不同雪茄烟气浓度暴露对小鼠口腔菌群的影响研究
Study on the Effects of Different Cigar Smoke Concentrations on the Oral Microbiome of Mice
DOI: 10.12677/amb.2024.134029, PDF, HTML, XML,    科研立项经费支持
作者: 范静苑*, 胡婉蓉, 贾 云, 廖 雪, 李东亮#:四川中烟工业有限责任公司烟草行业雪茄发酵工艺重点实验室,四川 成都;罗 菁, 王 新:四川大学华西公共卫生学院/华西第四医院流行病与卫生统计学系,四川 成都
关键词: 雪茄烟气暴露口腔菌群差异分析Cigar Smoke Exposure Oral Microbiome Difference Analysis
摘要: 目的:本项目计划构建不同雪茄烟气浓度暴露下的小鼠实验模型,探讨雪茄烟气暴露对小鼠口腔菌群的影响。方法:将40只8周龄雄性C57BL/6小鼠随机均分到对照组、雪茄烟气低剂量组、中剂量组以及高剂量组下进行4周饲养,收集小鼠口腔唾液样本,利用16S核糖体RNA (16S ribosomal RNA, 16S rRNA)基因测序技术分析菌群的特征。结果:与对照组相比,不同剂量雪茄干预组小鼠口腔菌群Ace指数以及Shannon指数显著增加(p < 0.05)。在属水平方面,不同组间排名前10的组间差异菌属分别为Bacteroides、Bergeyella、Blautia、Faecalibacterium、Lactobacillus、Megamonas、Muribacter、Prevotella、Rodentibacter、Staphylococcus (p < 0.05)。两两比较结果显示,与对照组相比,中剂量组Acinetobacter菌属丰度特异性显著上升,而高剂量组Blautia、Faecalibacterium特异性显著上升(p < 0.05)。在种水平方面,LEfSe分析结果显示有44个菌种在各组间差异达到显著水平,且不同雪茄剂量组,口腔差异菌种具有剂量特异性(p < 0.05)。结论:雪茄烟气暴露及暴露浓度可影响口腔菌群的微生物组成,同时,不同浓度雪茄对小鼠口腔菌属的影响存在特异性。本项研究有助于深入了解雪茄烟气对口腔健康的影响,为制定相应的预防策略以及改良雪茄加工制造方式提供重要数据基础。
Abstract: Objective: This project aimed to develop a mouse model subjected to varying concentrations of cigar smoke to investigate the impact of cigar smoke exposure on the oral microbiome of mice. Method: Forty male C57BL/6 mice, aged 8 weeks, were randomly assigned into four groups: control group, low-dose cigar smoke group, medium-dose group, and high-dose group for a feeding period of four weeks. Oral saliva samples were collected from the mice, and 16S ribosomal RNA (16S rRNA) gene sequencing technology was employed to analyze oral microbiome characteristics. Results: Compared to the control group, the Ace and Shannon index of the oral microbiome in all cigar intervention groups exhibited significant increases (p < 0.05). At the genus level, the top ten bacterial genera identified across different groups included Bacteroides, Bergeyella, Blautia, Faecalibacterium, Lactobacillus Megamonas, Muribacter, Prevotella, Rodentibacter and Staphylococcus (p < 0.05). Notably, compared with the control group, the abundance of Acinetobacter significantly increased in the medium-dose group while Blautia and Faecalibacterium markedly decreased in the high-dose group (p < 0.05). Species-level analysis via LEfSe revealed 44 species exhibited significant differences among groups, distinct oral species were dose-specific in different cigar dose groups (p < 0.05). Conclusion: Cigar smoke exposure and exposure concentrations can affect the microbial composition of the oral microbiome. Additionally, different concentrations of cigars exert specific effects on oral bacteria genera in mice. This study enhances the understanding of how cigar smoke influences oral health and provides critical data for developing effective prevention strategies as well as improving processing and manufacturing methods related to cigars.
文章引用:范静苑, 罗菁, 胡婉蓉, 贾云, 廖雪, 王新, 李东亮. 不同雪茄烟气浓度暴露对小鼠口腔菌群的影响研究[J]. 微生物前沿, 2024, 13(4): 277-287. https://doi.org/10.12677/amb.2024.134029

1. 引言

口腔菌群是口腔内微生物的总称,包括细菌、真菌、病毒等,主要存在于唾液、牙齿表面、舌头、喉咙、牙龈和口腔黏膜等处[1]。目前已有超过700种细菌定植于人类口腔,并在维持口腔微生态平衡及口腔健康中发挥重要作用[2]。据报道,口腔菌群组成改变与包括癌症、心血管疾病、口腔疾病等在内的多种疾病之间存在关联。Wei等人[3]的研究显示,Streptococcus和Leptotrichina与胰腺癌的风险升高有关,而Veillonella和Neisseria则为胰腺癌的保护微生物,同时Kato-Kogoe等人[4]及Jiang等人[5]的病例对照研究同样显示,动脉粥样硬化性心血管疾病患者与龋齿儿童的部分口腔菌群相对丰度与健康对照者之间存在明显不同。

吸烟几乎影响人体的所有器官[6],口腔作为直接接触并且最先暴露于烟草烟气的部位之一,其微生态环境同样受到影响。烟草可通过抗生素作用[7]、改变口腔氧气张力[8]、促进多种牙周致病菌生物膜的形成并改变其毒力特性[9]等方式改变口腔微生态环境,从而有利于致病菌在口腔中的定植并取代原有的共生细菌[8] [10]。致病菌生物膜可通过伪装抗原、促进免疫逃避等方式参与多种疾病的发病机制[9]。相应研究表明吸烟者相较于非吸烟者而言更有可能患牙周病等口腔疾病[11] [12],并且吸烟已被证明与多种慢性疾病如心血管疾病、癌症和呼吸系统疾病等存在关联[13] [14]。在有关烟草使用与口腔菌群的研究中,一项选取国内受试者进行的研究显示,吸烟者与非吸烟者之间在口腔菌群多样性、整体群落结构、部分菌属相对丰度以及部分通路上均存在差异[15],并有研究指出口腔中的需氧分类群对吸烟暴露最为敏感[16],但目前相应研究所得出的结果尚不一致[17]-[22]

雪茄是一种由烤烟叶卷成的长形香烟,但其在制作方式、吸入深度上均与香烟存在差异。通常而言,大多数雪茄吸烟者并不会像吸食香烟一样将烟气吸入肺部,而是储存于口腔中再缓慢呼出[23]。因此,雪茄对口腔菌群的影响可能与传统香烟存在不同,但是目前关于雪茄对口腔菌群影响的研究相对较少,并且由于雪茄的烟草消费占比较小[24],雪茄烟气暴露对菌群的影响仍缺乏足够的关注,因此本研究旨在建立雪茄烟气暴露的小鼠实验模型,以更加深入地了解雪茄烟气对口腔菌群的影响并探讨可能的生物学机制,为雪茄品质的提高以及人体健康的保障提供理论依据。

2. 材料与方法

2.1. 实验动物

选择8周龄清洁级雄性C57BL/6小鼠40只,体重为20~22 g,购自湖南斯莱克景达实验动物有限公司(许可证号:SCXK (湘) 2019-0004),由四川大学华西第二医院饲养。小鼠按体重随机区组法将40只小鼠随机均分到对照组、雪茄烟气低剂量组、中剂量组、高剂量组,每组各10只。本项目已通过四川大学华西公共卫生学院/华西第四医院伦理委员会审核(Gwll2024162)。

2.2. 不同雪茄烟气浓度诱导的口腔菌群模型

在约58 cm × 48 cm × 39 cm (约110 L)的烟熏箱内进行雪茄烟气烟熏,所有组别的小鼠先进行一周的适应性常规饲养,随后每天进行一次暴露,持续四周。对照组暴露于无雪茄烟气的空气中,暴露组小鼠置于雪茄烟气中,根据预实验结果将暴露条件确定为雪茄低剂量组、中剂量组及高剂量组,先进行适应性燃烟3分钟并分别熏烟1小时、1.5小时、2小时。

2.3. 口腔菌群的16S rRNA测序

在烟熏四周后使用口腔拭子采集小鼠口腔菌群,在收集管上标注样本编号并迅速储存于−80℃冰箱中。提取每个样本的DNA并使用含有Illumina接头以及样品特异性条码的特异性引物对16S核糖体RNA (16S rRNA)基因的目标测序区域(V3-V4区域)进行聚合酶链式反应(Polymerase Chain Reaction, PCR)扩增,随后构建16S rRNA基因文库并使用Illumina MiSeq测序仪进行Illumina高通量测序。使用FASTQC对序列文件进行质量检查,并用Cutadapt去除引物和接头序列,使用R语言(version 3.3.1)的DADA2包构建扩增子序列变体(Amplicon Sequence Variants, ASV)表并去除嵌合体,结合Silva (version 138)对ASV集进行物种注释与分类。

2.4. 统计分析

进行物种组成分析并可视化结果,Alpha多样性采用稀释曲线分析进行样本测序深度的检验,并使用Alpha指数进行组间差异比较。Beta多样性则进行主成分分析(Principal Component Analysis, PCA)分析以及基于Bray-Curtis距离算法的主坐标分析(Principal co-ordinates analysis, PCoA),并结合相似性分析(Analysis of similarities, Anosim)对分组合理性进行判断。通过对物种的两组及多组间差异检验以及线性判别分析效应量(Linear discriminant analysis Effect Size, LEfSe)分析寻找组间的差异物种。两组间比较采用Wilcoxon秩和检验,多组间比较采用Kruskal-Wallis秩和检验,统计学假设检验均为双侧检验,p < 0.05被认为具有统计学意义。所有动物实验以及生物信息分析均由长沙维尔生物科技有限公司进行。

3. 结果

3.1. 对照组与雪茄烟气暴露组小鼠口腔菌群的数目与丰度差异

Figure 1. Composition and abundance of mouse oral microbiome in each group. (A) Venn diagram of ASV set com-position; (B) Venn diagram of Species composition; (C) Relative abundance histogram at the phylum level; (D) Relative abundance histogram at the Genus level; (E) Heat map of genus-level abundance.

1. 各组小鼠口腔菌群的物种组成及物种丰度。(A) 属水平物种组成Venn图;(B) 种水平物种组成Venn图;(C) 门水平相对丰度柱状图;(D) 属水平相对丰度柱状图;(E) 属水平丰度热图。

对照组和不同剂量雪茄烟气暴露组中共检测到562个菌属以及333个菌种,对口腔菌群物种组成进行Venn图绘制,结果如图1A图1B所示,共有134个菌属(23.84%)以及29个菌种(8.71%)为各组别小鼠共有,即各组小鼠的核心微生物组。246个菌属(43.77%)以及173个菌种(51.95%)仅存在于某一研究组中,并且有80个菌属(14.23%)以及67个菌种(20.12%)仅存在于进行了雪茄烟气吸入干预的组别中,但这些物种在对照组中并未发现。

经物种组成分析后可知,各组别小鼠口腔菌群在门水平上均以Proteobacteria、Fiemicutes、Bacteroidota这三种菌门最为富集(图1C)。图1D显示了各组包括Rodentibacter、Muribacter、Lactobacillus、Streptococcus等多种菌属在内的相对丰度排名前20的菌属,其中Rodentibacter、Staphylococcus、Megamonas等多种菌属在各雪茄烟气暴露组中丰度均上升,而Lactobacillus、Streptococcus等菌属的丰度则明显减少。根据各样本菌属丰度热图所示(图1E),将重要菌属分为三个大类,相较于雪茄烟气暴露组,对照组中自Streptococcus到Pseudoalteromonas的丰度更高,而另外两个大类的菌属则在雪茄吸入的组别中更为富集。

3.2. 对照组与雪茄烟气暴露组小鼠口腔菌群的丰富度和多样性

Figure 2. Abundance and diversity of oral microbiome in each group of mice. (A) Dilution curve based on Sobs index; (B) Dilution curve based on Shannon index; (C) Box plots for intergroup comparison of the Ace index; (D) Box plots for intergroup comparison of the Shannon index.

2. 各组小鼠口腔菌群的丰富度及多样性比较。(A) 基于Sobs指数的稀释曲线;(B) 基于Shannon指数的稀释曲线;(C) Ace指数组间比较箱式图;(D) Shannon指数组间比较箱式图。

基于Sobs指数和Shannon指数进行稀释曲线分析,由图2A图2B可知,各样本曲线逐渐趋于平缓,表明测序的深度足够。对各组的Ace指数以及Shannon指数进行组间差异检验,结果显示与对照组相比,中剂量组(p = 0.00013)以及高剂量组(p = 0.0068)的物种丰富度Ace指数显著升高(图2C)。同时,结果显示,与对照组相比,高剂量组小鼠口腔菌群多样性Shannon指数显著升高(p = 0.00073),而中剂量(p = 0.28)和低剂量组(p = 0.53)与对照组相比,Shannon指数差别无统计学意义(图2D)。

3.3. 对照组与雪茄烟气暴露组小鼠口腔菌群的群落组成差异

采用PCA分析对各组小鼠口腔菌群的群落组成进行分析后发现,对照组口腔菌群分布与另外三组雪茄烟气吸入组别的距离较远并且口腔菌群的群落组成存在差异(p < 0.01) (图3A)。再次采用基于Bray-Curtis距离算法的PCoA分析对各组的群落组成进行观察,其结果同样显示对照组与雪茄三种剂量干预组之间的距离较远,并且椭圆范围与其余三组之间并无交叉(图3B)。在进行Anosim分析后可知组间差异大于组内差异(p = 0.001),即雪茄干预组与对照组之间口腔菌群差异显著(图3C)。

Figure 3. Community composition of the oral microbiome in each group of mice. (A) Results of PCA analysis of the oral microbiome of four groups of mice; (B) Results of PCoA analysis of oral microbiome in four groups of mice; (C) Results of Anosim analysis.

3. 各组小鼠口腔菌群的群落组成比较。(A) 各组小鼠口腔菌群的PCA分析结果;(B) 各组小鼠口腔菌群的PCoA分析结果;(C) Anosim分析结果。

3.4. 对照组与雪茄烟气暴露组小鼠口腔菌群的物种差异

为寻找不同组间小鼠口腔菌群丰度上具有差异的菌属,先进行多组差异检验并根据相对丰度大小选出排名前10的组间差异菌属(p < 0.05),这10种菌属分别为Bacteroides、Bergeyella、Blautia、Faecalibacterium、Lactobacillus、Megamonas、Muribacter、Prevotella、Rodentibacter、Staphylococcus (图4A)。此外,在进行两组间比较后发现,各雪茄烟气吸入组别的5种共同菌属与对照组之间均存在差异,即Lactobacillus、Megamonas、Prevotella、Rodentibacter、Staphylococcus。Lactobacillus表现为丰度降低,而其余4种表现为丰度上升。与对照组相比,中剂量组Acinetobacter丰度上升,而高剂量组中Blautia、Faecalibacterium丰度上升(p < 0.05) (图4B图4C图4D)。

采用线性判别分析效应量(Linear discriminant analysis Effect Size, LEfSe)分析口腔菌群在菌种水平上的差异,LEfSe分析结果显示有44个菌种在各组间差异达到显著水平,其中uncultured_Kroppenstedtia等15种菌种在对照组中富集,Muribacter_muris等9种菌种在低剂量组中富集,Staphylococcus_lentus等6种菌种在中剂量组中富集,Megamonas_funiformis等14种菌种在高剂量组中富集(图4E)。

Figure 4. Species differences in the oral microbiome of mice across groups. (A) Comparison of intergroup differences between multiple groups at the species level; (B) Comparison of intergroup differences between control and low-dose groups at the species level; (C) Comparison of intergroup differences between control and medium-dose groups at the species level; (D) Comparison of intergroup differences between control and high-dose groups at the species level; (E) LEfSe analysis at the phylum level; (E) LEfSe analysis at the species level.

4. 各组小鼠口腔菌群的物种差异。(A) 属水平上多组间差异比较;(B) 属水平上对照组与低剂量组之间的组间差异比较;(C) 属水平上对照组与中剂量组之间的组间差异比较;(D) 属水平上对照组与高剂量组之间的组间差异比较;(E) 种水平LEfSe分析。

4. 讨论

本项研究初步阐明了吸入不同浓度雪茄烟气对小鼠口腔菌群的影响。柱状图显示,与对照组相比,Rodentibacter、Staphylococcus等多种菌属在雪茄烟气暴露组中丰度上升,而Lactobacillus、Streptococcus等菌属的丰度则明显减少。Mason等人[10]进行的吸烟与龈下微生物改变的研究显示,吸烟可致Fusobacterium_nucleatumFilifactor_alocisDialister_microaerophilus等多种细菌呈现富集状态,并且吸烟可使部分健康口腔共生菌,如Streptococcu_sanguinisStreptococcus_parasanguini等的丰度明显减少,此外,Mason等人还发现吸烟者龈下微生物中厌氧菌丰度升高而需氧菌丰度降低。

本项研究中,结果显示与对照组相比,中剂量雪茄暴露组小鼠口腔菌群的物种丰富度增加,而高剂量组小鼠口腔菌群的物种丰富度以及多样性均增加,多项研究结果也同样支持吸烟者口腔菌群的α多样性高于非吸烟者[15] [19] [25]。Kumar等人[25]的研究表明,吸烟有利于病原体在口腔生物膜中的定植,并在牙菌斑形成的所有阶段影响其细菌的组成,因此与非吸烟者相比,吸烟者口腔菌群在生物膜的初始定植中就呈现出高度多样化以及相对不稳定性,从而影响口腔菌群的多样性。但目前仍有研究结果并未观察到吸烟者与非吸烟者口腔菌群多样性的组间差异[18],更有研究得出相反结果[20],因此吸烟对口腔菌群的具体影响仍需进一步研究。此外,本次研究还发现与低剂量组相比,高剂量组小鼠的口腔菌群多样性增加同样具有统计学意义,目前尚缺乏相应研究支持,但Güntsch等人[26]的研究揭示了吸烟程度(每日吸烟支数)与口腔中性粒细胞之间的关联,与非吸烟者相比,随着吸烟程度的增加,口腔中性粒细胞存活率降低并且其吞噬能力逐渐受损,而口腔中的中性粒细胞是重要的先天免疫细胞,并与口腔菌群之间共同作用以维持口腔中的稳态平衡。

目前已有多项研究表明吸烟者与非吸烟者之间在口腔菌群的群落组成分布上存在一定距离[15] [20] [22] [27],这与本项研究的研究结果保持一致。为进一步寻找具有差异的物种,多组差异分析结果显示Bacteroides、Bergeyella、Blautia、Faecalibacterium、Lactobacillus、Megamonas、Muribacter、Prevotella、Rodentibacter、Staphylococcus这10种菌属的丰度在四组间存在不同。相应研究表明吸烟会导致肠道中促进炎症的细菌,如Bacteroides的富集[28]。此外,相较于对照组而言,暴露组中Bergeyella的丰度升高则与目前关于人体口腔菌群的研究结果相反[29]

在两两比较结果的基础上,结果显示与对照组相比,雪茄烟气暴露组中Lactobacillus的丰度下降,而Megamonas、Prevotella、Rodentibacter、Staphylococcus的丰度则上升。Lactobacillus在处于雪茄烟气暴露的组别中丰度下降,这与Bai等人[30]关于香烟烟气对小鼠肠道菌群影响的研究结果类似。此外,Bai等人还发现Lactobacillus作为一种有益菌,可与肠道中具有结直肠癌促癌作用的细菌产生拮抗作用,同时Lactobacillus的部分菌种可减少香烟烟气暴露诱导的小鼠器官炎症以及氧化应激损伤[31],而另一项关于吸烟、Lactobacillus与结直肠癌的研究再次通过免疫细胞浸润这一发病机制证实了这三者之间的关联[32]。相应文献中Megamonas [33]和Prevotella [34]的丰度升高同样与本次研究结果一致,其中Prevotella为专性厌氧菌,可因口腔菌群的微生态失调而从口腔共生菌转变为牙周病原体,并通过其产生的毒力因子寻找合适的生态位,同时进行免疫逃避以实现最终在口腔中定植、增殖的效果[35]。Acinetobacter仅在中剂量组中存在差异,前述吸烟将有利于病原体在口腔中的定植,而该物种同样与牙周病有关。目前已知其亚种Acinetobacter baumannii的龈下定植与多种牙周炎之间存在关联,并且与已知的牙周病原体(Porphyromonas gingivalis)之间存在协同作用[36]

本项研究同样存在一些局限性,首先,本项研究结果首次发现包括Blautia、Faecalibacterium、Rodentibacter等在内的多种菌属与雪茄烟气暴露之间存在显著关联,但是相关研究较少,未来需要进一步验证。第二,雪茄消费者属于特定人群,样本量较小,难以全面反映雪茄对人类菌群的影响,并且不同品牌和不同种类的雪茄由于配方、生产加工工艺的不同,其可能会对人体口腔菌群造成不同的影响,再者实验中的烟熏环境模拟与实际吸烟行为存在差异,因此,结果外部适用性可能受到一定程度的限制。最后,本研究初步探讨了不同雪茄浓度对少数口腔菌群的影响,但是目前研究机制尚需要进一步探讨,为优化雪茄配方的配制和人群雪茄使用提供数据支持。

5. 结论

雪茄烟气暴露及暴露浓度的不同可影响口腔菌群的微生物组成。在菌属水平上,雪茄烟气暴露会显著降低Lactobacillus 的丰度,并提高Megamonas、Prevotella、Rodentibacter、Staphylococcus的丰度。同时,研究发现不同浓度雪茄对小鼠口腔菌属的影响存在特异性。本研究结果将为雪茄对口腔菌群的作用的研究以及雪茄的加工制造改良提供重要数据基础。

基金项目

烟草行业雪茄发酵工艺重点实验室开放基金资助项目(20202309BC530) (Opening Fund of Cigar Fermentation Technology Key Laboratory of Tobacco Industry (20202309BC530))。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Asakawa, M., Takeshita, T., Furuta, M., Kageyama, S., Takeuchi, K., Hata, J., et al. (2018) Tongue Microbiota and Oral Health Status in Community-Dwelling Elderly Adults. mSphere, 3, e00332-18.
https://doi.org/10.1128/msphere.00332-18
[2] Deo, P. and Deshmukh, R. (2019) Oral Microbiome: Unveiling the Fundamentals. Journal of Oral and Maxillofacial Pathology, 23, 122-128.
https://doi.org/10.4103/jomfp.jomfp_304_18
[3] Wei, A., Li, M., Li, G., Wang, X., Hu, W., Li, Z., et al. (2020) Oral Microbiome and Pancreatic Cancer. World Journal of Gastroenterology, 26, 7679-7692.
https://doi.org/10.3748/wjg.v26.i48.7679
[4] Kato-Kogoe, N., Sakaguchi, S., Kamiya, K., Omori, M., Gu, Y., Ito, Y., et al. (2022) Characterization of Salivary Microbiota in Patients with Atherosclerotic Cardiovascular Disease: A Case-Control Study. Journal of Atherosclerosis and Thrombosis, 29, 403-421.
https://doi.org/10.5551/jat.60608
[5] Jiang, S., Gao, X., Jin, L. and Lo, E. (2016) Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children. International Journal of Molecular Sciences, 17, Article No. 1978.
https://doi.org/10.3390/ijms17121978
[6] Capurso, G. and Lahner, E. (2017) The Interaction between Smoking, Alcohol and the Gut Microbiome. Best Practice & Research Clinical Gastroenterology, 31, 579-588.
https://doi.org/10.1016/j.bpg.2017.10.006
[7] Macgregor, I.D. (1989) Effects of Smoking on Oral Ecology. A Review of the Literature. Clinical Preventive Dentistry, 11, 3-7.
[8] Brook, I. (2011) The Impact of Smoking on Oral and Nasopharyngeal Bacterial Flora. Journal of Dental Research, 90, 704-710.
https://doi.org/10.1177/0022034510391794
[9] Tan, J., Lamont, G.J. and Scott, D.A. (2024) Tobacco‐Enhanced Biofilm Formation by Porphyromonas gingivalis and Other Oral Microbes. Molecular Oral Microbiology, 39, 270-290.
https://doi.org/10.1111/omi.12450
[10] Mason, M.R., Preshaw, P.M., Nagaraja, H.N., Dabdoub, S.M., Rahman, A. and Kumar, P.S. (2014) The Subgingival Microbiome of Clinically Healthy Current and Never Smokers. The ISME Journal, 9, 268-272.
https://doi.org/10.1038/ismej.2014.114
[11] Suzuki, N., Nakano, Y., Yoneda, M., Hirofuji, T. and Hanioka, T. (2021) The Effects of Cigarette Smoking on the Salivary and Tongue Microbiome. Clinical and Experimental Dental Research, 8, 449-456.
https://doi.org/10.1002/cre2.489
[12] Hutcherson, J.A., Gogenini, H., Lamont, G.J., Miller, D.P., Nowakowska, Z., Lasica, A.M., et al. (2019) Porphyromonas gingivalis Genes Conferring Fitness in a Tobacco‐rich Environment. Molecular Oral Microbiology, 35, 10-18.
https://doi.org/10.1111/omi.12273
[13] Botteri, E., Borroni, E., Sloan, E.K., Bagnardi, V., Bosetti, C., Peveri, G., et al. (2020) Smoking and Colorectal Cancer Risk, Overall and by Molecular Subtypes: A Meta-Analysis. American Journal of Gastroenterology, 115, 1940-1949.
https://doi.org/10.14309/ajg.0000000000000803
[14] Khoramdad, M., Vahedian‐azimi, A., Karimi, L., Rahimi‐Bashar, F., Amini, H. and Sahebkar, A. (2019) Association between Passive Smoking and Cardiovascular Disease: A Systematic Review and Meta‐analysis. IUBMB Life, 72, 677-686.
https://doi.org/10.1002/iub.2207
[15] Huang, Q., Wu, X., Zhou, X., Sun, Z., Shen, J., Kong, M., et al. (2023) Association of Cigarette Smoking with Oral Bacterial Microbiota and Cardiometabolic Health in Chinese Adults. BMC Microbiology, 23, Article No. 346.
https://doi.org/10.1186/s12866-023-03061-y
[16] Antonello, G., Blostein, F., Bhaumik, D., Davis, E., Gögele, M., Melotti, R., et al. (2023) Smoking and Salivary Microbiota: A Cross-Sectional Analysis of an Italian Alpine Population. Scientific Reports, 13, Article No. 18904.
https://doi.org/10.1038/s41598-023-42474-7
[17] Yu, G., Phillips, S., Gail, M.H., Goedert, J.J., Humphrys, M.S., Ravel, J., et al. (2017) The Effect of Cigarette Smoking on the Oral and Nasal Microbiota. Microbiome, 5, Article No. 3.
https://doi.org/10.1186/s40168-016-0226-6
[18] Al Bataineh, M.T., Dash, N.R., Elkhazendar, M., Alnusairat, D.M.H., Darwish, I.M.I., Al-Hajjaj, M.S., et al. (2020) Revealing Oral Microbiota Composition and Functionality Associated with Heavy Cigarette Smoking. Journal of Translational Medicine, 18, Article No. 421.
https://doi.org/10.1186/s12967-020-02579-3
[19] Jia, Y., Liao, Y., He, Y., Zheng, M., Tong, X., Xue, W., et al. (2021) Association between Oral Microbiota and Cigarette Smoking in the Chinese Population. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 658203.
https://doi.org/10.3389/fcimb.2021.658203
[20] Wu, Z., Han, Y., Caporaso, J.G., Bokulich, N., Mohamadkhani, A., Moayyedkazemi, A., et al. (2021) Cigarette Smoking and Opium Use in Relation to the Oral Microbiota in Iran. Microbiology Spectrum, 9, e00138-21.
https://doi.org/10.1128/spectrum.00138-21
[21] Wu, J., Peters, B.A., Dominianni, C., Zhang, Y., Pei, Z., Yang, L., et al. (2016) Cigarette Smoking and the Oral Microbiome in a Large Study of American Adults. The ISME Journal, 10, 2435-2446.
https://doi.org/10.1038/ismej.2016.37
[22] Sato, N., Kakuta, M., Uchino, E., Hasegawa, T., Kojima, R., Kobayashi, W., et al. (2020) The Relationship between Cigarette Smoking and the Tongue Microbiome in an East Asian Population. Journal of Oral Microbiology, 12, Article ID: 1742527.
https://doi.org/10.1080/20002297.2020.1742527
[23] National Cancer Institute (2024) Cigar Smoking and Cancer.
https://www.cancer.gov/about-cancer/causes-prevention/risk/tobacco/cigars-fact-sheet#r3
[24] Kong, G., Mayer, M.E., Barrington-Trimis, J.L., McConnell, R., Leventhal, A.M. and Krishnan-Sarin, S. (2019) Longitudinal Associations between Use and Co-Use of Cigars and Cigarettes: A Pooled Analysis of Three Adolescent Cohorts. Drug and Alcohol Dependence, 201, 45-48.
https://doi.org/10.1016/j.drugalcdep.2019.03.022
[25] Kumar, P.S., Matthews, C.R., Joshi, V., de Jager, M. and Aspiras, M. (2011) Tobacco Smoking Affects Bacterial Acquisition and Colonization in Oral Biofilms. Infection and Immunity, 79, 4730-4738.
https://doi.org/10.1128/iai.05371-11
[26] Güntsch, A., Erler, M., Preshaw, P.M., Sigusch, B.W., Klinger, G. and Glockmann, E. (2006) Effect of Smoking on Crevicular Polymorphonuclear Neutrophil Function in Periodontally Healthy Subjects. Journal of Periodontal Research, 41, 184-188.
https://doi.org/10.1111/j.1600-0765.2005.00852.x
[27] Yang, Y., Zheng, W., Cai, Q., Shrubsole, M.J., Pei, Z., Brucker, R., et al. (2019) Cigarette Smoking and Oral Microbiota in Low-Income and African-American Populations. Journal of Epidemiology and Community Health, 73, 1108-1115.
https://doi.org/10.1136/jech-2019-212474
[28] Yan, S., Ma, Z., Jiao, M., Wang, Y., Li, A. and Ding, S. (2021) Effects of Smoking on Inflammatory Markers in a Healthy Population as Analyzed via the Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 633242.
https://doi.org/10.3389/fcimb.2021.633242
[29] Maki, K.A., Ganesan, S.M., Meeks, B., Farmer, N., Kazmi, N., Barb, J.J., et al. (2022) The Role of the Oral Microbiome in Smoking-Related Cardiovascular Risk: A Review of the Literature Exploring Mechanisms and Pathways. Journal of Translational Medicine, 20, Article No. 584.
https://doi.org/10.1186/s12967-022-03785-x
[30] Bai, X., Wei, H., Liu, W., Coker, O.O., Gou, H., Liu, C., et al. (2022) Cigarette Smoke Promotes Colorectal Cancer through Modulation of Gut Microbiota and Related Metabolites. Gut, 71, 2439-2450.
https://doi.org/10.1136/gutjnl-2021-325021
[31] Vasconcelos, F.M., Silva, H.L.A., Poso, S.M.V., Barroso, M.V., Lanzetti, M., Rocha, R.S., et al. (2019) Probiotic Prato Cheese Attenuates Cigarette Smoke-Induced Injuries in Mice. Food Research International, 123, 697-703.
https://doi.org/10.1016/j.foodres.2019.06.001
[32] Chen, S., Xin, J., Gu, D., Li, H., Zheng, R., Li, S., et al. (2024) Smoking-Related lactobacillus and Immune Cell Infiltration in Colorectal Cancer: Evidence from a Population-Based Study. Gut.
https://doi.org/10.1136/gutjnl-2023-331865
[33] Yang, H., Xiu, W., Liu, J., Yang, Y., Zhang, Y., Zheng, Y., et al. (2022) Characteristics of the Intestinal Microorganisms in Middle-Aged and Elderly Patients: Effects of Smoking. ACS Omega, 7, 1628-1638.
https://doi.org/10.1021/acsomega.1c02120
[34] Antinozzi, M., Giffi, M., Sini, N., Gallè, F., Valeriani, F., De Vito, C., et al. (2022) Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review. Biomedicines, 10, Article No. 510.
https://doi.org/10.3390/biomedicines10020510
[35] Sharma, G., Garg, N., Hasan, S. and Shirodkar, S. (2022) Prevotella: An Insight into Its Characteristics and Associated Virulence Factors. Microbial Pathogenesis, 169, Article ID: 105673.
https://doi.org/10.1016/j.micpath.2022.105673
[36] Miller, D.P., Wang, Q., Weinberg, A. and Lamont, R.J. (2018) Transcriptome Analysis of Porphyromonas gingivalis and Acinetobacter baumannii in Polymicrobial Communities. Molecular Oral Microbiology, 33, 364-377.
https://doi.org/10.1111/omi.12238