[1]
|
Liu, J., Qiu, X., Lv, Y., Zheng, C., Dong, Y., Dou, G., et al. (2020) Apoptotic Bodies Derived from Mesenchymal Stem Cells Promote Cutaneous Wound Healing via Regulating the Functions of Macrophages. Stem Cell Research & Therapy, 11, 1-15. https://doi.org/10.1186/s13287-020-02014-w
|
[2]
|
Liu, H., Liu, S., Qiu, X., Yang, X., Bao, L., Pu, F., et al. (2020) Donor MSCS Release Apoptotic Bodies to Improve Myocardial Infarction via Autophagy Regulation in Recipient Cells. Autophagy, 16, 2140-2155. https://doi.org/10.1080/15548627.2020.1717128
|
[3]
|
Mao, Y. (2021) Apoptotic Cell-Derived Metabolites in Efferocytosis-Mediated Resolution of Inflammation. Cytokine & Growth Factor Reviews, 62, 42-53. https://doi.org/10.1016/j.cytogfr.2021.10.002
|
[4]
|
Rezaie, J., Etemadi, T. and Feghhi, M. (2022) The Distinct Roles of Exosomes in Innate Immune Responses and Therapeutic Applications in Cancer. European Journal of Pharmacology, 933, Article 175292. https://doi.org/10.1016/j.ejphar.2022.175292
|
[5]
|
Zou, X., Lei, Q., Luo, X., Yin, J., chen, S., Hao, C., et al. (2023) Advances in Biological Functions and Applications of Apoptotic Vesicles. Cell Communication and Signaling, 21, Article No. 260. https://doi.org/10.1186/s12964-023-01251-9
|
[6]
|
Wang, J., Cao, Z., Wang, P., Zhang, X., Tang, J., He, Y., et al. (2021) Apoptotic Extracellular Vesicles Ameliorate Multiple Myeloma by Restoring FAS-Mediated Apoptosis. ACS Nano, 15, 14360-14372. https://doi.org/10.1021/acsnano.1c03517
|
[7]
|
Gielecińska, A., Kciuk, M., Yahya, E.-B., Ainane, T., Mujwar, S. and Kontek, R. (2023) Apoptosis, Necroptosis, and Pyroptosis as Alternative Cell Death Pathways Induced by Chemotherapeutic Agents? Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1878, Article 189024. https://doi.org/10.1016/j.bbcan.2023.189024
|
[8]
|
Zhang, X., Tang, J., Kou, X., Huang, W., Zhu, Y., Jiang, Y., et al. (2022) Proteomic Analysis of MSC-Derived Apoptotic Vesicles Identifies FAS Inheritance to Ameliorate Haemophilia a via Activating Platelet Functions. Journal of Extracellular Vesicles, 11, e12240. https://doi.org/10.1002/jev2.12240
|
[9]
|
Wen, J., Creaven, D., Luan, X. and Wang, J. (2023) Comparison of Immunotherapy Mediated by Apoptotic Bodies, Microvesicles and Exosomes: Apoptotic Bodies’ Unique Anti-Inflammatory Potential. Journal of Translational Medicine, 21, Article 478. https://doi.org/10.1186/s12967-023-04342-w
|
[10]
|
Liu, J., Dong, J. and Pei, X. (2024) Apoptotic Extracellular Vesicles Derived from Human Umbilical Vein Endothelial Cells Promote Skin Repair by Enhancing Angiogenesis: From Death to Regeneration. International Journal of Nanomedicine, 19, 415-428. https://doi.org/10.2147/ijn.s441453
|
[11]
|
Zhu, Y., Chen, X. and Liao, Y. (2023) Mesenchymal Stem Cells-Derived Apoptotic Extracellular Vesicles (ApoEVs): Mechanism and Application in Tissue Regeneration. Stem Cells, 41, 837-849. https://doi.org/10.1093/stmcls/sxad046
|
[12]
|
Wang, R., Hao, M., Kou, X., Sui, B., Sanmillan, M.L., Zhang, X., et al. (2023) Apoptotic Vesicles Ameliorate Lupus and Arthritis via Phosphatidylserine-Mediated Modulation of T Cell Receptor Signaling. Bioactive Materials, 25, 472-484. https://doi.org/10.1016/j.bioactmat.2022.07.026
|
[13]
|
Voss, K., Sewell, A.E., Krystofiak, E.S., Gibson-Corley, K.N., Young, A.C., Basham, J.H., et al. (2023) Elevated Transferrin Receptor Impairs T Cell Metabolism and Function in Systemic Lupus Erythematosus. Science Immunology, 8, eabq0178. https://doi.org/10.1126/sciimmunol.abq0178
|
[14]
|
Cirino, G., Szabo, C. and Papapetropoulos, A. (2023) Physiological Roles of Hydrogen Sulfide in Mammalian Cells, Tissues, and Organs. Physiological Reviews, 103, 31-276. https://doi.org/10.1152/physrev.00028.2021
|
[15]
|
Ou, Q., Qiao, X., Li, Z., Niu, L., Lei, F., Cheng, R., et al. (2024) Apoptosis Releases Hydrogen Sulfide to Inhibit Th17 Cell Differentiation. Cell Metabolism, 36, 78-89.E5. https://doi.org/10.1016/j.cmet.2023.11.012
|
[16]
|
Zheng, C., Sui, B., Zhang, X., Hu, J., Chen, J., Liu, J., et al. (2021) Apoptotic Vesicles Restore Liver Macrophage Homeostasis to Counteract Type 2 Diabetes. Journal of Extracellular Vesicles, 10, e12109. https://doi.org/10.1002/jev2.12109
|
[17]
|
Mirza, R.E., Fang, M.M., Weinheimer-Haus, E.M., Ennis, W.J. and Koh, T.J. (2014) Sustained Inflammasome Activity in Macrophages Impairs Wound Healing in Type 2 Diabetic Humans and Mice. Diabetes, 63, 1103-1114. https://doi.org/10.2337/db13-0927
|
[18]
|
Wang, Y., Jing, L., Lei, X., Ma, Z., Li, B., Shi, Y., et al. (2023) Umbilical Cord Mesenchymal Stem Cell-Derived Apoptotic Extracellular Vesicles Ameliorate Cutaneous Wound Healing in Type 2 Diabetic Mice via Macrophage Pyroptosis Inhibition. Stem Cell Research & Therapy, 14, Article 257. https://doi.org/10.1186/s13287-023-03490-6
|
[19]
|
Zhang, X., Yang, J., Ma, S., Gao, X., Wang, G., Sun, Y., et al. (2024) Functional Diversity of Apoptotic Vesicle Subpopulations from Bone Marrow Mesenchymal Stem Cells in Tissue Regeneration. Journal of Extracellular Vesicles, 13, e12434. https://doi.org/10.1002/jev2.12434
|
[20]
|
Ye, Q., Xu, H., Liu, S., Li, Z., Zhou, J., Ding, F., et al. (2022) Apoptotic Extracellular Vesicles Alleviate Pg-LPS Induced Inflammatory Responses of Macrophages via AMPK/SIRT1/NF-κB Pathway and Inhibit Osteoclast Formation. Journal of Periodontology, 93, 1738-1751. https://doi.org/10.1002/jper.21-0657
|
[21]
|
Pourjafar, M., Saidijam, M., Mansouri, K., Ghasemibasir, H., Karimi dermani, F. and Najafi, R. (2016) All-Trans Retinoic Acid Preconditioning Enhances Proliferation, Angiogenesis and Migration of Mesenchymal Stem Cell in Vitro and Enhances Wound Repair in Vivo. Cell Proliferation, 50, e12315. https://doi.org/10.1111/cpr.12315
|
[22]
|
Qu, Y., He, Y., Meng, B., Zhang, X., Ding, J., Kou, X., et al. (2022) Apoptotic Vesicles Inherit SOX2 from Pluripotent Stem Cells to Accelerate Wound Healing by Energizing Mesenchymal Stem Cells. Acta Biomaterialia, 149, 258-272. https://doi.org/10.1016/j.actbio.2022.07.009
|
[23]
|
Liao, S., Chen, L., Song, Z. and He, H. (2022) The Fate of Damaged Mitochondrial DNA in the Cell. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1869, Article 119233. https://doi.org/10.1016/j.bbamcr.2022.119233
|
[24]
|
Huang, Z., Zhuang, Y., Li, W., Ma, M., Lei, F., Qu, Y., et al. (2024) Apoptotic Vesicles Are Required to Repair DNA Damage and Suppress Premature Cellular Senescence. Journal of Extracellular Vesicles, 13, e12428. https://doi.org/10.1002/jev2.12428
|
[25]
|
Li, M., Xing, X., Huang, H., Liang, C., Gao, X., Tang, Q., et al. (2022) BMSC-Derived ApoEVs Promote Craniofacial Bone Repair via ROS/JNK Signaling. Journal of Dental Research, 101, 714-723. https://doi.org/10.1177/00220345211068338
|
[26]
|
Liu, D., Kou, X., Chen, C., Liu, S., Liu, Y., Yu, W., et al. (2018) Circulating Apoptotic Bodies Maintain Mesenchymal Stem Cell Homeostasis and Ameliorate Osteopenia via Transferring Multiple Cellular Factors. Cell Research, 28, 918-933. https://doi.org/10.1038/s41422-018-0070-2
|
[27]
|
Carmeliet, P. and Jain, R.K. (2011) Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 473, 298-307. https://doi.org/10.1038/nature10144
|
[28]
|
Li, Z., Wu, M., Liu, S., Liu, X., Huan, Y., Ye, Q., et al. (2022) Apoptotic Vesicles Activate Autophagy in Recipient Cells to Induce Angiogenesis and Dental Pulp Regeneration. Molecular Therapy, 30, 3193-3208. https://doi.org/10.1016/j.ymthe.2022.05.006
|
[29]
|
Zhang, R., Mu, X., Liu, D., et al. (2024) Apoptotic Vesicles Rescue Impaired Mesenchymal Stem Cells and Their Therapeutic Capacity for Osteoporosis by Restoring miR-145a-5p Deficiency. Journal of Nanobiotechnology, 22, 580. https://doi.org/10.1186/s12951-024-02829-2
|
[30]
|
Stoop, D., Cobo, A. and Silber, S. (2014) Fertility Preservation for Age-Related Fertility Decline. The Lancet, 384, 1311-1319. https://doi.org/10.1016/s0140-6736(14)61261-7
|
[31]
|
Fu, Y., Zhang, M., Sui, B., Yuan, F., Zhang, W., Weng, Y., et al. (2024) Mesenchymal Stem Cell-Derived Apoptotic Vesicles Ameliorate Impaired Ovarian Folliculogenesis in Polycystic Ovary Syndrome and Ovarian Aging by Targeting WNT Signaling. Theranostics, 14, 3385-3403. https://doi.org/10.7150/thno.94943
|