101924.
https://doi.org/10.1016/j.jchemneu.2021.101924
[32] Kılınç, S., Ölçüoğlu, R., Arzu Yiğit, A., Güneşer, Ö. and Eylül Aydemir, B. (2024) Effects of Apelin-13 on Auditory System in STZ-Induced Diabetic Rats. Neuroscience Letters, 842, Article ID: 137996.
https://doi.org/10.1016/j.neulet.2024.137996
[33] Guo, Q., Liu, Q., Zhou, S., Lin, Y., Lv, A., Zhang, L., et al. (2024) Apelin Regulates Mitochondrial Dynamics by Inhibiting Mst1-JNK-Drp1 Signaling Pathway to Reduce Neuronal Apoptosis after Spinal Cord Injury. Neurochemistry International, 180, Article ID: 105885.
https://doi.org/10.1016/j.neuint.2024.105885
[34] Shokrollahi, B., Zheng, H., Ma, X. and Shang, J. (2023) The Effects of Apelin on IGF1/FSH-Induced Steroidogenesis, Proliferation, Bax Expression, and Total Antioxidant Capacity in Granulosa Cells of Buffalo Ovarian Follicles. Veterinary Research Communications, 47, 1523-1533.
https://doi.org/10.1007/s11259-023-10107-z
[35] Foussal, C., Lairez, O., Calise, D., Pathak, A., Guilbeau-Frugier, C., Valet, P., et al. (2010) Activation of Catalase by Apelin Prevents Oxidative Stress‐Linked Cardiac Hypertrophy. FEBS Letters, 584, 2363-2370.
https://doi.org/10.1016/j.febslet.2010.04.025
[36] Pouresmaeili-Babaki, E., Esmaeili-Mahani, S., Abbasnejad, M. and Ravan, H. (2018) Protective Effect of Neuropeptide Apelin-13 on 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Dopaminergic Cells: Involvement of Its Antioxidant and Antiapoptotic Properties. Rejuvenation Research, 21, 162-167.
https://doi.org/10.1089/rej.2017.1951
[37] Bircan, B., Çakır, M., Kırbağ, S. and Gül, H.F. (2016) Effect of Apelin Hormone on Renal Ischemia/Reperfusion Induced Oxidative Damage in Rats. Renal Failure, 38, 1122-1128.
https://doi.org/10.1080/0886022x.2016.1184957
[38] Azizi, Y., Faghihi, M., Imani, A., Roghani, M. and Nazari, A. (2013) Post-infarct Treatment with [Pyr1]-Apelin-13 Reduces Myocardial Damage through Reduction of Oxidative Injury and Nitric Oxide Enhancement in the Rat Model of Myocardial Infarction. Peptides, 46, 76-82.
https://doi.org/10.1016/j.peptides.2013.05.006
[39] Keskin-Aktan, A. and Kutlay, Ö. (2023) Exogenous Apelin-13 Administration Ameliorates Cyclophosphamide-Induced Oxidative Stress, Inflammation, and Apoptosis in Rat Lungs. Protein & Peptide Letters, 30, 743-753.
https://doi.org/10.2174/0929866530666230824142516
[40] Majumder, P., Duchen, M.R. and Gale, J.E. (2015) Cellular Glutathione Content in the Organ of Corti and Its Role during Ototoxicity. Frontiers in Cellular Neuroscience, 9, Article No. 143.
https://doi.org/10.3389/fncel.2015.00143