间充质干细胞来源的凋亡微囊泡的抗炎与修复作用
Anti-Inflammatory and Reparative Effects of Mesenchymal Stem Cell-Derived Apoptotic Small Extracellular Vesicles
摘要: 间充质干细胞(MSCs)在免疫调节和组织修复方面发挥功效。然而,大多数间充质干细胞在移植后不久发生凋亡并产生凋亡微囊泡(AposEVs),AposEVs既携带了与凋亡相关的标志物,又携带了其供体细胞的蛋白、脂质、核酸以及细胞器,它们是关键的细胞间通讯介质,可以对受体细胞产生不同的调节作用。在调控机体免疫应答、细胞迁移与分化、组织修复方面发挥作用。此文着重综述其在抗炎与组织修复方面发挥的重要作用。
Abstract: Mesenchymal stem cells (MSCs) exert efficacy in anti-inflammatory and tissue regeneration. However, most mesenchymal stem cells undergo apoptosis shortly after transplantation and produce apoptotic small extracellular vesicles (AposEVs) that carry both apoptosis-related markers and proteins, lipids, nucleic acids, and organelles of their donor cells, which are key cell-to-cell communication mediators that can exert different regulatory effects on recipient cells. It plays a role in regulating the body’s immune response, cell migration, cell differentiation, tissue regeneration. This article focuses on its important role in anti-inflammatory and reparative effects.
文章引用:周润润, 徐皓, 刘紫妍, 曾睿, 戴红卫. 间充质干细胞来源的凋亡微囊泡的抗炎与修复作用[J]. 临床个性化医学, 2024, 3(4): 2414-2419. https://doi.org/10.12677/jcpm.2024.34345

1. 凋亡微囊泡的生物学特性

间充质干细胞移植治疗在炎症和组织缺损中发挥了良好的治疗效果,研究表明干细胞移植的治疗效果依赖于干细胞凋亡,因为移植后只有少数干细胞可以存活[1] [2]。凋亡是细胞的一种自我毁灭的过程,在不启动炎症反应的情况下引起一系列生物学事件,包括起泡、细胞收缩、核碎裂、染色质凝聚和染色体DNA片段化,人体内每天大约有100~150亿个凋亡细胞产生,以维持器官稳态,负责维持整个生物体的稳态平衡[3]。细胞凋亡是一种高度组织化和能量依赖性的过程,这种完全调节的分子机制是响应细胞内和细胞外环境刺激而触发的,其发生涉及多细胞生物体中的半胱天冬酶。它既在生理发育过程中发挥作用,也作为应对与细胞微环境破坏、DNA损伤和肿瘤转化相关的病理现象的防御机制[4]。凋亡细胞表达或释放“find me”信号,如核苷酸、溶血磷脂酰胆碱和压裂菌碱,以吸引吞噬细胞,同时呈现“eat me”信号,如磷脂酰丝氨酸、钙网蛋白、膜联蛋白A1和血小板反应蛋白[5]。凋亡细胞经通过膜出芽或出泡形成膜包裹的囊泡被称作凋亡细胞外囊泡。这些细胞外囊泡含有其亲本细胞的成分,包括蛋白质、核酸和脂质等[6]。凋亡细胞外囊泡按照直径大小可以分为三类,包括1至5 μm的凋亡小体(ApoBDs)、0.1至1 μm的凋亡囊泡(ApoMVs)和直径小于150 nm的凋亡外泌体(ApoExos) [7] [8]。其中,ApoBDs由凋亡细胞的质膜起泡过程中形成,ApoMVs通过质膜向外出芽和裂变产生,ApoExos是通过多泡体与质膜融合并随后释放产生的。ApoMVs和ApoExos具有相似的特性,通常合并称为微囊泡(AposEVs) [9]。作为凋亡细胞的产物,AposEVs可以被免疫细胞(尤其是巨噬细胞)募集和吞噬,被吞噬和摄入后,它们可以抑制炎症。此外,AposEVs可以从其亲本细胞继承信息和物质并将其递送给受体细胞[10],从而调控免疫调节和组织修复。与MSCs直接移植相比,MSCs-AposEVs更能发挥干细胞的优势的同时可以避免干细胞移植的潜在风险,包括免疫排斥、干细胞再生能力减弱、致瘤性等[11]

2. 凋亡微囊泡的免疫调节功能及组织修复功能

2.1. 凋亡微囊泡调节免疫细胞

2.1.1. T细胞

T细胞失调在器官特异性自身免疫性疾病中起重要作用,包括淋巴细胞过度增殖、促炎CD4+细胞亚群的不成比例扩增和不受控制的激活。Runci Wang等建立小鼠关节炎模型后提取骨髓间充质干细胞(BMSC)来源的AposEVs进行小鼠腹膜内注射。结果显示BMSC-AposEVs以剂量依赖性方式抑制效应T细胞活化和抑制IL-2分泌来直接调节T细胞活性,减轻了狼疮和关节炎小鼠模型的疾病严重程度,具有调节T细胞免疫的能力[12]。系统性红斑狼疮表现为循环和组织中Th17细胞数量显着增加[13],硫化氢(H2S)被认为是免疫系统的天然缓冲剂,对于维持T细胞平衡发挥重要作用,其缺乏会导致严重的免疫疾病[14]。研究发现凋亡缺陷的小鼠模型表现出H2S水平的显著降低以及Th17细胞的异常分化,此外,小鼠BMSC-AposEVs表达关键的H2S生成酶并产生大量的H2S,证明细胞凋亡是维持内源性H2S稳态所必需的。H2S通过对硒蛋白F的C38位点的硫化作用,来抑制Th17细胞的异常激活,从而发挥了对系统性红斑狼疮(SLE)小鼠的治疗效果[15]

2.1.2. 巨噬细胞

巨噬细胞是肝脏的重要细胞成分,巨噬细胞极化对于组织修复和体内平衡维持至关重要,其中M2型巨噬细胞在炎症的消退阶段和受损组织的修复发挥调节作用。研究发现对T2D小鼠模型输注BMSC-AposEVs后,钙网蛋白(CRT)作为介导AposEVs胞饮作用和巨噬细胞调节作用的关键“eat me”信号在BMSC-AposEVs表面暴露。CRT通过在转录水平上诱导巨噬细胞重编程,从而抑制巨噬细胞的积累并使其在II型糖尿病(T2D)小鼠肝脏中向M2型转化,有效缓解了T2D小鼠的胰岛素抵抗和肝脂肪变性[16]。此外,在糖尿病患者中发现巨噬细胞在皮肤伤口周围积聚并产生NLRP3炎性小体,导致伤口愈合不良[17]。Yiming Wang等人发现人脐带间充质干细胞(UCMSCs)来源的AposEVs显着加速了T2D小鼠皮肤病变的伤口愈合。UCMSCs-AposEVs可能携带CD39/CD73两种外核苷酸酶、E3泛素连接酶和miRNA,显著降低了巨噬细胞的氧化应激状态,阻断炎性小体NLRP3的组装,并最终抑制焦亡过程,加速糖尿病小鼠伤口愈合[18]。此外,脂肪干细胞(ADSCs)来源的AposEVs被证明携带miR-21-5p,通过靶向Kruppel样因子6的mRNA诱导巨噬细胞M2极化并促进皮肤伤口愈合。牙周炎是由抗菌免疫反应失衡和过度炎症引起的,巨噬细胞在其中起重要作用。BMMSCs-AposEVs被巨噬细胞吞噬后降低了牙周炎组织中促炎巨噬细胞中COX2的表达。此外,BMMSCs-AposEVs以剂量依赖的方式抑制TNF-α和IL-6的分泌,促进IL-10的分泌[19]。进一步研究发现,BMMSCs-AposEVs通过AMPK/SIRT1/NF-κB通路抑制巨噬细胞向促炎表型极化,抑制破骨细胞分化和TRAP染色测定的骨吸收、MMP-9表达和凹坑吸收面积[20]

2.2. 凋亡微囊泡介导组织修复

2.2.1. 伤口愈合

皮肤作为机体与外界环境之间的主要屏障,极易受到各种损伤。研究证明MSCs移植可以加速皮肤伤口的愈合,恢复更完整和有组织的皮肤结构。Liu等在兔皮肤创伤愈合模型中观察到移植后短时间内MSCs大量凋亡,并通过释放AposEVs促进皮肤伤口愈合[21]。另外Qu等人对不同干细胞来源的AposEVs在皮肤伤口愈合中的作用进行了比较。这项研究表明,多能干细胞(PSC)来源的AposEVs比人脐带MSCs (huMSCs)产生的AposEVs多100倍。此外,PSC-AposEVs继承了PSCs的SOX2,并通过YAP1激活Hippo信号通路,将其转移到皮肤MSCs中,以增强其增殖和迁移能力。AposEVs可以继承PSCs的多能性分子,为成体干细胞提供能量[22]

2.2.2. DNA损伤

DNA损伤在人体内经常发生,DNA损伤的积累可导致衰老和癌症[23]。Huang Z等人的研究证明了凋亡缺陷小鼠出现了系统性多器官过早衰老和DNA损伤,且对照射诱导的DNA损伤更敏感。静脉输注小鼠BMSC-AposEVs可以改善细胞凋亡缺陷小鼠表现出的显著升高的DNA损伤和细胞过早衰老,BMSC-AposEVs可能加速53BP1、PARP1、BRCA1和KU70等有助于DNA损伤修复的蛋白质的募集,当细胞经历严重的DNA损伤时,它们会激活自我保护机制并阻止细胞周期的更新,以防止具有显著DNA错误的细胞进入有丝分裂期。蛋白质组学结果显示发现BMSC-AposEVs包含与DNA修复途径相关的,包括DNA复制、DSB修复途径(HR和NHEJ)、错配修复和核苷酸切除修复中的多种蛋白质,其中PARP1在BMSC-AposEVs介导的DNA修复中起关键作用[24]

2.2.3. 骨质疏松

由外伤、肿瘤、先天缺陷引起的骨缺损是导致残疾和身体受限的主要原因,研究表明BMSC-AposEVs的局部移植促进了颅骨缺损大鼠模型的骨再生。BMSC-AposEVs的摄取提高了内源性BMSCs的增殖、迁移和成骨分化能力,从而增强了归巢效应。此外,BMSC-AposEVs作为c-Jun氨基末端激酶信号激动剂,通过增加细胞内活性氧水平使得新骨形成和骨组织再生[25]。类似地,全身输注外源性BMSCs-AposEVs通过转移E3连接酶RNF146和miR-328-3p靶向受体BMSCs中的Axin1,并通过Wnt/β-Catenin通路激活来挽救受损的干细胞特性,从而改善MRL/lpr、Caspase3小鼠和去卵巢小鼠的骨量减少表型[26]

2.2.4. 血管再生

血管化在促进营养输送、维持氧气水平、支持细胞增殖和促进组织再生方面起着关键作用。然而,在成年期,内源性内皮细胞很少增殖,在心肌梗死大鼠模型中,BMSC-AposEVs通过调节受体ECs中的巨自噬/自噬增强血管生成并改善心功能恢复[27]。BMSC-AposEVs被ECs吞噬后,通过增加溶酶体相关膜蛋白1的蛋白表达来激活其溶酶体功能。BMSC-AposEVs还介导转录因子EB (TFEB)转位入核,增强自噬相关基因的表达,促进内皮细胞的血管生成能力。另一项研究使用牙髓拔除模型作为强有力的模型来研究AposEVs在血管新生中的作用[28],研究发现,人乳牙牙髓干细胞来源的AposEVs (hDPSC-AposEVs)在传递线粒体翻译延伸因子Tu (TUFM)后,通过TFEB在溶酶体中的核转位激活TFEB介导的ECs自噬。J Liu等人发现从人脐带间充质干细胞(HUVECs)中分离的AposEVs被HUVECs摄取后,通过促进内皮细胞增殖和血管生成来促进全层伤口愈合[29]

2.2.5. 卵巢衰老

卵巢衰老是常见的生殖和内分泌疾病,影响了全球6%~20%的育龄妇女[30]。以往的研究发现凋亡缺陷会导致小鼠出现卵巢功能障碍并损害生育能力。Yu Fu等人发现凋亡缺陷导致卵泡膜和壁颗粒细胞中WNT/β-catenin激活异常,通过NPPC/cGMP/PDE3A/cAMP级联反应损害卵巢卵泡发生。将外源性MSC-AposEVs注入凋亡缺陷的小鼠中后发现MSC-AposEVs全身给药改善了FasmutFasLmut小鼠卵巢卵泡生成受损、PCOS表型和出生率降低。转录组结果和蛋白质分子实验证明AposEVs补充可以改善了卵巢老化小鼠体内的WNT/β-catenin的异常,从而改善了衰老小鼠的卵巢功能和生育能力,此外,输注MSC-AposEVs有效改善了卵巢卵泡数量和卵母细胞质量,最终促进了15月龄老年小鼠的生育能力[31]

3. 结论

凋亡微囊泡存在并在人类的各种病理和生理状况中有着关键作用,在上述研究中,来自MSCs的AposEVs主要用于骨骼、血管、皮肤、卵巢等组织的修复与T细胞及巨噬细胞的免疫调节。其他疾病是否也能受益于MSCs衍生的AposEVs以及这些组织的共同特征,需要更多探索。另外,大多数关于AposEVs的研究都集中在外源性AposEVs的功能上。然而,外源性AposEVs的应用面临免疫原性、安全性、异质性和来源受限等问题,因此,有必要研究内源性AposEVs的来源和分布,然而内源性AposEVs的研究难度较大。总的来说,尽管AposEVs的研究道阻且长,但其具有应用潜力,值得进一步研究。

NOTES

*通讯作者。

参考文献

[1] Liu, J., Qiu, X., Lv, Y., Zheng, C., Dong, Y., Dou, G., et al. (2020) Apoptotic Bodies Derived from Mesenchymal Stem Cells Promote Cutaneous Wound Healing via Regulating the Functions of Macrophages. Stem Cell Research & Therapy, 11, 1-15.
https://doi.org/10.1186/s13287-020-02014-w
[2] Liu, H., Liu, S., Qiu, X., Yang, X., Bao, L., Pu, F., et al. (2020) Donor MSCS Release Apoptotic Bodies to Improve Myocardial Infarction via Autophagy Regulation in Recipient Cells. Autophagy, 16, 2140-2155.
https://doi.org/10.1080/15548627.2020.1717128
[3] Mao, Y. (2021) Apoptotic Cell-Derived Metabolites in Efferocytosis-Mediated Resolution of Inflammation. Cytokine & Growth Factor Reviews, 62, 42-53.
https://doi.org/10.1016/j.cytogfr.2021.10.002
[4] Rezaie, J., Etemadi, T. and Feghhi, M. (2022) The Distinct Roles of Exosomes in Innate Immune Responses and Therapeutic Applications in Cancer. European Journal of Pharmacology, 933, Article 175292.
https://doi.org/10.1016/j.ejphar.2022.175292
[5] Zou, X., Lei, Q., Luo, X., Yin, J., chen, S., Hao, C., et al. (2023) Advances in Biological Functions and Applications of Apoptotic Vesicles. Cell Communication and Signaling, 21, Article No. 260.
https://doi.org/10.1186/s12964-023-01251-9
[6] Wang, J., Cao, Z., Wang, P., Zhang, X., Tang, J., He, Y., et al. (2021) Apoptotic Extracellular Vesicles Ameliorate Multiple Myeloma by Restoring FAS-Mediated Apoptosis. ACS Nano, 15, 14360-14372.
https://doi.org/10.1021/acsnano.1c03517
[7] Gielecińska, A., Kciuk, M., Yahya, E.-B., Ainane, T., Mujwar, S. and Kontek, R. (2023) Apoptosis, Necroptosis, and Pyroptosis as Alternative Cell Death Pathways Induced by Chemotherapeutic Agents? Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1878, Article 189024.
https://doi.org/10.1016/j.bbcan.2023.189024
[8] Zhang, X., Tang, J., Kou, X., Huang, W., Zhu, Y., Jiang, Y., et al. (2022) Proteomic Analysis of MSC-Derived Apoptotic Vesicles Identifies FAS Inheritance to Ameliorate Haemophilia a via Activating Platelet Functions. Journal of Extracellular Vesicles, 11, e12240.
https://doi.org/10.1002/jev2.12240
[9] Wen, J., Creaven, D., Luan, X. and Wang, J. (2023) Comparison of Immunotherapy Mediated by Apoptotic Bodies, Microvesicles and Exosomes: Apoptotic Bodies’ Unique Anti-Inflammatory Potential. Journal of Translational Medicine, 21, Article 478.
https://doi.org/10.1186/s12967-023-04342-w
[10] Liu, J., Dong, J. and Pei, X. (2024) Apoptotic Extracellular Vesicles Derived from Human Umbilical Vein Endothelial Cells Promote Skin Repair by Enhancing Angiogenesis: From Death to Regeneration. International Journal of Nanomedicine, 19, 415-428.
https://doi.org/10.2147/ijn.s441453
[11] Zhu, Y., Chen, X. and Liao, Y. (2023) Mesenchymal Stem Cells-Derived Apoptotic Extracellular Vesicles (ApoEVs): Mechanism and Application in Tissue Regeneration. Stem Cells, 41, 837-849.
https://doi.org/10.1093/stmcls/sxad046
[12] Wang, R., Hao, M., Kou, X., Sui, B., Sanmillan, M.L., Zhang, X., et al. (2023) Apoptotic Vesicles Ameliorate Lupus and Arthritis via Phosphatidylserine-Mediated Modulation of T Cell Receptor Signaling. Bioactive Materials, 25, 472-484.
https://doi.org/10.1016/j.bioactmat.2022.07.026
[13] Voss, K., Sewell, A.E., Krystofiak, E.S., Gibson-Corley, K.N., Young, A.C., Basham, J.H., et al. (2023) Elevated Transferrin Receptor Impairs T Cell Metabolism and Function in Systemic Lupus Erythematosus. Science Immunology, 8, eabq0178.
https://doi.org/10.1126/sciimmunol.abq0178
[14] Cirino, G., Szabo, C. and Papapetropoulos, A. (2023) Physiological Roles of Hydrogen Sulfide in Mammalian Cells, Tissues, and Organs. Physiological Reviews, 103, 31-276.
https://doi.org/10.1152/physrev.00028.2021
[15] Ou, Q., Qiao, X., Li, Z., Niu, L., Lei, F., Cheng, R., et al. (2024) Apoptosis Releases Hydrogen Sulfide to Inhibit Th17 Cell Differentiation. Cell Metabolism, 36, 78-89.E5.
https://doi.org/10.1016/j.cmet.2023.11.012
[16] Zheng, C., Sui, B., Zhang, X., Hu, J., Chen, J., Liu, J., et al. (2021) Apoptotic Vesicles Restore Liver Macrophage Homeostasis to Counteract Type 2 Diabetes. Journal of Extracellular Vesicles, 10, e12109.
https://doi.org/10.1002/jev2.12109
[17] Mirza, R.E., Fang, M.M., Weinheimer-Haus, E.M., Ennis, W.J. and Koh, T.J. (2014) Sustained Inflammasome Activity in Macrophages Impairs Wound Healing in Type 2 Diabetic Humans and Mice. Diabetes, 63, 1103-1114.
https://doi.org/10.2337/db13-0927
[18] Wang, Y., Jing, L., Lei, X., Ma, Z., Li, B., Shi, Y., et al. (2023) Umbilical Cord Mesenchymal Stem Cell-Derived Apoptotic Extracellular Vesicles Ameliorate Cutaneous Wound Healing in Type 2 Diabetic Mice via Macrophage Pyroptosis Inhibition. Stem Cell Research & Therapy, 14, Article 257.
https://doi.org/10.1186/s13287-023-03490-6
[19] Zhang, X., Yang, J., Ma, S., Gao, X., Wang, G., Sun, Y., et al. (2024) Functional Diversity of Apoptotic Vesicle Subpopulations from Bone Marrow Mesenchymal Stem Cells in Tissue Regeneration. Journal of Extracellular Vesicles, 13, e12434.
https://doi.org/10.1002/jev2.12434
[20] Ye, Q., Xu, H., Liu, S., Li, Z., Zhou, J., Ding, F., et al. (2022) Apoptotic Extracellular Vesicles Alleviate Pg-LPS Induced Inflammatory Responses of Macrophages via AMPK/SIRT1/NF-κB Pathway and Inhibit Osteoclast Formation. Journal of Periodontology, 93, 1738-1751.
https://doi.org/10.1002/jper.21-0657
[21] Pourjafar, M., Saidijam, M., Mansouri, K., Ghasemibasir, H., Karimi dermani, F. and Najafi, R. (2016) All-Trans Retinoic Acid Preconditioning Enhances Proliferation, Angiogenesis and Migration of Mesenchymal Stem Cell in Vitro and Enhances Wound Repair in Vivo. Cell Proliferation, 50, e12315.
https://doi.org/10.1111/cpr.12315
[22] Qu, Y., He, Y., Meng, B., Zhang, X., Ding, J., Kou, X., et al. (2022) Apoptotic Vesicles Inherit SOX2 from Pluripotent Stem Cells to Accelerate Wound Healing by Energizing Mesenchymal Stem Cells. Acta Biomaterialia, 149, 258-272.
https://doi.org/10.1016/j.actbio.2022.07.009
[23] Liao, S., Chen, L., Song, Z. and He, H. (2022) The Fate of Damaged Mitochondrial DNA in the Cell. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1869, Article 119233.
https://doi.org/10.1016/j.bbamcr.2022.119233
[24] Huang, Z., Zhuang, Y., Li, W., Ma, M., Lei, F., Qu, Y., et al. (2024) Apoptotic Vesicles Are Required to Repair DNA Damage and Suppress Premature Cellular Senescence. Journal of Extracellular Vesicles, 13, e12428.
https://doi.org/10.1002/jev2.12428
[25] Li, M., Xing, X., Huang, H., Liang, C., Gao, X., Tang, Q., et al. (2022) BMSC-Derived ApoEVs Promote Craniofacial Bone Repair via ROS/JNK Signaling. Journal of Dental Research, 101, 714-723.
https://doi.org/10.1177/00220345211068338
[26] Liu, D., Kou, X., Chen, C., Liu, S., Liu, Y., Yu, W., et al. (2018) Circulating Apoptotic Bodies Maintain Mesenchymal Stem Cell Homeostasis and Ameliorate Osteopenia via Transferring Multiple Cellular Factors. Cell Research, 28, 918-933.
https://doi.org/10.1038/s41422-018-0070-2
[27] Carmeliet, P. and Jain, R.K. (2011) Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 473, 298-307.
https://doi.org/10.1038/nature10144
[28] Li, Z., Wu, M., Liu, S., Liu, X., Huan, Y., Ye, Q., et al. (2022) Apoptotic Vesicles Activate Autophagy in Recipient Cells to Induce Angiogenesis and Dental Pulp Regeneration. Molecular Therapy, 30, 3193-3208.
https://doi.org/10.1016/j.ymthe.2022.05.006
[29] Zhang, R., Mu, X., Liu, D., et al. (2024) Apoptotic Vesicles Rescue Impaired Mesenchymal Stem Cells and Their Therapeutic Capacity for Osteoporosis by Restoring miR-145a-5p Deficiency. Journal of Nanobiotechnology, 22, 580.
https://doi.org/10.1186/s12951-024-02829-2
[30] Stoop, D., Cobo, A. and Silber, S. (2014) Fertility Preservation for Age-Related Fertility Decline. The Lancet, 384, 1311-1319.
https://doi.org/10.1016/s0140-6736(14)61261-7
[31] Fu, Y., Zhang, M., Sui, B., Yuan, F., Zhang, W., Weng, Y., et al. (2024) Mesenchymal Stem Cell-Derived Apoptotic Vesicles Ameliorate Impaired Ovarian Folliculogenesis in Polycystic Ovary Syndrome and Ovarian Aging by Targeting WNT Signaling. Theranostics, 14, 3385-3403.
https://doi.org/10.7150/thno.94943