免疫治疗在晚期或复发性宫颈癌治疗中的研究进展
Research Progress of Immunotherapy in the Treatment of Advanced or Recurrent Cervical Cancer
DOI: 10.12677/acm.2024.14123253, PDF, HTML, XML,   
作者: 马嘉欣:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特;张姝凤, 孙晓革*:内蒙古医科大学附属医院放疗科,内蒙古 呼和浩特
关键词: 宫颈癌免疫联合治疗放疗化疗靶向治疗疗效Cervical Cancer Combined Immunotherapy Radiotherapy Chemotherapy Targeted Therapy Curative Effect
摘要: 宫颈癌是妇科最常见的恶性肿瘤之一,以铂类为基础的同步放化疗是局部晚期宫颈癌的标准治疗,而晚期、转移性或复发性宫颈癌的治疗以全身治疗为主。近些年,随着免疫治疗的发展,免疫联合治疗(联合化疗、放疗、靶向等)成为研究热点,为晚期宫颈癌的治疗提供了新的方向,本文就与宫颈癌治疗相关的免疫检查点抑制剂的作用机制以及免疫联合传统治疗方式在晚期或复发性宫颈癌治疗中的研究进展进行综述,希望可以为晚期或复发性宫颈癌患者的治疗提供有价值的参考。
Abstract: Cervical cancer is one of the most common malignant tumors in gynecology, and platinum-based simultaneous radiotherapy is the standard treatment for locally advanced cervical cancer, while systemic therapy is the mainstay of treatment for advanced, metastatic or recurrent cervical cancer. In recent years, with the development of immunotherapy, combined immunotherapy (combined chemotherapy, radiotherapy, targeting, etc.) has become a research hotspot, which provides a new direction for the treatment of advanced cervical cancer. This article provides a review of the mechanism of immune checkpoint inhibitors related to the treatment of cervical cancer as well as the progress of immune-combination therapy with traditional therapeutic modalities in the treatment of advanced or recurrent cervical cancer in the hope of providing useful information for the treatment of patients with advanced or recurrent cervical cancer.
文章引用:马嘉欣, 张姝凤, 孙晓革. 免疫治疗在晚期或复发性宫颈癌治疗中的研究进展[J]. 临床医学进展, 2024, 14(12): 1550-1558. https://doi.org/10.12677/acm.2024.14123253

1. 引言

宫颈癌(cervical cancer, CC)是威胁女性健康最常见的妇科恶性肿瘤之一,也是女性癌症死亡的主要原因之一。导致宫颈癌的病因有很多,其中高危型HPV的持续感染为致其发病的主要原因,尽管近些年开始开展两癌筛查及HPV疫苗接种,但在我国,其发病率仍呈上升趋势[1]。宫颈癌发病早期无明显症状,不易察觉,患者多因接触性出血或阴道不规则流液就诊,故发现时多为晚期。以铂类为基础的同步放化疗是局部晚期宫颈癌的标准治疗,然而,仍有20%~30%的患者接受同步放化疗后,短时间内即出现局部复发和转移[2] [3]。对于这部分患者,治疗方式有限,虽然使用顺铂与紫杉醇化疗联合贝伐珠单抗靶向治疗已证明具有明显的临床疗效,但获益有限[4]。免疫疗法是一种依靠免疫系统识别和直接杀死肿瘤细胞的天然能力来治疗癌症的新方法[5]。随着免疫治疗的发展,为转移性或复发性宫颈癌(recurrent or metastatic cervical cancer, R/M CC)的治疗提供了新的思路。现如今,免疫治疗联合化疗、放疗、抗血管生成治疗或双免疫治疗等联合策略的探索正在进行中。本文就常见及新发现的与宫颈癌治疗相关的免疫检查点抑制剂的作用机制及免疫联合其他治疗(放疗、化疗、靶向治疗)在晚期或复发性宫颈癌中已报道或正在进行中的临床试验进行综述。

2. 免疫检查点抑制剂的作用机制

在人机体免疫系统中,T细胞介导的细胞免疫在杀灭肿瘤方面发挥着主要作用,其需要活化才能发挥抗肿瘤效应,而T细胞的活化主要依赖于双信号的共同作用,第一个信号由位于抗原呈递细胞(Antigen-presenting cell, APC)上的主要组织相容复合体(Major Histocompatibility Complex, MHC)提供;CD28为表达于T细胞表面的一种辅助刺激因子受体,它可以与位于抗原呈递细胞表面的CD80与CD86相互作用,这为T细胞的活化提供了第二个信号,二者协同起来共同调节T细胞的激活与增殖[6]

2.1. PD-1/PD-L1抑制剂

程序性细胞死亡受体1 (Programmed cell death receptor1, PD-1)主要表达于活化的T淋巴细胞表面,在正常情况下通过与正常细胞表面的程序性细胞死亡受体配体1 (Programmed cell death receptor ligand 1, PD-L1)结合,抑制T细胞活性,防止其对正常组织的损伤[7]。然而,在肿瘤组织中,肿瘤细胞表面也可以表达PD-L1,能够竞争性结合活化T细胞表面的PD-1受体,从而逃脱T细胞的免疫监视而发生免疫逃逸[8]。PD-1/PD-L1抑制剂分别与PD-L1或PD-1结合,阻止PD-1和PD-L1之间的相互作用,从而恢复免疫细胞的识别和杀伤作用,避免肿瘤细胞的免疫逃逸[9]

2.2. CTLA-4抑制剂

细胞毒性T淋巴细胞相关抗原4 (Cytotoxic T-Lymphocyte-Associated Antigen 4, CTLA-4)是CD28-B7超家族的成员,表达于活化的CD4+和CD8+ T细胞表面,T细胞通过抗原呈递细胞(APC)的B7配体与T细胞上的CD28之间的相互作用而被激活,CTLA-4通过与CD28竞争性结合B7来抑制T细胞活化[10]。然而,CTLA-4对T细胞的亲和力明显高于CD28 [11],CTLA-4通过与共刺激受体CD28竞争性与其共同配体B7.1和B7.2结合,阻断T淋巴细胞反应、减少T淋巴细胞增殖、抑制调节性T细胞(Regulatory T cell, Treg)活性、减少细胞因子分泌,从而引发免疫抑制反应,发生免疫抑制[12]。此外,调节性T细胞(Treg)可通过CTLA-4下调CD80/CD86的表达水平,进而抑制CD28共刺激信号通路。CTLA-4抑制剂通过上述机制发挥抗肿瘤作用,阻止Treg细胞下调CD80/CD86水平,从而增加CD4+/CD8+ T细胞对肿瘤组织的浸润[13]

2.3. TIGIT单抗

目前,新型免疫抑制剂是研究热点,较为熟知的是三个靶点为TIGIT单抗、LAG-3和Tim-3抗体,其中TIGIT单抗在宫颈癌诊疗中走在最前端[14]。TIGIT单抗的全称是T细胞免疫球蛋白和ITIM结构域蛋白(T-cell immunereceptor with Ig and ITIM domains),是一种在多种免疫细胞上表达的抑制性受体,通过与其配体CD155 (PVR)或CD112 (通常在肿瘤细胞表面表达)结合而抑制免疫细胞的免疫杀伤活性,促使肿瘤细胞逃逸[15]。TIGIT单抗可以在以下肿瘤免疫循环的多个步骤中抑制免疫细胞功能:① 抑制NK细胞介导的肿瘤杀伤;② 抑制DC细胞免疫功能,抑制抗原呈递,增加抗炎细胞因子分泌;③ 抑制CD8细胞介导的肿瘤杀伤;④ 参与调控CD8细胞分化[16]

3. 免疫治疗的临床应用

宫颈癌治疗后一旦出现局部复发或远处转移,目前治疗效果通常不尽人意,5年生存率仅为17% [17]。一项研究表明,晚期宫颈癌患者一线治疗的中位总生存期(Overall Survival, OS)为10~13个月,而疾病进展后二线治疗的中位OS仅为5~9个月[18]。虽然单纯免疫治疗在晚期或复发性宫颈癌中取得了一定疗效,且毒性可控,但是为追求更好的临床效果,进行了免疫联合治疗的尝试,取得了显著的治疗效果。

3.1. 单纯免疫治疗(主要数据详见表1)

GOG-3016为一项西米普利单抗对比研究者选择的化疗单药治疗复发、转移性子宫颈癌的随机、对照、双盲、Ⅲ期临床研究,结果显示,在整体人群中,西米普利单抗组的中位OS及无进展生存期(Progression-free survival, PFS)明显长于化疗组,且无论患者的PD-L1 TC ≥ 1% (客观缓解率(Objective Response Rate, ORR)分别为21.6%和5.8%)还是PD-L1 TC < 1% (ORR分别为13.6%和5.9%),西米普利单抗组应答率均高于化疗组,即PD-L1阴性西米普利单抗也有应答[19]。Keynote-028 [20]和Keynote-158 [21]试验结果表明帕博利珠单抗在PD-L1阳性的晚期或复发性宫颈癌的治疗中具有明显的抗肿瘤活性及可管理的安全性。

在单药免疫治疗可靠的疗效与安全性的前提下,也进行了多种免疫检查点抑制剂联合治疗的尝试,PD-1抑制剂和CTLA-4抑制剂具有协同增效作用,一方面PD-1抑制剂解除效应T细胞的抑制性免疫状态,另一方面CTLA-4抑制剂降低Treg细胞对效应T细胞的抑制作用,从而充分激活效应T细胞[22]。CheckMate 358研究了Nivolumab ± Ipilimumab在复发或转移性宫颈癌患者中的安全性和疗效,结果显示Nivolumab单药组、N3 + Ⅰ1组和N1 + Ⅰ3组中均观察到病灶缓解,毒性可控,其中N3 + Ⅰ1组和N1 + Ⅰ3一线治疗的ORR分别为39%和41%,研究表明二者联合在一线治疗中的缓解率更高,且N1 + Ⅰ3的组合方式更佳[23]。一项开放标签的Ⅱ期临床研究评估了Balstilimab (PD-1抑制剂)联合Zalifreimab (CTLA-4抑制剂)治疗经铂类药物治疗后复发、转移宫颈癌患者的疗效,在经过中位时间21个月的随访后,患者ORR为25.6%、总体疾病控制率(disease control rate, DCR)为52%,其中鳞状细胞癌患者的ORR为32.6%,且在PD-1表达阳性的患者ORR更高(32.8% VS 9.1%)。研究结果表明,该方案对复发、转移宫颈癌有很好的抗肿瘤活性及耐受性,值得进一步的研究探索[24]。另一项随机、II期研究(AdvanTIG-202研究)评估了替雷利珠单抗 ± 欧司珀利单抗(TIGIT单抗)在既往接受治疗的复发/转移性宫颈癌患者治疗中的安全性及有效性,研究表明,无论PD-L1表达如何,替雷利珠单抗 + 欧司珀利单抗都显示出良好的抗肿瘤活性和持久的缓解,且耐受性良好[25]

Table 1. Immunotherapy alone

1. 单纯免疫治疗

研究名称

阶段

试验方案

免疫药物靶点

主要研究结果

GOG-3016 [19]

NCT03257267

随机、对照、双盲III期

Cemiplimab

单药化疗

PD-1

中位OS:12.0 vs. 8.5个月ORR:16.4 vs. 6.3

Keynote-028 [20]

NCT02054806

多中心、单臂、Ib期

Pembrolizumab

PD-L1

ORR:17%

Keynote-158 [21]

NCT02628067

单臂、Ⅱ期

Pembrolizumab

PD-L1

ORR:12.2%

CheckMate 358 [23]

NCT02488759

I/II期、 篮子研究

Nivolumab ± Ipilimumab

PD-1、CTLA-4

ORR:26.3%

DCR:70.8%

PFS:5.5个月

NCT03495882 [24]

开放标签、 II期

Balstilimab + Zalifreimab

PD-1、CTLA-4

ORR:25.6%

DCR:52%

AdvanTIG-202研究[25]

NCT04693234

随机、多中心、II期

Tislelizumab (TIS) ± Ociperlimab (OCI)

PD-1、TIGIT

ORR:22.5%

NCT04296994 [26]

I/Ib期

OL1706

PD-1、CTLA-4

晚期宫颈癌患者ORR:27.3%

mDOR:NR

COMPASSION-03 [27]

NCT03852251

多中心、开放标签、1b/2期

Cadonilimab

PD-1、CTLA-4

晚期宫颈癌患者ORR:32.3%

PFS:3.7个月

12个月OS率:59.9%

18个月OS率:51.2%。

除了单一靶点的免疫检查点抑制剂,还出现了双靶点免疫抑制剂的药物创新。QL1706是全球首个PD-1和CTLA-4组合的多克隆抗体,由PD-1抗体IgG4和CTLA-4抗体IgG1按照固定的比例组成。一项QL1706用于晚期实体瘤患者的I/Ib期临床研究结果显示QL1706在晚期实体瘤患者中耐受性良好,且在晚期非小细胞肺癌、鼻咽癌、宫颈癌等瘤种中显示出良好的抗肿瘤活性[26]。卡度尼利单抗是我国研发的全球第一个靶向人PD-1和CTLA-4的双特异性单克隆抗体,COMPASSION-03研究是一项多中心、开放标签、1b/2期研究,旨在评估卡度尼利在晚期实体瘤患者中的安全性及抗肿瘤活性,结果显示,卡度尼利单抗治疗宫颈癌在ORR和长期生存获益方面具有令人鼓舞的活性;安全性方面,卡度尼利单抗的免疫相关的不良事件(immune-related adverse events, irAEs)大多为1或2级,≥3级irAE发生率为28% [27]。基于上述结果,卡度尼利在2022年6月被国家药品监督管理局附条件批准上市,用于治疗既往使用含铂化疗失败的复发或转移性宫颈癌。

3.2. 免疫联合其他治疗(主要数据详见表2)

3.2.1. 免疫联合化疗

化疗主要通过阻滞细胞周期、抑制DNA复制、干扰细胞代谢来延缓肿瘤生长,一些细胞毒性化疗药物可诱导免疫原性细胞死亡,刺激抗肿瘤免疫反应[28]。Keynote-826研究表明,无论PD-L1状态如何,与安慰剂相比,帕博利珠单抗联合化疗 ± 贝伐珠单抗显著改善了一线晚期转移性宫颈癌患者的OS和PFS,且具有可靠的安全性[29]。基于keynote-826研究,美国FDA批准帕博利珠单抗联合化疗(铂类/紫杉醇) ± 贝伐珠单抗用于复发、转移性宫颈癌的一线治疗。COMPASSION-03 (AK104-210)试验旨在评价卡度尼利单抗不同剂量联合含铂化疗加或不加贝伐珠单抗一线治疗R/MCC的疗效和安全性,研究结果显示:无论PD-L1 综合阳性评分(combined positive score, CPS)状态如何,卡度尼利单抗联合铂类化疗 ± 贝伐珠单抗均显示了良好的抗肿瘤活性,安全性可控,整体上≥3级的TRAE发生率为73.3%,≥3级的irAE发生率为20.0%,没有出现卡度尼利单抗相关的死亡[30]。基于AK104-210的突出数据,妇科肿瘤免疫检查点抑制剂临床应用指南(2023版)指南推荐卡度尼利单抗联合化疗用于持续性、复发性/转移性子宫颈癌患者一线治疗[31]

3.2.2. 免疫治疗联合放化疗

放射治疗是一种复杂的治疗方式,放疗导致细胞死亡的最广为人知的途径是DNA双链损伤断裂,致使肿瘤细胞失去增殖能力,甚至直接诱导细胞凋亡坏死,它们都会导致宿主免疫系统与肿瘤之间产生复杂的相互作用[32]。通过免疫系统启动,放射治疗有可能通过远隔效应提高免疫治疗的全身反应率,并增加照射部位的局部肿瘤控制[33]。NRG-GY017研究结果显示,阿替利珠单抗联合同步放化疗无论是作为放化疗前的预激治疗还是与放化疗同步治疗,均可导致T细胞克隆扩增,且治疗安全,耐受性好[34]。在CALLA研究中,与单独同步放化疗相比,度伐利尤单抗联合同步放化疗未显著改善局部晚期宫颈癌患者的PFS [35]。但在今年的ESMO会上,Keynote-A18试验印证了免疫联合放化疗的可行性,可以和标准的放化疗起到协同的作用,提高患者的疗效[36]。NICOL的研究证实了在局部晚期宫颈癌中,纳武利尤单抗联合同步放化疗、并在同步放化疗后维持治疗,具有令人鼓舞的结果[37]

3.2.3. 免疫联合靶向治疗

一项研究卡瑞利珠单抗联合法美替尼对比卡瑞利珠单抗单药或研究者选择的化疗治疗复发或转移性宫颈癌的开放标签、随机对照的II期试验结果显示:在既往铂类化疗失败的复发或转移性宫颈癌患者中,对比卡瑞利珠单抗单药或研究者选择的化疗,卡瑞利珠单抗联合法米替尼显著提高抗肿瘤活性[38]。2022年Xu等报道了一项II期ALTER-C201研究,信迪利单抗 + 安罗替尼用于PD-L1阳性(CPS ≥ 1)晚期宫颈癌患者的二线/后线治疗,在疗效可评估人群中,ORR和DCR分别为59.0%和94.9%,中位PFS和中位OS分别为9.4个月和未达到[39]

3.2.4. 免疫联合抗血管生成药物及化疗

2023年的ESMO大会上公布了一项最新的研究成果,这是一项开放标签的、随机的III期BEATcc实验[40],研究的主要终点为PFS及OS,结果显示,实验组治疗的中位OS超过2.5年。中期总生存期分析达到了显著性阈值,中位总生存期增加了近10个月。该实验证实,在标准治疗(贝伐珠单抗 + 化疗)的基础上加用阿替利珠单抗可以显著延长转移性、持续性或复发性宫颈癌患者的PFS和OS,该方案可以作为这部分患者一线治疗的新选择。另一项派安普利单抗 + 安罗替尼 + 减量化疗(2周期的紫杉醇 + 卡铂/顺铂)一线治疗持续性、复发性或转移性宫颈癌的单臂II期研究(ALTN-AK105-II-06)的研究结果显示这种减量化疗的一线联合方案治疗持续性、复发性或转移性宫颈癌显示出良好的疗效,且毒性可控[41]。在卡瑞利珠单抗联合阿帕替尼治疗晚期宫颈癌的多中心、开放、单臂的II期试验中,中位随访时间为11.3个月,中位PFS为8.8个月,6个月PFS率为57.0%,中位OS未达到,9个月的OS率为69.2%,研究结果显示,卡瑞利珠单抗联合阿帕替尼在既往治疗后复发和晚期宫颈癌中显示出良好的抗肿瘤活性,具有良好的反应率和持久的反应性[42]

Table 2. Immunization in combination with other treatments

2. 免疫联合其他治疗

研究名称

阶段

试验方案

免疫药物靶点

主要研究结果

Keynote-826 [29]

NCT03635567

III期

帕博利珠单抗 + 化疗 ± 贝伐

PD-L1

中位OS:24.4 vs. 16.5个月

中位PFS:10.4个月vs. 8.2个月

AK104-210 [30]

NCT04868708

前瞻性、多队列、II期

卡度尼利单抗不同剂量 + 含铂化疗 ± 贝伐珠单抗

PD-1、CTLA-4

ORR:79.3%

DCR:96.6%

CALLA [35]

NCT03830866

多中心、双盲、III期

度伐利尤单抗 ± CRT

PD-L1

24个月PFS率:69.5% vs. 62.1%

ORR:82.6% vs. 80.5%

Keynote-A18 [36]

NCT04221945

多中心、双盲、III期

帕博利珠单抗 ± CCRT

PD-L1

24个月PFS率:67.8% vs. 57.3%

NICOL [37]

NCT03298893

I期

Nivo + CCRT + Nivo维持

PD-1

ORR:93.8%

一年PFS率:81.2%

LBA44 [38]

II期

Camrelizumab + famitinib

Camrelizumab单药

研究者选择的化疗

PD-1

ORR: 41.0% vs. 24.1%

ALTER-C201 [39]

II期

信迪利单抗 + 安罗替尼

PD-1

ORR:59.0%

DCR:94.9%

中位PFS:9.4个月

中位OS:未达到

BEATcc [40]

NCT03556839

随机、开放标签、III期

化疗 + 贝伐 + 阿替利珠

化疗 + 贝伐

PD-L1

中位PFS:

13.7个月vs. 10.4个月

中位OS:

32.1个月vs. 22.8个月

ALTN-AK105-II-06 [41]

单臂、II期

派安普利单抗 + 安罗替尼 + 减量化疗

PD-1

ORR:85.7%

中位PFS和OS均未达到

CLAP [42]

NCT03816553

开放、单臂、II期

卡瑞利珠单抗 + 阿帕替尼

PD-1

ORR:55.6%

中位PFS:8.8个月

注:CCRT:同步放化疗;CRT:放化疗。

4. 总结与展望

转移或复发性宫颈癌患者治疗疗效欠佳,预后较差,虽然宫颈癌的治疗随着技术的进步而进步,但以铂类为基础的化疗仍是晚期宫颈癌的标准治疗。现在迫切需要新的方案改善晚期患者的预后,使患者获得长期生存。靶向PD-1/PD-L1通路、CTLA-4通路以及TIGIT单抗的免疫疗法显示出治疗转移或复发性宫颈癌的前景。多项研究显示,免疫治疗在晚期转移性、复发性宫颈癌患者的治疗方面取得了显著的进展,但在治疗方案的选择、安全性的监测及疗效等方面仍需更多的前瞻性研究进一步确定。随着不断地探索与研究,相信可以改善宫颈癌患者的生存质量及延长生存时间。

NOTES

*通讯作者。

参考文献

[1] Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590.
https://doi.org/10.1097/cm9.0000000000002108
[2] Koh, W., Abu-Rustum, N.R., Bean, S., Bradley, K., Campos, S.M., Cho, K.R., et al. (2019) Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 17, 64-84.
https://doi.org/10.6004/jnccn.2019.0001
[3] Kokka, F., Bryant, A., Olaitan, A., Brockbank, E., Powell, M. and Oram, D. (2022) Hysterectomy with Radiotherapy or Chemotherapy or both for Women with Locally Advanced Cervical Cancer. Cochrane Database of Systematic Reviews, 8, CD010260.
https://doi.org/10.1002/14651858.cd010260.pub3
[4] 李英, 程忠平. 复发性宫颈癌免疫治疗的研究进展[J]. 中国妇产科临床杂志, 2023, 24(1): 108-110.
[5] Wendel Naumann, R. and Leath, C.A. (2020) Advances in Immunotherapy for Cervical Cancer. Current Opinion in Oncology, 32, 481-487.
https://doi.org/10.1097/cco.0000000000000663
[6] O’Neill, R.E. and Cao, X. (2019) Co-Stimulatory and Co-Inhibitory Pathways in Cancer Immunotherapy. In: Advances in Cancer Research, Elsevier, 145-194.
https://doi.org/10.1016/bs.acr.2019.03.003
[7] Aghbash, P.S., Hemmat, N., Fathi, H. and Baghi, H.B. (2022) Monoclonal Antibodies in Cervical Malignancy-Related HPV. Frontiers in Oncology, 12, Article ID: 904790.
https://doi.org/10.3389/fonc.2022.904790
[8] Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., et al. (2022) The Role of PD-1/PD-L1 and Application of Immune-Checkpoint Inhibitors in Human Cancers. Frontiers in Immunology, 13, Article ID: 964442.
https://doi.org/10.3389/fimmu.2022.964442
[9] Gennigens, C., Jerusalem, G., Lapaille, L., De Cuypere, M., Streel, S., Kridelka, F., et al. (2022) Recurrent or Primary Metastatic Cervical Cancer: Current and Future Treatments. ESMO Open, 7, Article ID: 100579.
https://doi.org/10.1016/j.esmoop.2022.100579
[10] De Giglio, A., Di Federico, A., Nuvola, G., Deiana, C. and Gelsomino, F. (2021) The Landscape of Immunotherapy in Advanced NSCLC: Driving Beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Current Oncology Reports, 23, Article No. 126.
https://doi.org/10.1007/s11912-021-01124-9
[11] Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086.
https://doi.org/10.1158/2159-8290.cd-18-0367
[12] Han, X., Chang, W. and Xia, X. (2022) Immune Checkpoint Inhibitors in Advanced and Recurrent/Metastatic Cervical Cancer. Frontiers in Oncology, 12, Article ID: 996495.
https://doi.org/10.3389/fonc.2022.996495
[13] Wojtukiewicz, M.Z., Rek, M.M., Karpowicz, K., Górska, M., Polityńska, B., Wojtukiewicz, A.M., et al. (2021) Inhibitors of Immune Checkpoints—Pd-1, PD-L1, CTLA-4—New Opportunities for Cancer Patients and a New Challenge for Internists and General Practitioners. Cancer and Metastasis Reviews, 40, 949-982.
https://doi.org/10.1007/s10555-021-09976-0
[14] Chauvin, J. and Zarour, H.M. (2020) TIGIT in Cancer Immunotherapy. Journal for ImmunoTherapy of Cancer, 8, e000957.
https://doi.org/10.1136/jitc-2020-000957
[15] Wen, J., Mao, X., Cheng, Q., Liu, Z. and Liu, F. (2021) A Pan-Cancer Analysis Revealing the Role of TIGIT in Tumor Microenvironment. Scientific Reports, 11, Article No. 22502.
https://doi.org/10.1038/s41598-021-01933-9
[16] Ge, Z., Peppelenbosch, M.P., Sprengers, D. and Kwekkeboom, J. (2021) TIGIT, the Next Step towards Successful Combination Immune Checkpoint Therapy in Cancer. Frontiers in Immunology, 12, Article ID: 699895.
https://doi.org/10.3389/fimmu.2021.699895
[17] Mauricio, D., Zeybek, B., Tymon-Rosario, J., Harold, J. and Santin, A.D. (2021) Immunotherapy in Cervical Cancer. Current Oncology Reports, 23, Article No. 61.
https://doi.org/10.1007/s11912-021-01052-8
[18] Tewari, K.S., Sill, M.W., Penson, R.T., Huang, H., Ramondetta, L.M., Landrum, L.M., et al. (2017) Bevacizumab for Advanced Cervical Cancer: Final Overall Survival and Adverse Event Analysis of a Randomised, Controlled, Open-Label, Phase 3 Trial (Gynecologic Oncology Group 240). The Lancet, 390, 1654-1663.
https://doi.org/10.1016/s0140-6736(17)31607-0
[19] Tewari, K.S., Monk, B.J., Vergote, I., Miller, A., de Melo, A.C., Kim, H., et al. (2022) Survival with Cemiplimab in Recurrent Cervical Cancer. New England Journal of Medicine, 386, 544-555.
https://doi.org/10.1056/nejmoa2112187
[20] Frenel, J., Le Tourneau, C., O’Neil, B., Ott, P.A., Piha-Paul, S.A., Gomez-Roca, C., et al. (2017) Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results from the Phase Ib KEYNOTE-028 Trial. Journal of Clinical Oncology, 35, 4035-4041.
https://doi.org/10.1200/jco.2017.74.5471
[21] Chung, H.C., Ros, W., Delord, J., Perets, R., Italiano, A., Shapira-Frommer, R., et al. (2019) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 37, 1470-1478.
https://doi.org/10.1200/jco.18.01265
[22] Morad, G., Helmink, B.A., Sharma, P. and Wargo, J.A. (2022) Hallmarks of Response, Resistance, and Toxicity to Immune Checkpoint Blockade. Cell, 185, 576.
https://doi.org/10.1016/j.cell.2022.01.008
[23] Oaknin, A., Moore, K.N., Meyer, T., González, J.L., Devriese, L., Amin, A., et al. (2022) 520MO Safety and Efficacy of Nivolumab (NIVO) ± Ipilimumab (IPI) in Patients (pts) with Recurrent/Metastatic Cervical Cancer (R/M Cx Ca) in Checkmate 358. Annals of Oncology, 33, S782.
https://doi.org/10.1016/j.annonc.2022.07.648
[24] O’Malley, D.M., Neffa, M., Monk, B.J., Melkadze, T., Huang, M., Kryzhanivska, A., et al. (2022) Dual PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and Zalifrelimab Combination as Second-Line Treatment for Advanced Cervical Cancer: An Open-Label Phase II Study. Journal of Clinical Oncology, 40, 762-771.
https://doi.org/10.1200/jco.21.02067
[25] Lee, J., Wu, L., Boonyapipat, S., Kim, H.S., Lee, J., Wang, L., et al. (2023) 744MO Advantig-202: Phase II Randomized, Multicenter, Open-Label Study of Tislelizumab (TIS) with or without Ociperlimab (OCI) in Patients (pts) with Previously Treated Recurrent/metastatic (R/M) Cervical Cancer (CC). Annals of Oncology, 34, S509-S510.
https://doi.org/10.1016/j.annonc.2023.09.1923
[26] Zhao, Y., Ma, Y., Zang, A., Cheng, Y., Zhang, Y., Wang, X., et al. (2023) First-in-Human Phase I/Ib Study of QL1706 (PSB205), a Bifunctional PD1/CTLA4 Dual Blocker, in Patients with Advanced Solid Tumors. Journal of Hematology & Oncology, 16, Article No. 50.
https://doi.org/10.1186/s13045-023-01445-1
[27] Gao, X., Xu, N., Li, Z., Shen, L., Ji, K., Zheng, Z., et al. (2023) Safety and Antitumour Activity of Cadonilimab, an Anti-PD-1/CTLA-4 Bispecific Antibody, for Patients with Advanced Solid Tumours (COMPASSION-03): A Multicentre, Open-Label, Phase 1b/2 Trial. The Lancet Oncology, 24, 1134-1146.
https://doi.org/10.1016/s1470-2045(23)00411-4
[28] Gotwals, P., Cameron, S., Cipolletta, D., Cremasco, V., Crystal, A., Hewes, B., et al. (2017) Prospects for Combining Targeted and Conventional Cancer Therapy with Immunotherapy. Nature Reviews Cancer, 17, 286-301.
https://doi.org/10.1038/nrc.2017.17
[29] Nishio, S., Yonemori, K., Usami, T., Minobe, S., Yunokawa, M., Iwata, T., et al. (2022) Pembrolizumab plus Chemotherapy in Japanese Patients with Persistent, Recurrent or Metastatic Cervical Cancer: Results from KEYNOTE‐826. Cancer Science, 113, 3877-3887.
https://doi.org/10.1111/cas.15479
[30] Wang, J., Lou, H., Cai, H., Huang, X., Li, G., Wang, L., et al. (2022) A Study of AK104 (an Anti-PD1 and Anti-CTLA4 Bispecific Antibody) Combined with Standard Therapy for the First-Line Treatment of Persistent, Recurrent, or Metastatic Cervical Cancer (R/M CC). Journal of Clinical Oncology, 40, 106.
https://doi.org/10.1200/jco.2022.40.16_suppl.106
[31] 孔北华, 刘继红, 殷爱军, 等. 妇科肿瘤免疫检查点抑制剂临床应用指南(2023版) [J]. 现代妇产科进展, 2023, 32(5): 321-348.
[32] Eriksson, D. and Stigbrand, T. (2010) Radiation-Induced Cell Death Mechanisms. Tumor Biology, 31, 363-372.
https://doi.org/10.1007/s13277-010-0042-8
[33] Lee, L. and Matulonis, U. (2019) Immunotherapy and Radiation Combinatorial Trials in Gynecologic Cancer: A Potential Synergy? Gynecologic Oncology, 154, 236-245.
https://doi.org/10.1016/j.ygyno.2019.03.255
[34] Mayadev, J., Zamarin, D., Deng, W., Lankes, H., O’Cearbhaill, R., Aghajanian, C.A., et al. (2019) Anti-PD-L1 (Atezolizumab) as an Immune Primer and Concurrently with Extended-Field Chemoradiotherapy for Node-Positive Locally Advanced Cervical Cancer. International Journal of Gynecologic Cancer, 30, 701-704.
https://doi.org/10.1136/ijgc-2019-001012
[35] Monk, B.J., Toita, T., Wu, X., Vázquez Limón, J.C., Tarnawski, R., Mandai, M., et al. (2023) Durvalumab versus Placebo with Chemoradiotherapy for Locally Advanced Cervical Cancer (CALLA): A Randomised, Double-Blind, Phase 3 Trial. The Lancet Oncology, 24, 1334-1348.
https://doi.org/10.1016/s1470-2045(23)00479-5
[36] Lorusso, D., Xiang, Y., Hasegawa, K., Scambia, G., Leiva Galves, M.H., Ramos Elias, P., et al. (2023) LBA38 Pembrolizumab Plus Chemoradiotherapy for High-Risk Locally Advanced Cervical Cancer: A Randomized, Double-Blind, Phase III Engot-CX11/GOG-3047/KEYNOTE-A18 Study. Annals of Oncology, 34, S1279-S1280.
https://doi.org/10.1016/j.annonc.2023.10.032
[37] Rodrigues, M., Vanoni, G., Loap, P., Dubot, C., Timperi, E., Minsat, M., et al. (2023) Nivolumab Plus Chemoradiotherapy in Locally-Advanced Cervical Cancer: The NICOL Phase 1 Trial. Nature Communications, 14, Article No. 3698.
https://doi.org/10.1038/s41467-023-39383-8
[38] Wu, X., Xia, L., Zhang, K., Tang, Y., Zhang, G.N., Wang, D., et al. (2023) LBA44 Camrelizumab plus Famitinib versus Camrelizumab Alone and Investigator’s Choice of Chemotherapy in Women with Recurrent or Metastatic Cervical Cancer. Annals of Oncology, 34, S1284-S1285.
https://doi.org/10.1016/j.annonc.2023.10.038
[39] Xu, Q., Wang, J., Sun, Y., Lin, Y., Liu, J., Zhuo, Y., et al. (2022) Efficacy and Safety of Sintilimab plus Anlotinib for PD-L1-Positive Recurrent or Metastatic Cervical Cancer: A Multicenter, Single-Arm, Prospective Phase II Trial. Journal of Clinical Oncology, 40, 1795-1805.
https://doi.org/10.1200/jco.21.02091
[40] Oaknin, A., Gladieff, L., Martinez-Garcia, J., et al. (2023) Atezolizumab plus Bevacizumab and Chemotherapy for Metastatic, Persistent, or Recurrent Cervical Cancer (BEATcc): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 403, 31-43.
[41] Xu, Q., Liu, J., Li, L., Lin, Y., Chen, Y., Song, Y., et al. (2023) Penpulimab plus Platinum-Based Chemotherapy Combined with Anlotinib in First-Line Treatment for Persistent, Recurrent, or Metastatic Cervical Cancer: A Single-Arm, Open-Label Phase Ⅱ Study (ALTN-AK105-II-06). Journal of Clinical Oncology, 41, e17512.
https://doi.org/10.1200/jco.2023.41.16_suppl.e17512
[42] Lan, C., Shen, J., Wang, Y., Li, J., Liu, Z., He, M., et al. (2020) Camrelizumab plus Apatinib in Patients with Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. Journal of Clinical Oncology, 38, 4095-4106.
https://doi.org/10.1200/jco.20.01920