[1]
|
Willgerodt, C. (1886) Zur Kenntniss thiophenhaltigen Benzols. Journal für Praktische Chemie, 33, 479-483. https://doi.org/10.1002/prac.18860330144
|
[2]
|
Musher, J.I. (1969) The Chemistry of Hypervalent Molecules. Angewandte Chemie International Edition in English, 8, 54-68. https://doi.org/10.1002/anie.196900541
|
[3]
|
Pimentel, G.C. (1951) The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. Journal of Chemical Physics, 19, Article 446. https://doi.org/10.1063/1.1748245
|
[4]
|
Hach, R.J. and Rundle, R.E. (1951) The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. Journal of the American Chemical Society, 73, Article 4321.
|
[5]
|
Powell, W.H. (1984) Treatment of Variable Valence in Organic Nomenclature (Lambda Convention) (Recommendations 1983). Pure and Applied Chemistry, 56, 769-778. https://doi.org/10.1351/pac198456060769
|
[6]
|
Yuan, Z., Zhao, T., Yu, T., Wang, J. and Wei, H. (2017) Hypervalent Iodine (III)-Mediated Oxidative Decarboxylation of β-Keto Acids. Asian Journal of Organic Chemistry, 6, 262-264. https://doi.org/10.1002/ajoc.201600607
|
[7]
|
Banerjee, S. (2023) Gold and Hypervalent Iodine (III): Liaisons over a Decade for Electrophilic Functional Group Transfer Reactions. Organic & Biomolecular Chemistry, 21, Article 1629.
|
[8]
|
Zhang, B.B., Guo, B.Y. and Du, Y.F. (2021) Hypervalent Iodine Reagent-Mediated Reactions Involving Rearrangement Processes. New Journal of Chemistry, 45, Article 18815.
|
[9]
|
Inamoto, K., Saito, T., Katsuno, M., Sakamoto, T. and Hiroya, K. (2007) Palladium-Catalyzed C-H Activation/Intramolecular Amination Reaction: A New Route to 3-Aryl/Alkylindazoles. Organic Letters, 9, 2931-2934. https://doi.org/10.1021/ol0711117
|
[10]
|
Wang, X., Lu, Y., Dai, H. and Yu, J. (2010) Pd (II)-Catalyzed Hydroxyl-Directed C-H Activation/C-O Cyclization: Expedient Construction of Dihydrobenzo Furans. Journal of the American Chemical Society, 132, 12203-12205. https://doi.org/10.1021/ja105366u
|
[11]
|
Claraz, A. and Masson, G. (2018) Asymmetric Iodine Catalysis-Mediated Enantioselective Oxidative Transformations. Organic & Biomolecular Chemistry, 16, 5386-5402. https://doi.org/10.1039/c8ob01378k
|
[12]
|
Berthiol, F. (2015) Reagent and Catalyst Design for Asymmetric Hypervalent Iodine Oxidations. Synthesis, 47, 587-603. https://doi.org/10.1055/s-0034-1379892
|
[13]
|
Ghosh, S., Pradhan, S. and Chatterjee, I. (2018) A Survey of Chiral Hypervalent Iodine Reagents in Asymmetric Syn-thesis. Beilstein Journal of Organic Chemistry, 14, 1244-126. https://doi.org/10.3762/bjoc.14.107
|
[14]
|
Zhang, X., Liu, M., Ge, H. and Zhang, Z. (2023) Second-Layer Chiral Environment-Induced Steric Hindrance Enables Catalyst Conformation Lockdown in Enantioselective Hypervalent Iodine Organocatalysis. ACS Catalysis, 13, 8273-8280. https://doi.org/10.1021/acscatal.3c02018
|
[15]
|
Varvoglis, A. (1997) Hypervalent Iodine in Organic Synthesis. Angewandte Chemie International Edition, 109, 1850-1851.
|
[16]
|
Yoshimura, A. and Zhdankin, V.V. (2016) Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews, 116, 3328-3435. https://doi.org/10.1021/acs.chemrev.5b00547
|
[17]
|
Silva, Jr. and Olofsson, B. (2011) Hypervalent Iodine Reagents in the Total Synthesis of Natural Products. Natural Product Reports, 28, Article 1722. https://doi.org/10.1039/c1np00028d
|
[18]
|
Lee, K., Kim, D.Y. and Oh, D.Y. (1988) Reaction of Allyltrimethylsilane with an Aromatic Compound Using Hypervalent Organoiodine Compound: A New Allylation of Aromatic Compounds. Tetrahedron Letters, 29, 667-668. https://doi.org/10.1016/s0040-4039(00)80178-1
|
[19]
|
Ochiai, M., Ito, T., Takaoka, Y. and Masaki, Y. (1991) Generation of Allenyliodinanes and Their Reductive Iodonio-Claisen Rearrangement. Journal of the American Chemical Society, 113, 1319-1323. https://doi.org/10.1021/ja00004a037
|
[20]
|
Ochiai, M., Ito, T. and Masaki, Y. (1992) Ipso Selectivity in the Reductive Iodonio-Claisen Rearrangement of Allenyl (p-Methoxyaryl) Iodinanes. Journal of the Chemical Society, Chemical Communications, 1, 15-16. https://doi.org/10.1039/c39920000015
|
[21]
|
Gately, D.A., Luther, T.A., Norton, J.R., Miller, M.M. and Anderson, O.P. (1992) Reaction of mu.-Oxobis[(trifluoromethanesulfonato)(phenyl)iodine(III)] with Group 14 Propargyl Derivatives and a Propargyl Ether. The Journal of Organic Chemistry, 57, 6496-6502.
|
[22]
|
Reddy, G.C. (1995) Hypervalent Iodine Oxidation Products of Papaverine and Its Microbial Metabolites. Tetrahedron Letters, 36, 1001-1002. https://doi.org/10.1016/0040-4039(94)02426-c
|
[23]
|
Van De Water, R.W., Hoarau, C. and Pettus, T.R.R. (2003) Oxidative Dearomatization of Resorcinol Derivatives: Useful Conditions Leading to Valuable Cyclohexa-2,5-dienones. Tetrahedron Letters, 44, 5109-5113. https://doi.org/10.1016/s0040-4039(03)01118-3
|
[24]
|
Zhu, J., Germain, A.R. and Porco, J.A. (2004) Synthesis of Azaphilones and Related Molecules by Employing Cycloisomerization of O-Alkynylbenzaldehydes. Angewandte Chemie International Edition, 43, 1239-1243. https://doi.org/10.1002/anie.200353037
|
[25]
|
Li, Q., Lian, P., Tan, F., Zhu, G., Chen, C., Hao, Y., et al. (2020) Organocatalytic Enantioselective Construction of Heterocycle-Substituted Styrenes with Chiral Atropisomerism. Organic Letters, 22, 2448-2453. https://doi.org/10.1021/acs.orglett.0c00659
|
[26]
|
Hori, M., Guo, J., Yanagi, T., Nogi, K., Sasamori, T. and Yorimitsu, H. (2018) Sigmatropic Rearrangements of Hypervalent-Iodine-Tethered Intermediates for the Synthesis of Biaryls. Angewandte Chemie, 130, 4753-4757. https://doi.org/10.1002/ange.201801132
|
[27]
|
Huang, X., Zhang, Y., Zhang, C., Zhang, L., Xu, Y., Kong, L., et al. (2019) The Ortho-Difluoroalkylation of Aryliodanes with Enol Silyl Ethers: Rearrangement Enabled by a Fluorine Effect. Angewandte Chemie International Edition, 58, 5956-5961. https://doi.org/10.1002/anie.201900745
|
[28]
|
Sousa e Silva, F.C., Van, N.T. and Wengryniuk, S.E. (2019) Direct C-H Α-Arylation of Enones with Ari(O2Cr)2 Reagents. Journal of the American Chemical Society, 142, 64-69. https://doi.org/10.1021/jacs.9b11282
|
[29]
|
Zhao, W., Huang, X., Zhan, Y., Zhang, Q., Li, D., Zhang, Y., et al. (2019) Dearomative Dual Functionalization of Aryl Iodanes. Angewandte Chemie International Edition, 58, 17210-17214. https://doi.org/10.1002/anie.201909019
|
[30]
|
Tian, J., Luo, F., Zhang, Q., Liang, Y., Li, D., Zhan, Y., et al. (2020) Asymmetric Iodonio-[3,3]-Sigmatropic Rearrangement to Access Chiral Α-Aryl Carbonyl Compounds. Journal of the American Chemical Society, 142, 6884-6890. https://doi.org/10.1021/jacs.0c00783
|
[31]
|
Shafir, A. (2016) The Emergence of Sulfoxide and Iodonio-Based Redox Arylation as a Synthetic Tool. Tetrahedron Letters, 57, 2673-2682. https://doi.org/10.1016/j.tetlet.2016.05.013
|
[32]
|
Grelier, G., Darses, B. and Dauban, P. (2018) Hypervalent Organoiodine Compounds: From Reagents to Valuable Building Blocks in Synthesis. Beilstein Journal of Organic Chemistry, 14, 1508-1528. https://doi.org/10.3762/bjoc.14.128
|
[33]
|
Boelke, A., Finkbeiner, P. and Nachtsheim, B.J. (2018) Atom-Economical Group-Transfer Reactions with Hypervalent Iodine Compounds. Beilstein Journal of Organic Chemistry, 14, 1263-1280. https://doi.org/10.3762/bjoc.14.108
|
[34]
|
Hyatt, I.F.D., Dave, L., David, N., Kaur, K., Medard, M. and Mowdawalla, C. (2019) Hypervalent Iodine Reactions Utilized in Carbon-Carbon Bond Formations. Organic & Biomolecular Chemistry, 17, 7822-7848. https://doi.org/10.1039/c9ob01267b
|
[35]
|
Akai, S., Kawashita, N., Wada, Y., Satoh, H., Alinejad, A.H., Kakiguchi, K., et al. (2006) Regioselective, Nucleophilic Carbon-Carbon Bond Formation at the C4-Position of Indoles Initiated by the Aromatic Pummerer-Type Reaction. Tetrahedron Letters, 47, 1881-1884. https://doi.org/10.1016/j.tetlet.2006.01.090
|
[36]
|
Zhdankin, V.V., Erickson, S.A. and Hanson, K.J. (1997) Preparation, X-Ray Crystal Structure, and Chemistry of ((arylsulfonyl)methyl) (phenyl)iodonium Triflates. Stable Alkyliodonium Salts. Journal of the American Chemical Society, 119, 4775-4776. https://doi.org/10.1021/ja9707926
|
[37]
|
Sheng, J., Wang, Y., Su, X., He, R. and Chen, C. (2017) Copper-Catalyzed [2+2+2] Modular Synthesis of Multisubstituted Pyridines: Alkenylation of Nitriles with Vinyliodonium Salts. Angewandte Chemie International Edition, 56, 4824-4828. https://doi.org/10.1002/anie.201700696
|
[38]
|
Rajkiewicz, A.A. and Kalek, M. (2018) N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts to Generate Α, β-Unsaturated Ketones. Organic Letters, 20, 1906-1909. https://doi.org/10.1021/acs.orglett.8b00447
|
[39]
|
Menon, R.S., Biju, A.T. and Nair, V. (2016) Recent Advances in N-Heterocyclic Carbene (NHC)-Catalysed Benzoin Reactions. Beilstein Journal of Organic Chemistry, 12, 444-461. https://doi.org/10.3762/bjoc.12.47
|
[40]
|
Flanigan, D.M., Romanov-Michailidis, F., White, N.A. and Rovis, T. (2015) Organocatalytic Reactions Enabled by NHeterocyclic Carbenes. Chemical Reviews, 115, 9307-9387. https://doi.org/10.1021/acs.chemrev.5b00060
|
[41]
|
Moore, J.L. and Rovis, T. (2009) Carbene Catalysts. In: Topics in Current Chemistry, Springer, 77-144. https://doi.org/10.1007/128_2008_18
|
[42]
|
Toh, Q.Y., McNally, A., Vera, S., Erdmann, N. and Gaunt, M.J. (2013) Organocatalytic C-H Bond Arylation of Aldehydes to Bis-Heteroaryl Ketones. Journal of the American Chemical Society, 135, 3772-3775. https://doi.org/10.1021/ja400051d
|
[43]
|
Thiele, J. and Haakh, H. (1909) Abkömmlinge des Aethylens mit drei-und fünfwerthigem Jod. Justus Liebigs Annalen der Chemie, 369, 131-147. https://doi.org/10.1002/jlac.19093690204
|
[44]
|
Papoutsis, I., Spyroudis, S., Varvoglis, A., Callies, J.A. and Zhdankin, V.V. (1997) Novel Trifluoroethyliodonium Salts from Cyclic Enaminones and Their Thermal Decomposition. Tetrahedron Letters, 38, 8401-8404. https://doi.org/10.1016/s0040-4039(97)10232-5
|
[45]
|
Mészáros, Á., Székely, A., Stirling, A. and Novák, Z. (2018) Design of Trifluoroalkenyl Iodonium Salts for a Hypervalency-Aided Alkenylation-Cyclization Strategy: Metal-Free Construction of Aziridine Rings. Angewandte Chemie International Edition, 57, 6643-6647. https://doi.org/10.1002/anie.201802347
|