[1]
|
Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590. https://doi.org/10.1097/cm9.0000000000002108
|
[2]
|
Koh, W., Abu-Rustum, N.R., Bean, S., Bradley, K., Campos, S.M., Cho, K.R., et al. (2019) Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 17, 64-84. https://doi.org/10.6004/jnccn.2019.0001
|
[3]
|
Kokka, F., Bryant, A., Olaitan, A., Brockbank, E., Powell, M. and Oram, D. (2022) Hysterectomy with Radiotherapy or Chemotherapy or both for Women with Locally Advanced Cervical Cancer. Cochrane Database of Systematic Reviews, 8, CD010260. https://doi.org/10.1002/14651858.cd010260.pub3
|
[4]
|
李英, 程忠平. 复发性宫颈癌免疫治疗的研究进展[J]. 中国妇产科临床杂志, 2023, 24(1): 108-110.
|
[5]
|
Wendel Naumann, R. and Leath, C.A. (2020) Advances in Immunotherapy for Cervical Cancer. Current Opinion in Oncology, 32, 481-487. https://doi.org/10.1097/cco.0000000000000663
|
[6]
|
O’Neill, R.E. and Cao, X. (2019) Co-Stimulatory and Co-Inhibitory Pathways in Cancer Immunotherapy. In: Advances in Cancer Research, Elsevier, 145-194. https://doi.org/10.1016/bs.acr.2019.03.003
|
[7]
|
Aghbash, P.S., Hemmat, N., Fathi, H. and Baghi, H.B. (2022) Monoclonal Antibodies in Cervical Malignancy-Related HPV. Frontiers in Oncology, 12, Article ID: 904790. https://doi.org/10.3389/fonc.2022.904790
|
[8]
|
Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., et al. (2022) The Role of PD-1/PD-L1 and Application of Immune-Checkpoint Inhibitors in Human Cancers. Frontiers in Immunology, 13, Article ID: 964442. https://doi.org/10.3389/fimmu.2022.964442
|
[9]
|
Gennigens, C., Jerusalem, G., Lapaille, L., De Cuypere, M., Streel, S., Kridelka, F., et al. (2022) Recurrent or Primary Metastatic Cervical Cancer: Current and Future Treatments. ESMO Open, 7, Article ID: 100579. https://doi.org/10.1016/j.esmoop.2022.100579
|
[10]
|
De Giglio, A., Di Federico, A., Nuvola, G., Deiana, C. and Gelsomino, F. (2021) The Landscape of Immunotherapy in Advanced NSCLC: Driving Beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Current Oncology Reports, 23, Article No. 126. https://doi.org/10.1007/s11912-021-01124-9
|
[11]
|
Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086. https://doi.org/10.1158/2159-8290.cd-18-0367
|
[12]
|
Han, X., Chang, W. and Xia, X. (2022) Immune Checkpoint Inhibitors in Advanced and Recurrent/Metastatic Cervical Cancer. Frontiers in Oncology, 12, Article ID: 996495. https://doi.org/10.3389/fonc.2022.996495
|
[13]
|
Wojtukiewicz, M.Z., Rek, M.M., Karpowicz, K., Górska, M., Polityńska, B., Wojtukiewicz, A.M., et al. (2021) Inhibitors of Immune Checkpoints—Pd-1, PD-L1, CTLA-4—New Opportunities for Cancer Patients and a New Challenge for Internists and General Practitioners. Cancer and Metastasis Reviews, 40, 949-982. https://doi.org/10.1007/s10555-021-09976-0
|
[14]
|
Chauvin, J. and Zarour, H.M. (2020) TIGIT in Cancer Immunotherapy. Journal for ImmunoTherapy of Cancer, 8, e000957. https://doi.org/10.1136/jitc-2020-000957
|
[15]
|
Wen, J., Mao, X., Cheng, Q., Liu, Z. and Liu, F. (2021) A Pan-Cancer Analysis Revealing the Role of TIGIT in Tumor Microenvironment. Scientific Reports, 11, Article No. 22502. https://doi.org/10.1038/s41598-021-01933-9
|
[16]
|
Ge, Z., Peppelenbosch, M.P., Sprengers, D. and Kwekkeboom, J. (2021) TIGIT, the Next Step towards Successful Combination Immune Checkpoint Therapy in Cancer. Frontiers in Immunology, 12, Article ID: 699895. https://doi.org/10.3389/fimmu.2021.699895
|
[17]
|
Mauricio, D., Zeybek, B., Tymon-Rosario, J., Harold, J. and Santin, A.D. (2021) Immunotherapy in Cervical Cancer. Current Oncology Reports, 23, Article No. 61. https://doi.org/10.1007/s11912-021-01052-8
|
[18]
|
Tewari, K.S., Sill, M.W., Penson, R.T., Huang, H., Ramondetta, L.M., Landrum, L.M., et al. (2017) Bevacizumab for Advanced Cervical Cancer: Final Overall Survival and Adverse Event Analysis of a Randomised, Controlled, Open-Label, Phase 3 Trial (Gynecologic Oncology Group 240). The Lancet, 390, 1654-1663. https://doi.org/10.1016/s0140-6736(17)31607-0
|
[19]
|
Tewari, K.S., Monk, B.J., Vergote, I., Miller, A., de Melo, A.C., Kim, H., et al. (2022) Survival with Cemiplimab in Recurrent Cervical Cancer. New England Journal of Medicine, 386, 544-555. https://doi.org/10.1056/nejmoa2112187
|
[20]
|
Frenel, J., Le Tourneau, C., O’Neil, B., Ott, P.A., Piha-Paul, S.A., Gomez-Roca, C., et al. (2017) Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results from the Phase Ib KEYNOTE-028 Trial. Journal of Clinical Oncology, 35, 4035-4041. https://doi.org/10.1200/jco.2017.74.5471
|
[21]
|
Chung, H.C., Ros, W., Delord, J., Perets, R., Italiano, A., Shapira-Frommer, R., et al. (2019) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 37, 1470-1478. https://doi.org/10.1200/jco.18.01265
|
[22]
|
Morad, G., Helmink, B.A., Sharma, P. and Wargo, J.A. (2022) Hallmarks of Response, Resistance, and Toxicity to Immune Checkpoint Blockade. Cell, 185, 576. https://doi.org/10.1016/j.cell.2022.01.008
|
[23]
|
Oaknin, A., Moore, K.N., Meyer, T., González, J.L., Devriese, L., Amin, A., et al. (2022) 520MO Safety and Efficacy of Nivolumab (NIVO) ± Ipilimumab (IPI) in Patients (pts) with Recurrent/Metastatic Cervical Cancer (R/M Cx Ca) in Checkmate 358. Annals of Oncology, 33, S782. https://doi.org/10.1016/j.annonc.2022.07.648
|
[24]
|
O’Malley, D.M., Neffa, M., Monk, B.J., Melkadze, T., Huang, M., Kryzhanivska, A., et al. (2022) Dual PD-1 and CTLA-4 Checkpoint Blockade Using Balstilimab and Zalifrelimab Combination as Second-Line Treatment for Advanced Cervical Cancer: An Open-Label Phase II Study. Journal of Clinical Oncology, 40, 762-771. https://doi.org/10.1200/jco.21.02067
|
[25]
|
Lee, J., Wu, L., Boonyapipat, S., Kim, H.S., Lee, J., Wang, L., et al. (2023) 744MO Advantig-202: Phase II Randomized, Multicenter, Open-Label Study of Tislelizumab (TIS) with or without Ociperlimab (OCI) in Patients (pts) with Previously Treated Recurrent/metastatic (R/M) Cervical Cancer (CC). Annals of Oncology, 34, S509-S510. https://doi.org/10.1016/j.annonc.2023.09.1923
|
[26]
|
Zhao, Y., Ma, Y., Zang, A., Cheng, Y., Zhang, Y., Wang, X., et al. (2023) First-in-Human Phase I/Ib Study of QL1706 (PSB205), a Bifunctional PD1/CTLA4 Dual Blocker, in Patients with Advanced Solid Tumors. Journal of Hematology & Oncology, 16, Article No. 50. https://doi.org/10.1186/s13045-023-01445-1
|
[27]
|
Gao, X., Xu, N., Li, Z., Shen, L., Ji, K., Zheng, Z., et al. (2023) Safety and Antitumour Activity of Cadonilimab, an Anti-PD-1/CTLA-4 Bispecific Antibody, for Patients with Advanced Solid Tumours (COMPASSION-03): A Multicentre, Open-Label, Phase 1b/2 Trial. The Lancet Oncology, 24, 1134-1146. https://doi.org/10.1016/s1470-2045(23)00411-4
|
[28]
|
Gotwals, P., Cameron, S., Cipolletta, D., Cremasco, V., Crystal, A., Hewes, B., et al. (2017) Prospects for Combining Targeted and Conventional Cancer Therapy with Immunotherapy. Nature Reviews Cancer, 17, 286-301. https://doi.org/10.1038/nrc.2017.17
|
[29]
|
Nishio, S., Yonemori, K., Usami, T., Minobe, S., Yunokawa, M., Iwata, T., et al. (2022) Pembrolizumab plus Chemotherapy in Japanese Patients with Persistent, Recurrent or Metastatic Cervical Cancer: Results from KEYNOTE‐826. Cancer Science, 113, 3877-3887. https://doi.org/10.1111/cas.15479
|
[30]
|
Wang, J., Lou, H., Cai, H., Huang, X., Li, G., Wang, L., et al. (2022) A Study of AK104 (an Anti-PD1 and Anti-CTLA4 Bispecific Antibody) Combined with Standard Therapy for the First-Line Treatment of Persistent, Recurrent, or Metastatic Cervical Cancer (R/M CC). Journal of Clinical Oncology, 40, 106. https://doi.org/10.1200/jco.2022.40.16_suppl.106
|
[31]
|
孔北华, 刘继红, 殷爱军, 等. 妇科肿瘤免疫检查点抑制剂临床应用指南(2023版) [J]. 现代妇产科进展, 2023, 32(5): 321-348.
|
[32]
|
Eriksson, D. and Stigbrand, T. (2010) Radiation-Induced Cell Death Mechanisms. Tumor Biology, 31, 363-372. https://doi.org/10.1007/s13277-010-0042-8
|
[33]
|
Lee, L. and Matulonis, U. (2019) Immunotherapy and Radiation Combinatorial Trials in Gynecologic Cancer: A Potential Synergy? Gynecologic Oncology, 154, 236-245. https://doi.org/10.1016/j.ygyno.2019.03.255
|
[34]
|
Mayadev, J., Zamarin, D., Deng, W., Lankes, H., O’Cearbhaill, R., Aghajanian, C.A., et al. (2019) Anti-PD-L1 (Atezolizumab) as an Immune Primer and Concurrently with Extended-Field Chemoradiotherapy for Node-Positive Locally Advanced Cervical Cancer. International Journal of Gynecologic Cancer, 30, 701-704. https://doi.org/10.1136/ijgc-2019-001012
|
[35]
|
Monk, B.J., Toita, T., Wu, X., Vázquez Limón, J.C., Tarnawski, R., Mandai, M., et al. (2023) Durvalumab versus Placebo with Chemoradiotherapy for Locally Advanced Cervical Cancer (CALLA): A Randomised, Double-Blind, Phase 3 Trial. The Lancet Oncology, 24, 1334-1348. https://doi.org/10.1016/s1470-2045(23)00479-5
|
[36]
|
Lorusso, D., Xiang, Y., Hasegawa, K., Scambia, G., Leiva Galves, M.H., Ramos Elias, P., et al. (2023) LBA38 Pembrolizumab Plus Chemoradiotherapy for High-Risk Locally Advanced Cervical Cancer: A Randomized, Double-Blind, Phase III Engot-CX11/GOG-3047/KEYNOTE-A18 Study. Annals of Oncology, 34, S1279-S1280. https://doi.org/10.1016/j.annonc.2023.10.032
|
[37]
|
Rodrigues, M., Vanoni, G., Loap, P., Dubot, C., Timperi, E., Minsat, M., et al. (2023) Nivolumab Plus Chemoradiotherapy in Locally-Advanced Cervical Cancer: The NICOL Phase 1 Trial. Nature Communications, 14, Article No. 3698. https://doi.org/10.1038/s41467-023-39383-8
|
[38]
|
Wu, X., Xia, L., Zhang, K., Tang, Y., Zhang, G.N., Wang, D., et al. (2023) LBA44 Camrelizumab plus Famitinib versus Camrelizumab Alone and Investigator’s Choice of Chemotherapy in Women with Recurrent or Metastatic Cervical Cancer. Annals of Oncology, 34, S1284-S1285. https://doi.org/10.1016/j.annonc.2023.10.038
|
[39]
|
Xu, Q., Wang, J., Sun, Y., Lin, Y., Liu, J., Zhuo, Y., et al. (2022) Efficacy and Safety of Sintilimab plus Anlotinib for PD-L1-Positive Recurrent or Metastatic Cervical Cancer: A Multicenter, Single-Arm, Prospective Phase II Trial. Journal of Clinical Oncology, 40, 1795-1805. https://doi.org/10.1200/jco.21.02091
|
[40]
|
Oaknin, A., Gladieff, L., Martinez-Garcia, J., et al. (2023) Atezolizumab plus Bevacizumab and Chemotherapy for Metastatic, Persistent, or Recurrent Cervical Cancer (BEATcc): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 403, 31-43.
|
[41]
|
Xu, Q., Liu, J., Li, L., Lin, Y., Chen, Y., Song, Y., et al. (2023) Penpulimab plus Platinum-Based Chemotherapy Combined with Anlotinib in First-Line Treatment for Persistent, Recurrent, or Metastatic Cervical Cancer: A Single-Arm, Open-Label Phase Ⅱ Study (ALTN-AK105-II-06). Journal of Clinical Oncology, 41, e17512. https://doi.org/10.1200/jco.2023.41.16_suppl.e17512
|
[42]
|
Lan, C., Shen, J., Wang, Y., Li, J., Liu, Z., He, M., et al. (2020) Camrelizumab plus Apatinib in Patients with Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase II Trial. Journal of Clinical Oncology, 38, 4095-4106. https://doi.org/10.1200/jco.20.01920
|