[1]
|
中华医学会呼吸病学分会哮喘学组. 咳嗽的诊断与治疗指南(2021) [J]. 中华结核和呼吸杂志, 2022, 45(1): 13-46.
|
[2]
|
Zhan, W., Wu, F., Zhang, Y., Lin, L., Li, W., Luo, W., et al. (2023) Identification of Cough-Variant Asthma Phenotypes Based on Clinical and Pathophysiologic Data. Journal of Allergy and Clinical Immunology, 152, 622-632. https://doi.org/10.1016/j.jaci.2023.04.017
|
[3]
|
Diab, N., Patel, M., O’Byrne, P. and Satia, I. (2022) Narrative Review of the Mechanisms and Treatment of Cough in Asthma, Cough Variant Asthma, and Non-Asthmatic Eosinophilic Bronchitis. Lung, 200, 707-716. https://doi.org/10.1007/s00408-022-00575-6
|
[4]
|
许婧, 戴启刚. 止喘灵口服液治疗儿童咳嗽变异性哮喘(风热袭肺证)的疗效观察[J]. 现代药物与临床, 2024, 39(7): 1848-1853.
|
[5]
|
陈晓纯, 杨建雅, 肖晶旻, 等. 仙芪青龙方治疗咳嗽变异性哮喘肺肾两虚、风盛挛急证的随机、阳性对照、非劣效性临床试验[J]. 中医杂志, 2024, 65(20): 2109-2115.
|
[6]
|
王谦, 倪艳, 刘聪, 等. 九味麻杏方治疗咳嗽变异性哮喘风邪伏肺证的临床随机对照研究[J]. 中国医院用药评价与分析, 2023, 23(11): 1301-1304.
|
[7]
|
Huynh, D.L., Ngau, T.H., Nguyen, N.H., Tran, G. and Nguyen, C.T. (2020) Potential Therapeutic and Pharmacological Effects of Wogonin: An Updated Review. Molecular Biology Reports, 47, 9779-9789. https://doi.org/10.1007/s11033-020-05972-9
|
[8]
|
Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., et al. (2018) Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomedicine & Pharmacotherapy, 97, 67-74. https://doi.org/10.1016/j.biopha.2017.10.064
|
[9]
|
Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. and Cao, Y. (2022) CB-Dock2: Improved Protein-Ligand Blind Docking by Integrating Cavity Detection, Docking and Homologous Template Fitting. Nucleic Acids Research, 50, W159-W164. https://doi.org/10.1093/nar/gkac394
|
[10]
|
Chan, I.H.S., Tang, N.L.S., Leung, T.F., Ma, S.L., Zhang, Y.P., Wong, G.W.K., et al. (2007) Association of Prostaglandin-Endoperoxide Synthase 2 Gene Polymorphisms with Asthma and Atopy in Chinese Children. Allergy, 62, 802-809. https://doi.org/10.1111/j.1398-9995.2007.01400.x
|
[11]
|
Yang, J., Li, Q., Zhou, X.D., Kolosov, V.P. and Perelman, J.M. (2011) Naringenin Attenuates Mucous Hypersecretion by Modulating Reactive Oxygen Species Production and Inhibiting NF-κB Activity via Egfr-PI3K-Akt/ERK Mapkinase Signaling in Human Airway Epithelial Cells. Molecular and Cellular Biochemistry, 351, 29-40. https://doi.org/10.1007/s11010-010-0708-y
|
[12]
|
Stark, J.M., Coquet, J.M. and Tibbitt, C.A. (2021) The Role of PPAR-Γ in Allergic Disease. Current Allergy and Asthma Reports, 21, Article No. 45. https://doi.org/10.1007/s11882-021-01022-x
|
[13]
|
Meng, X., Sun, X., Zhang, Y., Shi, H., Deng, W., Liu, Y., et al. (2018) PPARγ Agonist PGZ Attenuates Ova-Induced Airway Inflammation and Airway Remodeling via RGS4 Signaling in Mouse Model. Inflammation, 41, 2079-2089. https://doi.org/10.1007/s10753-018-0851-2
|
[14]
|
Kelly, E.A. and Jarjour, N.N. (2003) Role of Matrix Metalloproteinases in Asthma. Current Opinion in Pulmonary Medicine, 9, 28-33. https://doi.org/10.1097/00063198-200301000-00005
|
[15]
|
Gonzalez-Uribe, V., Martinez-Tenopala, R., Osorio-Martínez, A., Prieto-Gomez, J., Lammoglia Kirsch, A., Alcocer-Arreguin, C.R., et al. (2023) Expression of Hif-1α in Pediatric Asthmatic Patients. Multidisciplinary Respiratory Medicine, 18, Article 927.
|
[16]
|
Si, Z. and Zhang, B. (2021) Amygdalin Attenuates Airway Epithelium Apoptosis, Inflammation, and Epithelial-Mesenchymal Transition through Restraining the TLR4/NF-κB Signaling Pathway on LPS-Treated BEAS-2B Bronchial Epithelial Cells. International Archives of Allergy and Immunology, 182, 997-1007. https://doi.org/10.1159/000514209
|
[17]
|
Pandey, R.C., Michel, S., Tesse, R., Binia, A., Schedel, M., Liang, L., et al. (2013) Genetic Variation in the Toll-Like Receptor Signaling Pathway Is Associated with Childhood Asthma. Journal of Allergy and Clinical Immunology, 131, 602-605. https://doi.org/10.1016/j.jaci.2012.10.061
|
[18]
|
Wan, M., Yu, Q., Xu, F., You, L.X., Liang, X., Ren, K.K., et al. (2024) Novel Hypoxia-Induced Hif-1αactivation in Asthma Pathogenesis. Respiratory Research, 25, Article No. 287. https://doi.org/10.1186/s12931-024-02869-0
|
[19]
|
Ma, B., Athari, S.S., Mehrabi Nasab, E. and Zhao, L. (2021) PI3K/Akt/mTOR and TLR4/Myd88/NF-κB Signaling Inhibitors Attenuate Pathological Mechanisms of Allergic Asthma. Inflammation, 44, 1895-1907. https://doi.org/10.1007/s10753-021-01466-3
|
[20]
|
Peng, W., Song, Y., Zhu, G., Zeng, Y., Cai, H., Lu, C., et al. (2024) FGF10 Attenuates Allergic Airway Inflammation in Asthma by Inhibiting PI3K/Akt/NF-κB Pathway. Cellular Signalling, 113, Article 110964. https://doi.org/10.1016/j.cellsig.2023.110964
|
[21]
|
Chiba, Y., Tanoue, G., Suto, R., Suto, W., Hanazaki, M., Katayama, H., et al. (2017) Interleukin-17a Directly Acts on Bronchial Smooth Muscle Cells and Augments the Contractility. Pharmacological Reports, 69, 377-385. https://doi.org/10.1016/j.pharep.2016.12.007
|
[22]
|
Ryu, E.K., Kim, T., Jang, E.J., Choi, Y.S., Kim, S.T., Hahm, K.B., et al. (2015) Wogonin, a Plant Flavone from ScutelLariae Radix, Attenuated Ovalbumin-Induced Airway Inflammation in Mouse Model of Asthma via the Suppression of IL-4/STAT6 Signaling. Journal of Clinical Biochemistry and Nutrition, 57, 105-112. https://doi.org/10.3164/jcbn.15-45
|
[23]
|
彭善鑫, 刘婷婷, 朱晓松, 等. 绿原酸联合连翘苷调控细胞因子风暴的网络药理分析及基于TLR4/TRAF6/PI3KC3通路的协同抗炎作用[J]. 现代医药卫生, 2024, 40(20): 3447-3454.
|