门静脉动脉化与肝再生
Portal Vein Arterialization and Liver Regeneration
DOI: 10.12677/acm.2024.14123249, PDF, HTML, XML,   
作者: 潘振宇:内蒙古医科大学研究生院,内蒙古 呼和浩特
关键词: 门静脉动脉化肝再生线粒体Portal Vein Arterialization Liver Regeneration Mitochondrion
摘要: 门静脉动脉化(portal vein arterialization, PVA)自首次被提出之后,经过不断的发展和完善已成功应用于肝移植、腹部恶性肿瘤和急性肝衰竭等领域。肝脏是一种再生能力很强的器官,其能否在一定程度上恢复到正常的大小和功能直接影响到手术的成败。PVA在肝再生方面的作用一直是一个热门话题。然而,其对肝脏再生的影响及机制还没有完全明确。为此,本文综述PVA对肝再生的作用及影响机制,并对PVA今后的研究方向及应用前景进行展望。
Abstract: Since it was first proposed, portal vein arterialization (PVA) has been successfully applied to liver transplantation, abdominal malignancies and acute liver failure after continuous development and improvement. The liver is an organ with strong regenerative ability, and whether it can recover to a certain extent to normal size and function directly affects the success or failure of the operation. The role of PVA in liver regeneration has been a hot topic. However, its effect on liver regeneration and its mechanism have not been fully clarified. In this paper, the effects and mechanisms of PVA on liver regeneration were reviewed, and the future research direction and application prospect of PVA were also discussed.
文章引用:潘振宇. 门静脉动脉化与肝再生[J]. 临床医学进展, 2024, 14(12): 1524-1529. https://doi.org/10.12677/acm.2024.14123249

1. 引言

肝脏由门静脉系统血液和肝动脉血液供应,这是维持肝脏正常功能的基础。在临床工作中,由于肿瘤侵犯和意外损伤等各种原因引起的肝脏血供不足是肝功能不全和肝再生受限的重要原因。门静脉动脉化(portal vein arterialization, PVA)是为了保证肝脏有充足的血流而将动脉血引入门静脉的手术方法。PVA这一概念由Cohn [1]在1952年首次提出,其目的是预防肝脏部分切除术(Partial Hepatectomy, PH)后肝功能衰竭和肝性脑病。PVA按其血管吻合方式可大致分为两类:血管直接吻合法和动脉–门静脉搭桥法;根据动脉血是否完全取代门静脉血流可分为完全PVA和部分PVA。

当前PH的适应症非常广泛,PH甚至是原发性或转移性肝肿瘤患者治愈性治疗的唯一方法[2]。而肝衰竭仍然是大部肝切除术后与高死亡率相关的严重并发症,究其原因,主要是术后残余肝无法满足机体自身需求,所以术后肝再生能力尤为重要。临床上常根据肿瘤的位置及其侵犯范围选择不同的动脉或血管吻合方式进行PVA。例如,肝门部肿瘤常常侵犯肝动脉,手术切除肝动脉之后很难按照原有的解剖结构进行血管重建,所以临床上常常将肝动脉或其他动脉直接与门静脉吻合来解决肝脏的术后血供问题。我们课题组将其中一种手术方式定义为双重动脉血供(liver dual arterial blood supply, LDABS):即保持肝固有动脉血供不变,门静脉血完全或部分由动脉血替代灌注肝脏。根据多数公开的文献报道来看,大多数学者认为PVA能够促进肝细胞的再生,但同时也有学者提出不同的观点。本文拟就PVA对肝再生的影响做出综述。

2. PVA对肝再生的影响

PH或肝损伤后,导致肝细胞数量减少,各种反馈信号刺激处于G0期的肝细胞以补偿丢失、损伤的肝组织和恢复肝脏的生理功能。众所周知,肝脏具有很强的再生能力,PH后肝脏的再生能力决定患者的预后。PVA在临床应用后,其对肝再生的影响也是国内外学者关注的焦点。王鹏[3]等将犬的肝硬化动物模型分为PH组、PH联合PVA组以及假手术组。通过比较各组肝硬化模型犬的肝脏再生率、动脉血酮体比(arterial ketone body ratio, AKBR)和增殖细胞核抗原(proliferating cell nuclear antigen, PCNA),得到的结论是PVA对于病理状态下的肝脏可以增加肝切除后的AKBR值(AKBR值可以反映肝脏线粒体氧化还原潜在能力),从而提升ATP产生能力来促进肝脏的再生。李坚[4]等在大鼠模型中发现,PVA能够促进肝脏再生,并能够有效预防急性肝衰竭。他们比较了术后不同时间段内各组肝再生比率,包括术后0 h、24 h、48 h、72 h和第7天。研究发现,PVA能够提高残肝细胞的生长速度,并促进细胞增殖。张俊晶[5]等在动物试验中将PVA应用于辅助肝移植中,通过测量各组大鼠的肝脏重量,免疫组化检测PCNA的表达等方法来研究PVA在辅助肝移植中对移植肝和宿主肝再生的影响。研究发现PVA辅助肝移植中移植肝脏再生能力与宿主肝脏相近,这一结果表明PVA的临床应用可能降低因功能竞争引起移植肝萎缩的潜在风险,促进宿主肝和移植肝再生。既往文献多是对于年轻大鼠的研究,而随着年龄的增长,肝组织再生能力降低。国外学者[6]近期将20只老年大鼠分为部分PVA组和对照组,通过测定术后10天门静脉血液丙氨酸氨基转移酶、凝血酶原时间和有丝分裂指数等指标评估大鼠的肝坏死和肝再生情况。结果发现部分PVA可以诱导动脉化组血氧分压和血氧饱和度升高并且降低二氧化碳分压。部分PVA组的丙氨酸氨基转移酶水平与对照组相比显著降低,且部分PVA组肝脏仅出现轻度坏死。这就表明部分PVA可以通过增加门静脉中的氧浓度满足再生肝细胞的高代谢需求,促进老年大鼠肝功能恢复和肝再生,这一结论为临床工作中PVA促进老年人肝再生的观点提供支持。Zullo [7]等通过肝体外设备控制的PVA在猪的动物模型实验中也得出了相似的观点。在肝移植方面,Torres [8]等对15头进行大尺寸肝移植的模型猪进行分组,实验组行PVA,比较实验组和对照组动物模型肝脏的血流动力学、生化和组织学的差异。结果发现,PVA组的门静脉压力明显升高且丙氨酸氨基转移酶的值降低,而两组动物模型肝脏的组织结构统计无差异。而其他学者对于PVA促进肝再生提出了质疑。Schleimer [9]等根据不同的门静脉灌注情况分为四个实验组,6周后观察到70%肝切除的大鼠肝脏经PVA后再生显著降低,他们发现PVA组的细胞凋亡率显著升高,除此之外,残肝质量、大鼠体重和肝功能均降低。据此他们认为PVA会增加肝细胞凋亡并抑制肝再生并且PVA的血流调节并没有改善肝再生。

迄今为止,对于肝再生最为重要的是门静脉的内容物还是流入量一直存在许多争议。有学者认为肝血供的内容物对维持肝脏的完整性至关重要,Kumi [10]等人发现门静脉左右支内容物的差异会影响肝细胞体积。其他学者[11]将进行了PVA的大鼠根据门静脉和肝动脉的血流比例分为五个实验组,最后证明门静脉血流减少联合肝动脉血流增加的供血方式可以改善肝脏的病理状况并促进肝再生。但也有学者[12]认为门静脉的血流量对肝再生更为重要,他们[13]-[15]指出肝脏再生的机制与充足的门静脉血流量密切相关,甚至门静脉流量和压力的轻微增加就会触发肝再生。李坚等[16]也认为起源于门静脉或动脉的血流量比门静脉血中某些营养因子的存在对于肝再生起着更重要的作用,原因可能是在高动力循环情况下,参与肝脏再生的成分将被更有效地吸收和代谢。Rocheleau [17]等人也得出了相似的结论。由此可见,当前大多数学者认为肝脏进行PVA术后,并不会因为血流成分的改变而对肝再生产生负面影响,而肝脏因为PVA获得足够的血流量进而促进肝再生。

3. PVA促进肝再生的机制

PVA能够维持甚至促进肝再生已基本达成共识,国内外学者对于PVA促进肝再生的机制也都进行了大量研究。其中线粒体在PVA促进肝再生中的作用受到广泛关注。蔡潮农[18]等人通过动物实验发现,PVA能够增加门静脉的压力,缓解肝脏缺血缺氧的状况,从而有效地促进线粒体能量代谢的恢复,增加ATP的产能,进而促进肝脏再生。Cavallari [19]等认为PVA能够使门静脉血液氧饱和度达到接近动脉血液的水平,大大增加了供应给肝脏的总氧量,促进肝再生。国内学者[20]将108只SD大鼠平均分为三组,即假手术组,PH组和PH结合PVA组,提取肝组织线粒体,检测线粒体膜电位、呼吸链酶复合体浓度以及ATP酶含量。结果发现PVA组术后线粒体呼吸酶Ⅰ含量与其他两组存在统计学差异,进而影响整个呼吸酶链功能变化。所以他提出PVA通过提高线粒体呼吸链酶Ⅰ含量以及使肝再生所需的能量代谢峰值提前等机制促进肝再生。通过对接受PH联合PVA的大鼠研究发现肿瘤坏死因子α (tumor necrosis factor, TNF-α),肝细胞生长因子(hepatocyte growth factor, HGF)和转化生长因子β1 (transforming growth factor, TGFβ-1)等因子的表达水平在肝脏再生的不同阶段发挥着关键作用[21],大量文献表明这些因子均可以通过线粒体途径促进肝再生,例如TNF-α可以启动正常的肝脏再生反应,并且通过激活各种因子和线粒体膜蛋白的方式使肝细胞在凋亡和氧化应激中存活[22]。外源性HGF能显著增加Parkin来调节线粒体自噬[23]。线粒体途径产生的活性氧(reactive oxygen species, ROS)对于完成TGF-β1诱导的肝细胞凋亡至关重要[24]。国内学者发现异位辅助肝移植的改良PVA模型可以提高肝脏IL-6,TNF-α和HGF水平并增强肝脏再生[25] [26]。有学者通过比较接受PH的大鼠和接受PH联合PVA的大鼠之间的基因表达谱发现,MAPK信号通路、NF-κB信号通路和Toll样受体信号通路参与了PVA介导的肝再生,Kras、Cyclin E1、Rb1、AP-1以及Mapk10等基因的上调或下调可能促进或抑制PVA中的肝脏再生[27]

4. 门静脉动脉化存在的问题及展望

总结以上观点,多数学者认为门静脉动脉化可以促进肝再生。当门静脉在某些特殊情况下无法保证充足的血供或术中无法重建肝动脉时,作为一种挽救技术的PVA仍有一些问题有待解决[28]。门静脉高压是PVA术后最常见的远期并发症[29],并且肝脏大部切除术后门静脉高压是导致以持续性高胆红素血症、凝血障碍、顽固性腹水为特征的小体积综合征的主要发病机制[30]。根据当前文献[31]-[33]报道来看,临床上在PH术前已经通过手术结扎或栓塞术的手段来选择性闭塞门静脉分支,进而预防门静脉高压。而PVA联合PH术后预防门静脉高压也同样是研究热点。Schleimer [34]等在肝移植大鼠上分别采用内径0.3 mm和0.5 mm套管连接移植肝门静脉和受体右肾动脉。实验结果发现,无论是肝血流量还是术后肝脏坏死程度,使用0.3 mm内径套管的大鼠均比使用0.5 mm 套管的大鼠效果更好。Rebecca [35]等人报道了一例晚期胆管癌的病例,他使用肝右动脉残端与门静脉吻合行PVA,术后没有发生门静脉高压症。他们将此归因于肝右动脉提供了合适的吻合口直径,从而确保最佳的门静脉流量和压力值,避免了术后门静脉高压等并发症。为了减少门脉高压及相关并发症,临床也曾报道过使用肠系膜血管动静脉分支行端对端吻合PVA,但因为术后肝缺血问题不得不再次行PVA术[30]。此外,一些学者为了避免门静脉高压,提出了术后关闭PVA吻合口的手段。Ryusei [36]为了缓解PVA术后门静脉高压引起的腹水选择术后21天关闭吻合口,之后患者腹水迅速消退。

临床已经证实,PVA提供充足的血流量可以促进肝再生,但是同时一定要注意限制门静脉血流量过高引起的术后并发症。未来,大量深入的研究工作仍需在动脉血管的选择、门静脉流量的限制、动静脉吻合口的大小和术后关闭吻合口的时机等方面努力。此外,进一步研究相关的基因或细胞信号传导途径研究或可为PVA促进肝再生提供新的理论支持。随着PVA技术的不断进步,未来会有更广泛的应用前景。

参考文献

[1] Cohn, R. and Herrod, C. (1952) Some Effects upon the Liver of Complete Arterialization of Its Blood Supply. Surgery, 32, 214-218.
[2] Kohler, A., Moller, P.W., Frey, S., Tinguely, P., Candinas, D., Obrist, D., et al. (2019) Portal Hyperperfusion after Major Liver Resection and Associated Sinusoidal Damage Is a Therapeutic Target to Protect the Remnant Liver. American Journal of Physiology-Gastrointestinal and Liver Physiology, 317, G264-G274.
https://doi.org/10.1152/ajpgi.00113.2019
[3] 王鹏, 李鹏, 芮理, 李厚祥, 钱海鑫. PVA对肝硬化犬肝切除后肝再生的作用[J]. 世界华人消化杂志, 2009, 17(24): 2499-2502.
[4] 李坚, 关晓东, 刘琦, 谢玉妍, 蔡潮农, 张百萌. 入肝PVA加门腔分流术对大鼠肝脏再生的影响[J]. 中山大学学报(医学科学版), 2010, 31(4): 508-512.
[5] Zhang, J., XI, J., Dong, C. and Meng, X. (2014) Effects of Dual Arterial Blood Supply on Liver Regeneration in the Graft and the Host Following Heterotopic Auxiliary Liver Transplantation. Experimental and Therapeutic Medicine, 8, 1428-1432.
https://doi.org/10.3892/etm.2014.1976
[6] Paglione, D., Gatta, L., Puviani, L., Novello, M., Pariali, M., Cavallari, G., et al. (2020) Partial Portal Vein Arterialization to Treat Toxic Acute Liver Failure in Elderly Rats. Transplantation Proceedings, 52, 1608-1610.
https://doi.org/10.1016/j.transproceed.2020.01.080
[7] Zullo, A., Cannistrà, M., Cavallari, G., Puviani, L., Atzeni, F., Pisano, A., et al. (2015) Liver Regeneration Induced by Extracorporeal Portal Vein Arterialization in a Swine Model of Carbon Tetrachloride Intoxication. Transplantation Proceedings, 47, 2173-2175.
https://doi.org/10.1016/j.transproceed.2014.11.079
[8] Torres, R.R., Tannuri, A.C.A., Serafini, S., Belon, A., Gonçalves, J.O., Loreto, C.D., et al. (2021) Does Arterialization of Portal Vein Have Any Effects in Large-For-Size Liver Transplantation? Hemodynamic, Histological, and Biomolecular Experimental Studies. Journal of Investigative Surgery, 35, 1197-1207.
https://doi.org/10.1080/08941939.2021.2021333
[9] Schleimer, K., Stippel, D.L., Kasper, H.U., Prenzel, K., Gaudig, C., Tawadros, S., et al. (2008) Portal Vein Arterialization Increases Hepatocellular Apoptosis and Inhibits Liver Regeneration. Journal of Surgical Research, 149, 250-258.
https://doi.org/10.1016/j.jss.2008.01.021
[10] Ozaki, K., Kozaka, K., Kosaka, Y., Kimura, H. and Gabata, T. (2020) Morphometric Changes and Imaging Findings of Diffuse Liver Disease in Relation to Intrahepatic Hemodynamics. Japanese Journal of Radiology, 38, 833-852.
https://doi.org/10.1007/s11604-020-00978-6
[11] Jin, W., Wang, B., Zhang, Y., Dong, R., Wang, X., Guo, J., et al. (2018) Effects of Hepatic Blood Inflow on Liver Ultrastructure and Regeneration after Extensive Liver Resection in Rats with Cirrhosis. Experimental and Therapeutic Medicine, 16, 2573-2583.
https://doi.org/10.3892/etm.2018.6467
[12] Ma, L., Chen, K., Yang, L., Wang, H., Lu, Q. and Luo, Y. (2020) Ultrasonographic Hemodynamics for Prediction of Poor Liver Regeneration Induced by Severe Portal Vein Stenosis in Rats. Annals of Translational Medicine, 8, 527-527.
https://doi.org/10.21037/atm.2020.04.21
[13] Le Roy, B., Dupré, A., Gallon, A., Chabrot, P., Gagnière, J. and Buc, E. (2018) Liver Hypertrophy: Underlying Mechanisms and Promoting Procedures before Major Hepatectomy. Journal of Visceral Surgery, 155, 393-401.
https://doi.org/10.1016/j.jviscsurg.2018.03.005
[14] Golriz, M., El Sakka, S., Majlesara, A., Edalatpour, A., Hafezi, M., Rezaei, N., et al. (2016) Hepatic Hemodynamic Changes Following Stepwise Liver Resection. Journal of Gastrointestinal Surgery, 20, 587-594.
https://doi.org/10.1007/s11605-015-3021-y
[15] Dili, A., Bertrand, C., Lebrun, V., Pirlot, B. and Leclercq, I.A. (2019) Hypoxia Protects the Liver from Small for Size Syndrome: A Lesson Learned from the Associated Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS) Procedure in Rats. American Journal of Transplantation, 19, 2979-2990.
https://doi.org/10.1111/ajt.15420
[16] Li, J., Cai, C., Guo, H., Guan, X., Yang, L., Li, Y., et al. (2015) Portal Vein Arterialization Promotes Liver Regeneration after Extended Partial Hepatectomy in a Rat Model. The Journal of Biomedical Research, 29, 69-75.
[17] Rocheleau, B., Éthier, C., Houle, R., Huet, P.M. and Bilodeau, M. (1999) Hepatic Artery Buffer Response Following Left Portal Vein Ligation: Its Role in Liver Tissue Homeostasis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 277, G1000-G1007.
https://doi.org/10.1152/ajpgi.1999.277.5.g1000
[18] 蔡潮农, 李坚, 李培平, 关晓东, 张百萌, 朱耿隆. 入肝门静脉完全动脉化加门腔分流术对肝硬化大鼠肝细胞PCNA表达的影响[J]. 山东医药, 2015, 55(17): 24-26.
[19] Cavallari, G., Bonaiuto, E., Tsivian, M., Vaccarisi, S. and Nardo, B. (2013) Partial Portal Vein Arterialization in Acute Liver Failure. Updates in Surgery, 66, 183-187.
https://doi.org/10.1007/s13304-013-0232-1
[20] 田全发. 双重动脉血供模型的建立及对大鼠肝再生线粒体能量代谢的影响[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2020.
[21] Niu, J., Dong, C., Zhang, J. and Meng, X. (2012) TNF-α, HGF and Tgf-Β1 Are Involved in Liver Regeneration Following Partial Hepatectomy Using Portal Vein Arterializations. Journal of Medical Biochemistry, 31, 135-139.
https://doi.org/10.2478/v10011-011-0052-0
[22] Diehl, A.M. (1999) Effect of Ethanol on Tumor Necrosis Factor Signaling during Liver Regeneration. Clinical Biochemistry, 32, 571-578.
https://doi.org/10.1016/s0009-9120(99)00057-0
[23] Wang, Y., Liu, J., Tao, Z., Wu, P., Cheng, W., Du, Y., et al. (2016) Exogenous HGF Prevents Cardiomyocytes from Apoptosis after Hypoxia via Up-Regulating Cell Autophagy. Cellular Physiology and Biochemistry, 38, 2401-2413.
https://doi.org/10.1159/000445592
[24] Albright, C.D., Salganik, R.I., Craciunescu, C.N., Mar, M. and Zeisel, S.H. (2003) Mitochondrial and Microsomal Derived Reactive Oxygen Species Mediate Apoptosis Induced by Transforming Growth Factor-β1 in Immortalized Rat Hepatocytes. Journal of Cellular Biochemistry, 89, 254-261.
https://doi.org/10.1002/jcb.10498
[25] Michalopoulos, G.K. and Bhushan, B. (2020) Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nature Reviews Gastroenterology & Hepatology, 18, 40-55.
https://doi.org/10.1038/s41575-020-0342-4
[26] Tao, Y., Wang, M., Chen, E. and Tang, H. (2017) Liver Regeneration: Analysis of the Main Relevant Signaling Molecules. Mediators of Inflammation, 2017, 1-9.
https://doi.org/10.1155/2017/4256352
[27] Qiao, J., Sun, J., Li, J., Zhang, J. and Meng, X. (2017) Liver Dual Arterial Blood Supply Maintains Liver Regeneration: Analysis of Signaling Pathways in Rats. Molecular Medicine Reports, 17, 979-987.
https://doi.org/10.3892/mmr.2017.7961
[28] Maruya, Y., Hidaka, M., Pecquenard, F., Baubekov, A., Nunoshita, Y., Ono, S., et al. (2020) Partial Portal Vein Arterialization during Living-Donor Liver Transplantation: A Case Report. Surgical Case Reports, 6, Article No. 7.
https://doi.org/10.1186/s40792-020-0781-8
[29] Cheng, Y., Chen, Y., Jiang, Y. and Zhang, X. (2019) Ten-Year Survival after Portal Vein Arterialization in Liver Transplantation. Annals of Palliative Medicine, 8, 790-792.
https://doi.org/10.21037/apm.2019.11.01
[30] Majlesara, A., Ghamarnejad, O., Khajeh, E., Golriz, M., Gharabaghi, N., Hoffmann, K., et al. (2021) Portal Vein Arterialization as a Salvage Procedure in Hepatopancreatobiliary Surgery: A Systematic Review. Canadian Journal of Surgery, 64, E173-E182.
https://doi.org/10.1503/cjs.012419
[31] Heil, J. and Schadde, E. (2020) Simultaneous Portal and Hepatic Vein Embolization before Major Liver Resection. Langenbecks Archives of Surgery, 406, 1295-1305.
https://doi.org/10.1007/s00423-020-01960-6
[32] Charles, J., Nezami, N., Loya, M., Shube, S., Davis, C., Hoots, G., et al. (2023) Portal Vein Embolization: Rationale, Techniques, and Outcomes to Maximize Remnant Liver Hypertrophy with a Focus on Contemporary Strategies. Life, 13, Article 279.
https://doi.org/10.3390/life13020279
[33] Luz, J.H.M., Gomes, F.V., Coimbra, E., Costa, N.V. and Bilhim, T. (2020) Preoperative Portal Vein Embolization in Hepatic Surgery: A Review about the Embolic Materials and Their Effects on Liver Regeneration and Outcome. Radiology Research and Practice, 2020, 1-9.
https://doi.org/10.1155/2020/9295852
[34] Schleimer, K., Stippel, D.L., Kasper, H.-U., Tawadros, S., Allwissner, R., Gaudig, C., et al. (2006) Portal Hyperperfusion Causes Disturbance of Microcirculation and Increased Rate of Hepatocellular Apoptosis: Investigations in Heterotopic Rat Liver Transplantation with Portal Vein Arterialization. Transplantation Proceedings, 38, 725-729.
https://doi.org/10.1016/j.transproceed.2006.01.070
[35] Marino, R., Ratti, F., Catena, M. and Aldrighetti, L. (2022) Portal Vein Arterialization: A Possibility in Cholangiocarcinomas Infiltrating the Right Hepatic Artery? Updates in Surgery, 74, 1781-1786.
https://doi.org/10.1007/s13304-022-01292-8
[36] Yamamoto, R., Sugiura, T., Okamura, Y., Ito, T., Yamamoto, Y., Ashida, R., et al. (2019) Multidisciplinary Treatment of Left Hepatic Artery Pseudoaneurysm after Hepatobiliary Resection for Gallbladder Cancer: A Case Report. Surgical Case Reports, 5, Article No. 192.
https://doi.org/10.1186/s40792-019-0757-8