二维斑点追踪成像在评估儿童心肌病预后中的应用
Evaluation of Prognosis of Children with Cardiomyopathy by Two-Dimensional Spot Tracking Imaging
DOI: 10.12677/acm.2024.14123259, PDF, HTML, XML,   
作者: 陈 云*:苏州大学附属儿童医院心内科,江苏 苏州;陈 龙:苏州大学附属儿童医院心超室,江苏 苏州
关键词: 儿童心肌病应变同步性收缩功能不全预后随访Cardiomyopathy in Children Strain Synchronization Systolic Insufficiency Prognosis Follow-Up
摘要: 目的:探讨二维斑点追踪成像评估儿童心肌病预后、临床疗效及随访指导的价值。方法:本研究纳入我院2018年10月至2020年12月收治并随访的25例心肌病患儿(13例DCM和12例NVM)及健康体检儿童40例(对照组),应用二维斑点追踪成像分析左室整体收缩期纵向应变、圆周应变(GLS、GCS),应变达峰时间标准差(TLS-SD和TCS-SD),比较LVEF不同转归两组心肌病患儿治疗前后以及LVEF恢复正常组治疗后与健康对照组常规心超和应变参数的差异。结果:与LVEF未恢复正常组(n = 12)治疗前相比,LVEF恢复正常组(n = 13)治疗前的GLS、GCS较高,LVEDd-Z、TCS-SD较低(P均<0.05),TLS-SD较低(P > 0.05)。GLS预测LVEF恢复正常的ROC曲线下面积(AUC)为0.811 (95% CI: 0.640~0.981; P = 0.008),预测LVEF恢复正常的最佳截止点是≥−9.0% (敏感性:83.3%,特异性:76.9%)。GCS预测LVEF恢复正常的AUC为0.878 (95% CI: 0.733~1.000; P = 0.001),预测LVEF恢复正常的最佳截止点是≥−7.9% (敏感性:83.3%,特异性:92.3%)。LVEF未恢复正常组治疗前后相比,LVEF、LVEDd-Z、GLS、TLS-SD无变化(P > 0.05),GCS升高,改良Ross评分、TCS-SD降低(P < 0.05)。LVEF恢复正常组在治疗后,GLS、GCS低于健康对照组、TLS-SD高于健康对照组(P < 0.05),TCS-SD高于健康对照组(P > 0.05)。结论:二维斑点追踪成像较LVEF可更灵敏地评估儿童心肌病的临床疗效,并对其预后具有预测价值,对儿童心肌病随访指导有重要的临床应用价值。
Abstract: Objective: To explore the value of 2D-speckle tracking imaging (STI) in evaluating the prognosis, clinical efficacy and follow-up guidance of children with cardiomyopathy. Methods: This study included 25 pediatric patients with cardiomyopathy (13 cases of DCM and 12 cases of NVM) who were treated and followed up at our hospital from October 2018 to December 2020, as well as a control group of 40 healthy children undergoing routine physical examinations. Utilizing two-dimensional speckle tracking imaging, we analyzed the left ventricular global longitudinal strain (GLS) and global circumferential strain (GCS), along with the standard deviations of the peak strain times (TLS-SD and TCS-SD). We compared the differences in conventional echocardiographic and strain parameters before and after treatment between the cardiomyopathy patients with different LVEF outcomes, as well as between the cardiomyopathy patients with normalized LVEF post-treatment and the healthy control group. Results: Compared with the pre-treatment period in the group with non-normalized LVEF (n = 12), the pre-treatment GLS and GCS were higher, LVEDd-Z and TCS-SD were lower in the group with normalized LVEF (n = 13) (all P < 0.05), and TLS-SD was lower (P > 0.05). The AUC for GLS predicting normalized LVEF was 0.811 (95% CI: 0.640~0.981; P = 0.008), and the optimal cutoff point for predicting normalization of LVEF was ≥−9.0% (sensitivity: 83.3%, specificity: 76.9%). The AUC for GCS predicting normalization of LVEF was 0.878 (95% CI: 0.733~1.000; P = 0.001), and the optimal cutoff point for predicting normalization of LVEF was ≥−7.9% (sensitivity: 83.3%, specificity: 92.3%). In the group with non-normalized LVEF, there was no significant change in LVEF, LVEDd-Z, GLS, and TLS-SD before and after treatment (P > 0.05), and GCS was higher, and modified ROSS score and TCS-SD were lower (P < 0.05). In the group with normalized LVEF, after treatment, GLS and GCS were lower than those in the healthy control group, TLS-SD was higher (P < 0.05), and TCS-SD was higher(P > 0.05). Conclusion: The STI provides a more sensitive assessment of clinical efficacy in pediatric cardiomyopathy than LVEF and has predictive value for prognosis. It holds significant clinical value for guiding follow-up in pediatric cardiomyopathy cases.
文章引用:陈云, 陈龙. 二维斑点追踪成像在评估儿童心肌病预后中的应用[J]. 临床医学进展, 2024, 14(12): 1605-1615. https://doi.org/10.12677/acm.2024.14123259

1. 引言

儿童心肌病是以心力衰竭、心律失常、血栓形成为临床特点的异质性疾病[1]-[4],其病因及病理生理机制复杂,从影响心肌基本形成过程的基因变异到导致弥漫性心肌损伤的全身性疾病,不一而足。部分患者存在严重的左心室运动不协调,是导致左心室功能障碍加重以及死亡或移植趋势增加的危险因素[5]。儿童扩张型心肌病(Dilated Cardiomyopathy, DCM)和心肌致密化不全(Noncompaction of ventricular myocardium, NVM)发病机制不同,但都以左室收缩功能不全、左心增大为主要临床特点,临床治疗方案相似。目前,仅儿童DCM有规范的诊疗指南共识[6]。由于DCM、NVM患儿广泛的心肌细胞受损,心肌纤维束的走行方向发生改变,心脏几何结构改变,导致心脏的扭转运动减低,不同节段和不同层面的心肌应变降低,左室收缩功能下降[7] [8],传统心超指标对心功能评估具有局限性;二维斑点追踪成像(speckle tracking imaging, STI)技术是一种新的定量检测心肌功能的超声方法,应用在成人糖尿病、脑卒中、心房颤动、心肌病等疾病[9] [10],其优势在于它没有角度依赖性,可通过测量心脏径向、纵向、圆周及扭转来评估心室局部运动。相比成人,STI在儿童心血管疾病的应用上相对较少[11],且多用于评估左心功能,关于探讨STI对儿童心肌病预后评估价值的研究十分缺乏。儿童心肌病因发病及疗效的异质性的特点,目前临床上尚缺乏可有效评估心肌病预后的影像学参数,本研究旨在探讨STI在评估儿童心肌病预后及其临床应用价值。

2. 资料与方法

2.1. 研究对象

收集2018年10月至2020年12月我院收治的左室收缩功能不全心肌病患儿25例为病例组,NVM12例,DCM 13例,男性9例,女性16例,中位月龄15.0月,中位随访时间12.0月。记录性别、月龄、体表面积(BSA),改良Ross评分法评估临床心功能分级[12]。纳入标准:临床诊断为“DCM、NVM”,且符合2019年美国心脏协会(AHA)“儿童心肌病的分类和诊断科学声明”诊断标准[3]:DCM诊断标准:左心室扩大伴收缩功能障碍:LVEDd-Z > 2,LVEF < 55%和(或)左室短轴缩短分数(left ventricular fractional shortening, LVFS) < 28%;NVM诊断标准:(1) 心脏超声可见病变区域典型的两层不同的心肌结构,即致密层与非致密层心肌,室壁外层致密心肌显著变薄,局部呈低运动状态,中低回声,而内层非致密化心肌蓬松增厚,肌小梁丰富,呈强回声,且非致密化心肌层与致密化心肌层厚度的比值 ≥ 2 (N/C ≥ 2),儿童NC/C大于1.4;(2) 病变范围大部分位于心尖部(>80%)、下壁以及侧壁;(3) 彩色多普勒可探测到低速血流灌注于深陷的隐窝之间,且与心腔相通,但与冠脉循环不相通;且受影响的心室腔扩大、运动减弱,心肌舒张及收缩功能可有不同程度下降;(4) 没有其它的心脏畸形(如肺动脉闭锁、主动脉狭窄、室间隔缺损等)。排除标准:左室舒张功能不全心肌病、继发性心肌病、先心病、心律失常及图像质量差病例。以研究时间范围内的首次入院治疗时间为治疗前,经过系统性规范化治疗并长期随访,末次随访时间为治疗后,分为LVEF恢复正常组(LVEF ≥ 55%)和LVEF未恢复正常组(LVEF < 55%)。其中:EF恢复正常组治疗前(A组);EF恢复正常组治疗后(B组);EF未恢复正常组治疗前(C组);EF未恢复正常组治疗后(D组)。对照组纳入标准:同期我院体检的与心肌病组性别、月龄、BSA匹配的健康儿童40例为健康对照组,男19例,女21例,中位月龄19.5月。排除标准:超声心动图检查异常,有心脏疾病家族史及既往史。本研究经我院伦理委员会批准实施,批准编号2021CS042。

2.2. 仪器与方法

Philips EPIQ7C彩色超声诊断仪,S5-1和S8-3探头,频率3.0~8.0 MHz,帧频 > 60帧/s,QLAB软件。操作者系我院同一名具有丰富的心肌病超声心动图诊断经验的心超副主任医师,图像分析由本研究者一人完成。受检者安静或睡眠状态下连接心电图。在M型超声心动图模式测定LVEF,胸骨旁长轴获取左室舒张末期内径(Left ventricular end diastolic dimension, LVEDd),左室收缩末期内径(Left ventricular end -systole dimension, LVESd),按BSA转化为Z值(Left ventricular end-systole dimension-Z score, LVESd-Z)和LVEDd-Z [13]。二维模式于左室心尖四腔心切面、二腔心切面描记心内膜,采用Simpson法测得LVEF-Simpson,LVEF(S)。采集主动脉频谱图和胸骨旁短轴左室二尖瓣、乳头肌、心尖切面及左室四腔、三腔、两腔长轴切面连续3个心动周期的二维动态图像。选取清晰稳定的图像分析保存。左心室各节段LS及CS的采集方法:首先在飞利浦超声诊断仪上选择主动脉频谱图像,测量主动脉瓣关闭时间(Aortic valve closing time, AVC)确定收缩期时间,然后选定需要分析的长轴和短轴二维动态图像,然后使用 aCMQ (心肌运动定量)插件进行分析,根据动态图像在QLAB软件工具栏里面选择相应的命令:心尖四腔心切面(AP4)、心尖两腔心切面(AP2)、心尖三腔心切面(AP3)及左心室短轴的二尖瓣水平(SAXB)、乳头肌水平(SAXM)、心尖水平(SAXA)二维动态图像,分析前输入AVC,然后于静态时依次描绘左心室长轴三腔心、四腔心以及两腔心切面左心室心肌的内膜和心外膜,手动调整边界使其与心肌厚度一致,软件通过自动追踪感兴趣区域心肌斑点回声,产生每个心肌节段的纵向应变曲线及各个切面的收缩期纵向应变峰值,分析完左心室长轴三个切面时,软件会获得左心室各节段纵向应变(longitudinal strain, LS)和左室各节段纵向应变达峰时间(Time to peak longitudinal strain, TLS)牛眼图,系统自动计算出左室整体纵向收缩期峰值应变(Global longitudinal strain, GLS)和左室整体纵向收缩期峰值应变达峰时间标准差(Standard deviation of peak time for longitudinal strain, TLS-SD)。记录18节段、三个切面的LS、TLS、左室整体收缩期GLS值和左心室长轴整TLS-SD数值、应变曲线和牛眼图的图像。同样方法分析左心室短轴三个切面的动态图像,获得收缩期圆周应变(circle strain, CS)和圆周应变达峰时间(Time to peak circumferential strain, TCS)的牛眼图,记录18节段、三个短轴切面的CS、TCS、左室整体圆周收缩期峰值应变(Global circle strain, GCS)、左室整体圆周收缩期峰值应变达峰时间标准差(Standard deviation of peak time for circumferential strain, TCS-SD)以及三个短轴切面的应变曲线和牛眼图图像,连续测量3次取均值。

2.3. 统计学方法

SPSS23.0软件数据分析,计数资料用率(%)表示,两组间比较用卡方检验,计量资料正态分布用 x ¯ ±s ,两组间比较用独立样本t检验,治疗前后比较采用自身配对t检验。偏态分布参数采用[M(P25, P75)],两组间比较采用Mann-Whitney U检验,治疗前后比较用配对比较的Wilcoxon Signed Ranks检验,ROC曲线评估指标的预测效能,得到曲线下面积(AUC);约登指数(YI)等于灵敏度 + 特异度−1,用最大YI计算截断值,P < 0.05差异有统计学意义。

3. 结果

3.1. EF不同转归两组治疗前常规超声心动图参数值比较

EF不同转归两组性别、月龄、心率无差异(P > 0.05),与C组(n = 12)比,A组(n = 13) LVEF高,LVEDd-Z低(P < 0.05),见表1

Table 1. Comparison of routine echocardiographic parameters before treatment between two groups

1. 两组治疗前常规超声心动图参数值比较

Group

LVEF

LVEF(S)

LVEDd-Z

Heart Rate

A

44.69 ± 8.67

39.73 ± 12.04

4.67 ± 1.77

108 ± 22.06

C

35.67 ± 9.45

27.86 ± 10.85

6.83 ± 1.34

109 ± 21.05

t

2.490a

2.587a

−3.416a

0.098a

P

0.02

0.016

0.002

0.923

注:a独立样本t检验的t值。

3.2. EF不同转归两组治疗前应变参数比较

与C组相比,A组左室心肌GLS、GCS较高,TCS-SD较低(P均<0.05),TLS-SD较低(P > 0.05),见表2

Table 2. Comparison of strain parameters between Group A and Group C

2. A组和C组应变参数比较

Parameters

A

C

Test Value

P

GLS (%)

−11.93 ± 3.71

−7.55 ± 3.22

−3.132a

0.005

GCS (%)

−15.11 ± 5.57

−7.10 (−7.68, −5.60)

−3.211b

0.001

TLS-SD (ms)

9.70 (5.15, 39.90)

21.90 ± 16.67

−0.816b

0.437

TCS-SD (ms)

13.89 ± 9.18

35.23 ± 30.71

−2.313a

0.025

注:a独立样本t检验的t值,bMann-Whitney U检验的Z值。

3.3. STI评估心肌病预后的价值分析

与C组相比,A组左室GLS、GCS较高,TCS-SD较低(P < 0.05),绘制GLS、GCS、TCS-SD预测LVEF转归的ROC曲线,GLS的AUC为0.811 (95% CI: 0.640~0.981; P = 0.008),GLS预测LVEF恢复正常的最佳截止点是≥−9.0% (敏感性:83.3%,特异性:76.9%)。GCS的AUC为0.878 (95% CI: 0.733~1.000; P = 0.001),GCS预测LVEF恢复正常的最佳截止点是≥−7.9% (敏感性:83.3%,特异性:92.3%)。

3.4. EF恢复正常组治疗前后比较

B组LVEF较A组升高,LVEDd-Z值减小,改良ROSS评分减低(P < 0.05),B组左室各切面LS、CS及GCS和GLS均大于A组(P < 0.05),TCS-SD及TLS-SD均与治疗前延长(P > 0.05),见表3表4图1图2

Table 3. Comparison of routine echocardiographic parameters and modified Ross scores between Groups A and B

3. A组和B组常规心超参数及改良Ross评分比较

Group

LVEF

LVEF(S)

LVEDd-Z

Heart Rate

Score

A

44.69 ± 8.67

38.62 ± 12.26

4.67 ± 1.77

108 ± 22.06

4.46 ± 3.10

B

60.85 ± 4.54

53.85 ± 9.93

2.55 ± 1.09

103 ± 24.25

1.0 (1.0, 2.0)

Test Value

−5.412a

−3.849a

−3.862a

1.109a

−2.655c

P

0.000

0.002

0.002

0.298

0.008

注:a自身配对t检验的t值,c配对比较的Wilcoxon Signed Ranks检验Z值。

Table 4. Comparison of strain parameters between Group A and Group B

4. A组和B组应变参数比较

Parameters

A

B

Test Value

P

LS-AP4 (%)

−11.84 ± 4.81

−16.96 ± 3.53

4.917a

<0.001

LS-AP3 (%)

−12.26 ± 3.28

−16.86 ± 3.64

5.001a

<0.001

LS-AP2 (%)

−10.81 ± 6.81

−17.25 ± 3.64

3.596a

0.004

GLS (%)

−11.92 ± 3.71

−17.02 ± 3.13

6.411a

<0.001

TLS-SD (ms)

9.70 (5.15, 39.80)

19.22 ± 11.23

−0.245c

0.807

CS-SAXB (%)

−15.23 ± 4.40

−21.19 ± 4.45

3.536a

0.004

CS-SAXM (%)

−14.79 ± 6.16

−22.05 ± 5.72

2.973a

0.012

CS-SAXA (%)

−15.04 ± 7.60

−27.4 (−30.90, −21.3)

3.234c

0.007

GCS (%)

−15.11 ± 5.57

−22.63 ± 6.07

3.468a

0.005

TCS-SD (ms)

13.89 ± 9.19

18.70 ± 16.70

−1.087a

0.298

注:LS-AP4、LS-AP3、LS-AP2:左室长轴四腔切面、三腔切面、两腔切面纵向应变;CS-SAXB、CS-SAXM、CS-SAXA:左室短轴二尖瓣水平、乳头肌水平、心尖水平圆周应变。a自身配对t检验的t值,c配对比较的Wilcoxon Signed Ranks检验Z值。

Figure 1. Longitudinal strain “bull’s-eye” plots in the group with normalized EF. A and B show pre- and post-treatment LS bull’s-eye plots, along with GLS and TLS-SD in the normalized EF group, and C is the controls’ LS bull’s-eye plot and GLS and TLS-SD

1. EF恢复正常组左心室纵向应变牛眼图。A和B分别为EF恢复正常组中的病例治疗前后的LS牛眼图及GLS和TLS-SD,C为正常对照组LS牛眼图及GLS和TLS-SD参数

Figure 2. Circumferential strain “bull’s-eye” plots in the normalized EF group. D and E present pre- and post-treatment CS bull’s-eye plots, with GCS and TCS-SD in the normalized EF group, and F is the control group’s CS bull’s-eye plot and GCS and TCS-SD

2. EF恢复正常组左心室圆周应变牛眼图。D和E分别为EF恢复正常组中的病例治疗前后的CS牛眼图及GCS和TCS-SD,F为正常对照组CS牛眼图及GCS和TCS-SD

3.5. EF未恢复正常组治疗前后比较

与C组相比,D组LVEF、LVEDd-Z值无差异(P > 0.05),改良ROSS评分减低(P < 0.05),GCS升高,TCS-SD降低(P < 0.05)。余参数无差异(P > 0.05),见表5表6图3图4

Table 5. Comparison of routine echocardiographic parameters and modified Ross scores between Groups C and D

5. C组和D组常规心超参数及改良Ross评分比较

Group

LVEF

LVEF(S)

LVEDd-Z

Heart Rate

Score

C

35.67 ± 9.45

28.17 ± 11.49

6.83 ± 1.34

109 ± 21.05

6.25 ± 3.49

D

39.58 ± 10.09

32.17 ± 12.07

6.05 ± 1.73

112 ± 22.36

2.0 (1.3, 3.5)

Test value

−1.742a

−1.177a

1.508a

−0.886a

−2.567c

P

0.109

0.264

0.160

0.395

0.01

注:a自身配对t检验的t值,c配对比较的Wilcoxon Signed Ranks检验Z值。

Table 6. Comparison of left ventricular strain parameters before and after treatment in the group with non-normalized EF

6. EF未恢复正常组患儿治疗前后左室应变参数比较

Parameters

C

D

Test Value

P

LS-AP4 (%)

−7.55 ± 3.22

−7.05 (−15.60, −4.95)

−0.432c

0.666

LS-AP3 (%)

−7.43 ± 3.68

−5.85 (−13.05, −5.28)

−0.746c

0.456

LS-AP2 (%)

−6.6 (−8.85, −4.34)

−8.48 ± 3.69

−0.549c

0.583

GLS (%)

−7.55 ± 3.22

−6.50 (−14.53, −4.58)

−0.711c

0.477

TLS-SD (ms)

21.90 ± 16.67

14.04 ± 15.22

1.063a

0.311

CS-SAXB (%)

−8.63 ± 3.82

−10.59 ± 4.50

2.182a

0.052

CS-SAXM (%)

−7.10 (−7.38, −4.45)

−9.47 ± 5.45

−1.099c

0.272

CS-SAXA (%)

−7.89 ± 5.06

−9.66 ± 5.31

0.934a

0.370

GCS (%)

−7.10 (−7.68, −5.60)

−10.66 ± 5.12

−2.353c

0.019

TCS-SD (ms)

35.23 ± 30.71

7.45 ± 4.73

3.170a

0.009

注:a自身配对t检验的t值,c配对比较的Wilcoxon Signed Ranks检验Z值。

Figure 3. Longitudinal strain “bull’s-eye” plots in the non-normalized EF group. a and b show the pre- and post-treatment LS bull’s-eye plots, along with GLS and TLS-SD

3. EF未恢复正常组左心室纵向应变牛眼图。a和b分别为EF未恢复正常组中的病例治疗前后的LS牛眼图及GLS和TLS-SD

Figure 4. Circumferential strain “bull’s-eye” plots in the non-normalized EF group. c and d present the pre- and post-treatment CS bull’s-eye plots, including GCS and TCS-SD

4. EF未恢复正常组左心室圆周应变牛眼图。c和d分别为EF未恢复正常组中的病例治疗前后的CS牛眼图及GCS和TCS-SD

3.6. EF恢复正常后心肌病患儿左室应变参数评价

与健康对照组相比,B组左室各切面LS、CS及GLS、GCS较低,TLS-SD延长(P < 0.05),TCS-SD延长(P > 0.05),见表7

Table 7. Comparison of strain parameters between the myocardial disease group with normalized EF after treatment and the healthy control group

7. 心肌病EF恢复正常组治疗后和健康对照组应变参数比较

Parameters

control group

B

Test Value

P

GLS (%)

−22.25 (−23.25, −19.9)

−12.02 ± 3.13

−4.022b

<0.001

LS-AP4 (%)

−22.81 ± 2.03

−16.96 ± 3.53

−5.657a

<0.001

LS-AP3 (%)

−21.19 ± 3.08

−16.86 ± 3.64

−4.209a

<0.001

LS-AP2 (%)

−21.44 ± 2.50

−17.25 ± 3.64

−4.666a

<0.001

GCS (%)

−31.70 ± 3.86

−22.63 ± 6.07

−6.339a

<0.001

CS-SAXB (%)

−26.88 ± 3.87

−21.19 ± 4.45

−4.441a

<0.001

CS-SAXM (%)

−31.92 ± 4.77

−22.05 ± 5.72

−6.170a

<0.001

CS-SAXA (%)

−38.50 (−41.38, −31.08)

−27.4 (−30.90, −21.3)

−3.578b

<0.001

TLS-SD (ms)

9.65 (3.88, 18.68)

19.22 ± 11.23

−2.212b

0.027

TCS-SD (ms)

8.05 (5.35, 17.95)

18.70 ± 16.70

−1.468b

0.142

注:a独立样本t检验的t值,bMann-Whitney U检验的Z值。

4. 讨论

据研究发现部分心肌病患儿通过抗心衰及免疫支持等治疗后得以临床症状缓解,心衰症状好转,EF及左室短轴短缩率升高,LVEDd缩小,超声心动图恢复正常,有学者定义为LVRR [14]。STI是评价心肌节段功能、早期发现心肌功能不全和预测LVRR的一种很有潜力的工具[15] [16]。研究表明,GLS预测心血管疾病预后的能力优于LVEF [17]-[19],可预测和评估心肌病左室逆重构(Left ventricular reverse remodeling, LVRR) [20] [21]

GCS反映左室心肌的圆周收缩情况,与心室壁厚度和收缩能力相关。早期心肌损伤可导致GCS异常,表现为圆周收缩减弱,可能提示心肌纤维变性或炎症等损伤。在DCM和NVM中,GCS值不一致显示径向收缩不协调。GLS反映左室纵向收缩,敏感于心内膜下层损伤。GLS下降可在LVEF未变时预警心肌功能障碍[22] [23]。GCS和GLS在儿童心肌病、冠心病、化疗相关心肌病等疾病的早期损伤评估中具有重要价值[24] [25]。本研究显示EF不同转归的两组治疗前GLS、GCS不同;通过ROC曲线检测其对LVEF转归的预测效能,结果显示GLS和GCS能有效地预测心肌病患儿LVEF的转归,GLS的最佳截止点为−9.0%,当治疗前GLS绝对值 ≥ 9.0%时,其预测治疗后LVEF恢复正常的敏感性为83.3%,特异性为76.9%。GCS的最佳截止点是−7.9%,当治疗前GCS绝对值 ≥ 7.9%时,其预测治疗后LVEF恢复正常的敏感性为83.3%,特异性为92.3%。具有较高的特异性和敏感性,提示STI能更敏感地反映心肌的早期功能障碍及严重程度。心脏的左心室的心肌纤维复杂的走行特点:心肌束在心内膜层呈右手螺旋纵向走行、心外膜层由心脏基地到心尖逆时针斜行走行、中层环向走行,所以不同走向的心肌束从而产生心肌纵向、径向、圆周及旋转运动[24]。两组患儿首诊时心脏左室内径均不同增大,心脏明显增大,左室扩张,由椭圆形向球形重塑,但两组患儿的LVEDd-Z值基线水平不一样,间接提示患儿左心室重构程度不同,心肌纤维束改变程度不同,这些因素可能是导致左心室的应变不一致的原因,进一步说明,初始状态的心肌病变程度不同,而GCS和GLS可反应心脏局部的收缩功能不一致,业已知,严重的左心室运动不协调,是导致心肌病患者左心室功能障碍加重以及死亡或移植趋势增加的危险因素[5],因此GCS和GLS可成为评估儿童心肌病预后的新指标。

ACEI和β受体阻滞剂等抗心衰药物可使心脏冠脉舒张期充盈时间和血流灌注增加,可有效逆转心肌重塑和降低心脏负荷,从而改善心肌细胞功能,增强心肌节段收缩能力[26] [27]。国内外学者发现β受体阻滞剂能拮抗慢性交感神经系统的异常激活,改善心肌细胞生物学特性,抑制心肌肥厚及氧化应激反应,还可以通过减少心肌细胞细胞凋亡并促进处于缺血状态下的心肌细胞收缩蛋白再生[28] [29]。在心肌细胞功能改善的同时,左室充盈压力减小,冠脉外周阻力减少,促进心肌血流灌注恢复,改善心肌缺血缺氧状态,进一步防止心肌细胞及间质纤维化[30]。左室各节段心肌收缩功能改善后,有利于心脏有效泵血、减少左室残余血容量,心腔内的血液涡流减少,心室壁受到的撞击也相应减轻,从而改善心肌细胞的耗能,促进心肌功能恢复,缓解心衰症状,最终会逐渐恢复正常[31]。临床上并非所有患儿都能在治疗后心肌重塑得以改善,普通M型超声测量EF时声束斜穿过增大左心室腔,部分结构不规则,测量内径大小可能会存在误差,从而影响结果准确性。部分心衰症状改善者EF值相对滞后,临床表现与EF呈现“不匹配”现象,治疗后LVEF < 55%后但改良Ross评分为0~2分,而STI技术提示这部分患儿局部收缩功能及收缩同步性较治疗前有所改善,或许为临床评估心肌病疗效提供新的方法,STI技术成功克服了组织多普勒成像中角度依赖性的限制,能够敏感且精确地检测心肌节段的异常运动,从而为心肌功能的评估提供了更为客观的手段[32] [33]。Amorim S等[34]研究发现发生LVRR后的成人DCM患者左心室容积及球性指数均有改善,然而其收缩期LS及CS仍异常,提示仍然存在心肌收缩和舒张功能障碍。Jung I H等[21]研究指出,GLS对纵向微小异常敏感,但不影响整体EF。本研究发现,部分心肌病患儿在LVEF恢复正常后,心脏局部收缩功能并未完全恢复正常,提示临床医生应延长时间的随访,避免心功能再次出现恶化或持续的亚临床损害,除了监测LVEF,可以通过GLS或GCS的动态监测来调整治疗方案。可结合心脏MRI共同评估心肌功能的恢复情况,且STI技术操作相对简洁,可弥补MRI检查耗时长、部分需麻醉镇静且年幼儿恐惧的不足。

既往的研究表面,STI技术多用于评估心脏的局部和整体收缩或舒张功能[35],本研究发现,STI技术在预测儿童心肌病预后方面,相较于传统超声心动图展现出更高的客观性和优势。

本研究局限性,本研究选取DCM和NVM患儿为研究对象,样本量少,研究时间短,临床好转和LVEF恢复正常的病例少,故不能充分地说明结果的临床意义,还需扩大样本并长时间随访研究验证STI对心肌病预后的价值。

综上,STI能为临床评估心肌病预后、治疗效果评价及随访提供有意义的参考指标。

NOTES

*通讯作者。

参考文献

[1] 李自普. 儿童心肌病心力衰竭恶化的识别和处理[J]. 中国小儿急救医学, 2023, 30(1): 1-6.
[2] Lipshultz, S.E., Cochran, T.R., Briston, D.A., Brown, S.R., Sambatakos, P.J., Miller, T.L., et al. (2013) Pediatric Cardiomyopathies: Causes, Epidemiology, Clinical Course, Preventive Strategies and Therapies. Future Cardiology, 9, 817-848.
https://doi.org/10.2217/fca.13.66
[3] Lipshultz, S.E., Law, Y.M., Asante-Korang, A., Austin, E.D., Dipchand, A.I., Everitt, M.D., et al. (2019) Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation, 140, e9-e68.
https://doi.org/10.1161/cir.0000000000000682
[4] Cannata, A., Manca, P., Nuzzi, V., Gregorio, C., Artico, J., Gentile, P., et al. (2020) Sex-Specific Prognostic Implications in Dilated Cardiomyopathy after Left Ventricular Reverse Remodeling. Journal of Clinical Medicine, 9, Article No. 2426.
https://doi.org/10.3390/jcm9082426
[5] Forsha, D., Slorach, C., Chen, C.K., Sherman, A., Mertens, L., Barker, P., et al. (2016) Patterns of Mechanical Inefficiency in Pediatric Dilated Cardiomyopathy and Their Relation to Left Ventricular Function and Clinical Outcomes. Journal of the American Society of Echocardiography, 29, 226-236.
https://doi.org/10.1016/j.echo.2015.11.011
[6] 中华医学会儿科学分会心血管学组, 中国医师协会心血管内科医师分会儿童心血管专业委员会, 中华儿科杂志编辑委员会. 儿童扩张型心肌病诊断与治疗专家共识(2024) [J]. 中华儿科杂志, 2024, 62(9): 811-825.
[7] Kinova, E., Somleva-Todorova, D. and Goudev, A. (2019) Left Ventricular Strain and Rotation in Patients with Dilated Cardiomyopathy and Severe Systolic Dysfunction. Cardiology, 145, 1-12.
https://doi.org/10.1159/000503682
[8] Kinova, E., Spasova, N., Borizanova, A. and Goudev, A. (2018) Torsion Mechanics as an Indicator of More Advanced Left Ventricular Systolic Dysfunction in Secondary Mitral Regurgitation in Patients with Dilated Cardiomyopathy: A 2D Speckle-Tracking Analysis. Cardiology, 139, 187-196.
https://doi.org/10.1159/000485967
[9] 付晓燕, 闫瑞玲, 左思阳, 等. 二维斑点追踪技术评价左房功能应用进展[J]. 心脏杂志, 2019, 31(3): 347-351.
[10] Qian, J., Xie, J., Lakshmipriya, T., Gopinath, S.C.B. and Xu, H. (2020) Heart Infection Prognosis Analysis by Two-Dimensional Spot Tracking Imaging. Current Medical Imaging Formerly Current Medical Imaging Reviews, 16, 534-544.
https://doi.org/10.2174/1573405615666190130164037
[11] 侯翠, 徐秋琴, 李晴晴, 等. 二维斑点追踪成像在评估新生儿左心室功能中的应用[J]. 中国医学影像学杂志, 2023, 31(12): 1274-1279.
[12] Ross, R.D. (2012) The Ross Classification for Heart Failure in Children after 25 Years: A Review and an Age-Stratified Revision. Pediatric Cardiology, 33, 1295-1300.
https://doi.org/10.1007/s00246-012-0306-8
[13] 黄国英. 小儿超声心动图学[M]. 上海: 上海科学技术出版社, 2015.
[14] Merlo, M., Caiffa, T., Gobbo, M., Adamo, L. and Sinagra, G. (2018) Reverse Remodeling in Dilated Cardiomyopathy: Insights and Future Perspectives. IJC Heart & Vasculature, 18, 52-57.
https://doi.org/10.1016/j.ijcha.2018.02.005
[15] Iacobelli, R., Di Molfetta, A., Cobianchi Bellisari, F., Toscano, A., Filippelli, S., Di Chiara, L., et al. (2019) Changes in Left and Right Ventricular Two-Dimensional Echocardiographic Speckle-Tracking Indices in Pediatric LVAD Population: A Retrospective Clinical Study. The International Journal of Artificial Organs, 42, 711-716.
https://doi.org/10.1177/0391398819857446
[16] Dziewięcka, E., Wiśniowska-Śmiałek, S., Khachatryan, L., Karabinowska, A., Szymonowicz, M., Podolec, P., et al. (2019) Relationships between Left Ventricular Geometry and Remodeling in Dilated Cardiomyopathy. Minerva Cardioangiologica, 67, 261-271.
https://doi.org/10.23736/s0026-4725.19.04856-4
[17] Kalam, K., Otahal, P. and Marwick, T.H. (2014) Prognostic Implications of Global LV Dysfunction: A Systematic Review and Meta-Analysis of Global Longitudinal Strain and Ejection Fraction. Heart, 100, 1673-1680.
https://doi.org/10.1136/heartjnl-2014-305538
[18] 陈晔, 朱善良, 杨世伟, 等. 二维斑点追踪成像技术在甲型流感相关心肌炎患儿左室功能评估中的价值[J]. 临床儿科杂志, 2024, 42(7): 648-653.
[19] 钟刚, 龙湘党, 敖琨, 等. 超声分层应变技术评估急性病毒性心肌炎患者左心室收缩功能及与磁共振比较[J]. 中国临床医学影像杂志, 2024, 35(5): 329-332.
[20] Kan, A., Fang, Q., Li, S., Liu, W., Tao, X., Huang, K., et al. (2023) The Potential Predictive Value of Cardiac Mechanics for Left Ventricular Reverse Remodelling in Dilated Cardiomyopathy. ESC Heart Failure, 10, 3340-3351.
https://doi.org/10.1002/ehf2.14529
[21] Jung, I.H., Park, J.H., Lee, J., Kim, G.S., Lee, H.Y., Byun, Y.S., et al. (2020) Left Ventricular Global Longitudinal Strain as a Predictor for Left Ventricular Reverse Remodeling in Dilated Cardiomyopathy. Journal of Cardiovascular Imaging, 28, 137-149.
https://doi.org/10.4250/jcvi.2019.0111
[22] Smiseth, O.A., Torp, H., Opdahl, A., Haugaa, K.H. and Urheim, S. (2015) Myocardial Strain Imaging: How Useful Is It in Clinical Decision Making? European Heart Journal, 37, 1196-1207.
https://doi.org/10.1093/eurheartj/ehv529
[23] Delgado-Montero, A., Tayal, B., Goda, A., Ryo, K., Marek, J.J., Sugahara, M., et al. (2016) Additive Prognostic Value of Echocardiographic Global Longitudinal and Global Circumferential Strain to Electrocardiographic Criteria in Patients with Heart Failure Undergoing Cardiac Resynchronization Therapy. Circulation: Cardiovascular Imaging, 9, 1-10.
https://doi.org/10.1161/circimaging.115.004241
[24] Yu, Y., Villarraga, H.R., Saleh, H.K., Cha, S.S. and Pellikka, P.A. (2012) Can Ischemia and Dyssynchrony Be Detected during Early Stages of Dobutamine Stress Echocardiography by 2-Dimensional Speckle Tracking Echocardiography? The International Journal of Cardiovascular Imaging, 29, 95-102.
https://doi.org/10.1007/s10554-012-0074-9
[25] Huang, X., Yue, Y., Wang, Y., Deng, Y., Liu, L., Di, Y., et al. (2018) Assessment of Left Ventricular Systolic and Diastolic Abnormalities in Patients with Hypertrophic Cardiomyopathy Using Real-Time Three-Dimensional Echocardiography and Two-Dimensional Speckle Tracking Imaging. Cardiovascular Ultrasound, 16, Article No. 23.
https://doi.org/10.1186/s12947-018-0142-y
[26] 钱永如. 小儿扩张型心肌病的治疗[J]. 中华儿科杂志, 2011, 49(2): 122-124.
[27] 中华医学会儿科学分会心血管学组, 中国医师协会心血管内科医师分会儿童心血管专业委员会, 中华儿科杂志编辑委员会, 等. 儿童心力衰竭诊断和治疗建议(2020年修订版) [J]. 中华儿科杂志, 2021, 59(2): 84-94.
[28] 迟小青, 钟家蓉, 谢盛慧, 等. 卡维地洛及美托洛尔治疗扩张型心肌病的疗效及安全性分析[J]. 中华实用儿科临床杂志, 2013, 28(13): 1026-1029.
[29] Metra, M., Nodari, S., Bordonali, T., Milani, P., Fracassi, F. and Dei Cas, L. (2007) β-Blocker Therapy of Heart Failure: An Update. Expert Opinion on Pharmacotherapy, 8, 289-298.
https://doi.org/10.1517/14656566.8.3.289
[30] 林继红, 樊瑛, 侯疏影, 等. 扩张型心肌病心力衰竭病人卡维地洛治疗前后的冠脉血流储备评价[J]. 中国新药与临床杂志, 2007, 26(7): 497-500.
[31] 朱美华. 血流向量成像技术在评价扩张型心肌病心脏整体功能及陈旧性心肌梗死心脏局部功能中的应用[D]: [博士学位论文]. 武汉: 华中科技大学, 2012.
[32] 林艺霞, 张丽, 谢明星, 等. 超声斑点追踪成像在射血分数保留的心力衰竭中的应用进展[J]. 中国医学影像学杂志, 2022, 30(3): 291-295.
[33] 马瑛, 马媛, 胡利华, 等. 二维斑点追踪成像评价左心耳封堵术封堵器对心房颤动患者左心室心肌的影响[J]. 中国医学影像学杂志, 2022, 30(1): 47-51, 53.
[34] Amorim, S., Rodrigues, J., Campelo, M., Moura, B., Martins, E., Macedo, F., et al. (2016) Left Ventricular Reverse Remodeling in Dilated Cardiomyopathy-Maintained Subclinical Myocardial Systolic and Diastolic Dysfunction. The International Journal of Cardiovascular Imaging, 33, 605-613.
https://doi.org/10.1007/s10554-016-1042-6
[35] 陈慧颖, 马小静, 夏娟, 等. 斑点追踪成像技术评价扩张性心肌病的研究进展[J]. 心肺血管病杂志, 2023, 42(1): 88-91.