HALP评分及改良HALP评分对ICU脓毒性休克患者28天生存预测分析
Analysis of HALP Score and Modified HALP Score for Predicting 28-Day Survival in ICU Patients with Septic Shock
DOI: 10.12677/jcpm.2024.34350, PDF, HTML, XML,   
作者: 常晨铭, 闫鹏程, 赵常宏:济宁医学院临床医学院,山东 济宁;李文强:济宁市第一人民医院重症医学科,山东 济宁
关键词: 血红蛋白–白蛋白–淋巴细胞–血小板评分mHALP评分脓毒性休克预后Hemoglobin-Albumin-Lymphocyte-Platelet Score mHALP Score Septic Shock Prognosis
摘要: 目的:评估和比较血红蛋白–白蛋白–淋巴细胞–血小板(Hemoglobin, Albumin, Lymphocyte and Platelet, HALP)评分与改良HALP (modified HALP, mHALP)评分对ICU脓毒性休克患者28天生存率的预测能力。方法:研究对2022年8月至2024年8月在济宁市第一人民医院ICU确诊为脓毒症休克的328例患者进行回顾性分析。收集患者的一般资料、实验室数据及各类评分,28天生存情况作为结局指标。通过单因素和多因素Logistic回归分析筛选生存的独立预测因素,并用ROC曲线比较两种评分的预测效果,同时绘制Kaplan-Meier曲线分析不同mHALP分组的生存差异。结果:328例患者中,178例在28天内死亡,150例存活超过28天,生存率为45.7%。生存组的白蛋白、淋巴细胞计数、血小板计数、HALP评分和mHALP评分显著高于死亡组,死亡组的APACHE II评分、SOFA评分、降钙素、乳酸和C反应蛋白明显高于生存组,差异具有统计学意义(P < 0.001)。Logistic回归分析显示,mHALP评分升高(OR: 1.018)与28天生存率增加相关,乳酸(OR: 0.7)、APACHE II评分(OR: 0.905)及SOFA评分(OR: 0.792)升高则降低生存率。mHALP评分对28天生存率的AUC为0.852,敏感性为0.698,特异性为0.827,最佳截断值为270473.69。根据此值分组,两组生存时间分布差异具有统计学意义(χ2 = 74.44,P < 0.001)。结论:mHALP评分对ICU脓毒性休克患者28天生存率的预测效果优于传统的HALP评分,适合用于临床预后评估。
Abstract: Objective: To assess and compare the predictive ability of the hemoglobin, albumin, lymphocyte, platelet (HALP) score with the modified HALP (mHALP) score for 28-day survival in patients with septic shock in the ICU. Methods: The study retrospectively analyzed 328 patients diagnosed with septic shock from August 2022 to August 2024 in the ICU of the First People’s Hospital of Jining City. General data, laboratory data and various scores of patients were collected, and 28-day survival was used as an outcome indicator. Independent predictors of survival were screened by univariate and multivariate logistic regression analyses, and ROC curves were used to compare the predictive effects of the two scores, while Kaplan-Meier curves were plotted to analyze the differences in survival between different mHALP subgroups. Results: Of the 328 patients, 178 died within 28 days and 150 survived more than 28 days, resulting in a survival rate of 45.7%. Albumin, lymphocyte count, platelet count, HALP score, and mHALP score were significantly higher in the survival group than in the death group, and APACHE II score, SOFA score, calcitonin, lactate, and C-reactive protein were significantly higher in the death group than in the survival group, with statistically significant differences (P < 0.001). logistic regression analysis showed that an elevated mHALP score (OR: 1.018) was associated with increased 28-day survival, while elevated lactate (OR: 0.7), APACHE II score (OR: 0.905), and SOFA score (OR: 0.792) decreased survival. mHALP score had an AUC of 0.852, a sensitivity of 0.698, a specificity of 0.827, and an optimal cutoff value of 28-day survival of 270473.69. grouped according to this value, the difference in the distribution of survival times between the two groups was statistically significant (χ2 = 74.44, P < 0.001). Conclusion: The mHALP score is better than the traditional HALP score in predicting 28-day survival in ICU septic shock patients and is suitable for clinical prognostic assessment.
文章引用:常晨铭, 闫鹏程, 赵常宏, 李文强. HALP评分及改良HALP评分对ICU脓毒性休克患者28天生存预测分析[J]. 临床个性化医学, 2024, 3(4): 2455-2463. https://doi.org/10.12677/jcpm.2024.34350

1. 引言

脓毒症(Sepsis)是由于宿主对感染的反应失调而导致的危及生命的器官功能障碍[1],并且是一个重要的全球健康问题。脓毒症患者在全世界每年估计有1900万至4890万例,成为最常见的住院死亡原因之一[2] [3]。脓毒性休克患者的入院死亡率超过40% [1],表明该疾病的严重性。鉴于重症监护室脓毒性休克患者预后不良,早期准确评估个体生存死亡风险对临床管理至关重要。乳酸、降钙素原、C反应蛋白、淋巴细胞等炎症标志物以及重症监护室常用的APACHE II评分、SOFA评分能够反映脓毒性休克患者的危险程度,并与脓毒性休克患者预后有关[1] [4]-[6]。然而,营养状况对重症监护室脓毒性休克患者的预后具有极其重要影响[7],而炎症指标与常见的评分等不能反映患者的营养状况。HALP评分是近年来发展起来的,由血红蛋白、白蛋白、淋巴细胞和血小板组成,能够综合反映患者的炎症和营养状况[8]

脓毒性休克病情的发生与发展与炎症反应、免疫失衡及凝血功能障碍均密切相关[9] [10]。HALP评分在前列腺癌、肾癌和心衰以及脑卒中患者中已被证明是预测死亡率的良好指标[11]-[14]。先前对HALP评分的研究表明,低血红蛋白、白蛋白、淋巴细胞计数及高血小板计数与患者预后不良有关。然而,在脓毒性休克患者中低血小板是死亡率的重要指标。近期Kocaoglu等人提出了改良HALP评分在预测急诊急性心衰患者死亡率中的有效性[13]。因此,我们受到启发,提出了用mHALP评分来预测ICU脓毒性休克患者28天生存情况。mHALP评分是调整了血小板与其他指标之间的计算方式,并将其与脓毒性休克患者的经典HALP评分进行比较。本研究旨在评估并比较HALP评分和改进的mHALP评分对ICU脓毒性休克患者28天生存率的预测能力。

2. 资料与方法

2.1. 试验方案

本研究是一项回顾性研究,纳入了2022年9月~2024年9月期间就诊于济宁市第一人民医院重症医学科并被诊断为脓毒性休克的328例患者。纳入标准包括:年龄 > 18岁,入院时被诊断为脓毒性休克(符合2016年欧洲危重症学会/美国重症学会(ESICM/SCCM)制定的sepsis3.0的诊断标准[1]),入ICU时间超过24小时。排除标准包括:合并恶性肿瘤、免疫系统疾病、血液系统疾病及肝硬化疾病;生存信息缺失和实验室数据缺失。

2.2. 数据收集

患者的一般资料、实验室数据以及其他评分。一般资料包括:年龄、性别;实验室数据包括:进入ICU24小时内的血红蛋白、白蛋白、淋巴细胞计数、血小板计数、C-反应蛋白、降钙素原以及乳酸;其他评分系统包括:APACHE II评分、SOFA评分。

2.3. 结局

结局为脓毒性休克患者的28天生存情况;对于多次入ICU的患者,仅收集首次入ICU的数据。HALP评分 = (血红蛋白g/L × 白蛋白g/L × 淋巴细胞计数109/L) ÷ 血小板计数109/L;改进(mHALP)评分 = 血红蛋白g/L × 白蛋白g/L × 淋巴细胞计数109/L × 血小板计数109/L。

2.4. 统计学方法

使用SPSS 26对数据进行统计分析。符合正态分布的连续变量用平均数和标准差表示,非正态分布的连续变量用中位数及四分位间距表示,分类变量用频数和百分比表示;组间的连续变量采用t检验或Mann-Whitney U检验,分类变量比较采用χ2检验或Fisher精确检验。采用Logistic回归模型进行单因素和多因素分析,以评估28天死亡率的危险因素。采用受试者工作特征(ROC)曲线分析HALP评分和m-HALP评分在28天死亡率中的诊断价值。使用约登J指数确定最佳临界值,并提供相应的敏感性和特异性。通过ROC曲线确定HALP指数的最佳截断值,根据该值进行分组,并绘制Kaplan-Meier曲线以比较组间的生存情况。P < 0.05被认为具有统计学意义。

3. 结果

3.1. 一般资料

本研究共纳入328例脓毒症休克患者,平均年龄为69.71 ± 14.2岁,其中男性189名(57.6%),女性139名(42.4%)。根据患者28天生存情况,将其分为生存组150例(45.7%)和死亡组178例(54.3%)。组间比较显示,两组患者在性别、年龄和血红蛋白水平上无显著差异(P > 0.001)。生存组患者的白蛋白、淋巴细胞计数、血小板计数、HALP评分和mHALP评分均显著高于死亡组患者,差异具有统计学意义(P < 0.001)。与此同时,死亡组患者的APACHE II评分、SOFA评分、降钙素、乳酸和C反应蛋白水平明显高于生存组患者,差异同样具有统计学意义(P < 0.001)。见表1

Table 1. General information of patients

1. 患者一般资料

一般资料

生存组

死亡组

P值

例数(%)

150 (45.7)

178 (54.3)

年龄,岁,(x ± s)

68.93 ± 15.31

70.38 ± 13.24

0.358

性别

0.095

男,n (%)

79 (52.7)

110 (61.8)

-

女,n (%)

71 (47.3)

68 (38.2)

-

实验室数据

血红蛋白,g/l,median (IQR)

101 (90.75~117)

97 (84~111.25)

0.058

白蛋白,g/l,(x ± s)

28.69 ± 5.54

26.34 ± 4.68

<0.001

淋巴细胞,109/l,median (IQR)

0.83 (0.54~1.13)

0.39 (0.24~0.58)

<0.001

血小板,109/l,median (IQR)

218 (151~265.75)

125 (86.5~183.25)

<0.001

HALP评分,median (IQR)

12.42 (5.91~21.75)

7.68 (4.95~12.32)

<0.001

mHALP评分,median (IQR)

479,380 (227,165~863,223)

109,871 (52,418~262,167)

<0.001

SOFA评分,median (IQR)

7 (5~10)

11 (8~14)

<0.001

APACHE Ⅱ评分,median (IQR)

20 (16~24)

26 (21~31)

<0.001

降钙素原,ng/ml,median (IQR)

3.09 (0.51~13.8)

12.89 (2.79~45.67)

<0.001

C反应蛋白,mg/ml,median (IQR)

80.38 (28.79~141.68)

130.73 (67.28~187.58)

<0.001

乳酸,mmol/l,median (IQR)

2.3 (2.1~3.35)

4.35 (3.1~6.26)

<0.001

注:x ± s,均数 ± 标准差;median (IQR),中位数(四分位间距)。

3.2. 单因素与多因素Logistic回归分析

通过单因素Logistic回归分析,对13个变量进行筛选,最终确定10个具有统计学意义的变量,分别为乳酸、降钙素原、C反应蛋白、白蛋白、淋巴细胞计数、血小板计数、HALP评分、mHALP评分、APACHE II评分和SOFA评分。对这10个变量进行进一步的多因素回归分析显示,乳酸、mHALP评分、APACHE II评分和SOFA评分是入住ICU脓毒症休克患者生存的独立预测因素。在入院24小时内,mHALP每增加一个单位,生存率约增加1.018倍(OR = 1.018);而乳酸(OR = 0.7)、APACHE II评分(OR = 0.905)和SOFA评分(OR = 0.792)等因素的OR值均小于1,表明它们是降低生存率的危险因素。见表2

Table 2. Univariate and multivariate logistic analysis of 28-day survival of ICU patients

2. ICU患者28天生存率的单因素与多因素logistic分析

相关因素

单因素分析

多因素分析

OR (95CI)

P值

OR (95CI)

P值

乳酸

0.637 (0.548~0.74)

<0.05

0.7 (0.585~0.839)

0.001

降钙素

0.984 (0.976~0.992)

<0.05

0.996 (0.986~1.006)

0.444

C反应蛋白

0.993 (0.99~0.996)

<0.05

0.999 (0.994~1.004)

0.716

白蛋白

1.095 (1.047~1.145)

<0.05

0.987 (0.908~1.073)

0.752

血小板

1.011 (1.008~1.014)

<0.05

1.004 (0.996~1.01)

0.462

淋巴细胞

19.661 (8.831~43.773)

<0.05

2.236 (0.331~15.108)

0.409

HALP评分

1.047 (1.022~1.072)

<0.05

1.019 (0.959~1.08)

0.56

mHALP评分

1.037 (1.027~1.048)

<0.05

1.018 (1.003~1.033)

0.021

APACHE Ⅱ评分

0.821 (0.781~0.864)

<0.05

0.905 (0.841~0.974)

0.008

SOFA评分

0.654 (1.027~1.048)

<0.05

0.792 (0.691~0.908)

0.001

3.3. mHALP评分和HALP评分的AUC及敏感性、特异性

ROC结果显示,mHALP评分预测ICU脓毒症休克患者28天生存率的曲线下面积(AUC)为0.852,敏感性为0.698,特异性为0.827;而HALP评分预测28天生存率的AUC为0.626,敏感性为0.463,特异性为0.799。这表明mHALP评分在预测28天生存率方面优于HALP评分。见图1表3

Figure 1. ROC curves of HALP score versus mHALP score for predicting 28-day survival

1. HALP评分与mHALP评分对预测28天生存率的ROC曲线

Table 3. ROC curve analysis of HALP score, mHALP score

3. HALP评分、mHALP评分的ROC曲线分析

ROC曲线下面积 (AUC)

敏感性

特异性

最佳截断值 (cutoff值)

HALP评分

0.626

0.463

0.799

13.57

mHALP评分

0.852

0.698

0.827

270473.693

3.4. mHALP评分预测28天死亡率的Kaplan-Meier曲线

Kaplan-Meier生存曲线分析结果显示,mHALP评分的最佳截断值为270473.69。mHALP评分大于270473.69的患者被归为高mHALP组,而mHALP评分小于或等于270473.69的患者则归为低mHALP组。结果显示,两组的总体生存时间分布差异具有统计学意义(χ2 = 74.44,P < 0.001)。见图2

Figure 2. Kaplan-Meier curves for the high mHALP group vs the low mHALP group

2. 高HALP组与低mHALP组Kaplan-Meier曲线

4. 讨论

在本研究中,探讨了HALP评分(已被证实可作为多种疾病的预后指标)和改良后的HALP评分对脓毒症休克患者28天生存情况的预测能力。本研究表明,mHALP评分是脓毒症休克患者28天生存率的重要预测因子,mHALP评分的升高是预后良好的指标。此外,乳酸、APACHE II评分和SOFA评分对28天生存率也具有显著影响。

HALP评分最早由Chen等人提出,用于预测胃癌的预后[15]。此后,HALP评分被用于预测前列腺癌、肾癌、心力衰竭及脑卒中患者的预后[11]-[14]。血红蛋白和白蛋白水平反映机体的营养状况,而淋巴细胞和血小板水平则与免疫状况相关,已为学界广泛认可。

HALP评分的第一个组成参数是血红蛋白值。脓毒症休克患者通常会出现血红蛋白水平的下降。脓毒症休克与血红蛋白的关联是一个复杂的病理生理过程,可能的潜在机制包括微循环改变、红细胞生成减少、慢性贫血、血液稀释及由于红细胞膜改变引起的红细胞破坏增加[16]。在脓毒症休克患者中常观察到血红蛋白水平降低,其可能原因包括全身性炎症反应导致的红细胞生成减少、溶血及出血引起的红细胞破坏增加[17],低血红蛋白水平可能通过降低动脉血氧浓度加剧组织缺氧损伤。本研究发现,脓毒症休克患者生存组与死亡组之间的血红蛋白水平没有统计学显著差异。

血清白蛋白是该评分的第二项组成部分。血清白蛋白是血浆胶体渗透压的主要蛋白,作为多种内源性和外源性化合物的载体,具有抗氧化和抗炎特性,并作为酸碱平衡的缓冲分子发挥作用[18]。相关研究表明,低白蛋白血症与脓毒症休克患者的不良预后相关[19]-[21]。脓毒症休克患者的严重感染会导致全身性炎症,进一步引起白蛋白的降低和消耗。本研究发现,存活组患者的平均血清白蛋白水平显著高于死亡组患者,差异具有统计学意义。

研究表明淋巴细胞减少与脓毒性休克患者的严重程度和死亡率相关[22],邵等人对336例脓毒症患者进行了前瞻性队列研究表明BTLA(+)/CD4(+)T淋巴细胞百分比与脓毒症患者严重程度和28天死亡率相关(OR = 0.394) [22] [23]。淋巴细胞计数能够反映机体的免疫功能状态,并在炎症的消除与修复中发挥重要作用。在正常情况下,淋巴细胞凋亡具有自我清除与维持免疫细胞活性的功能。既往研究发现,脓毒症休克患者外周血淋巴细胞凋亡显著增加,伴随淋巴细胞计数的减少,提示机体免疫功能受到抑制。淋巴细胞计数减少越明显且持续时间越长,患者的临床结局越差[24] [25]。此外,持续淋巴细胞减少还与重症患者的死亡率及继发感染的增加相关[26] [27]。在本研究中,淋巴细胞计数(评分的第三个参数)在存活组脓毒症休克患者中显著升高,具有统计学意义。

血小板减少在脓毒症休克中十分常见,并与死亡率相关[9]。脓毒症休克患者血小板减少的主要原因包括血小板生成减少、血液稀释、血小板消耗、微血管中血小板隔离增加以及免疫介导的血小板破坏。血小板消耗和破坏的增加与血小板生成的减少共存。在脓毒症休克期间,血小板减少的外周机制占主导地位。在严重的脓毒症休克中,可能发生弥散性血管内凝血(DIC),其特点是广泛激活凝血,导致血管内纤维蛋白形成,最终引起中小血管的血栓性闭塞[28]。血小板不仅参与止血,还参与免疫反应,这使其在脓毒症休克中发挥重要作用。血小板计数是SOFA评分(脓毒症休克相关器官功能衰竭评估)的一部分[29],血小板计数越低,SOFA评分越高,表明脓毒症休克患者的器官功能障碍和生存预后越差。在脓毒症休克患者中,血小板减少症通常与宿主反应失调相关[30]。在本研究中,死亡组的血小板水平显著低于存活组。

在这项研究中,血小板减少被认为是脓毒症休克患者死亡率的重要生物标志物。因此,我们将HALP评分重新排列为mHALP评分,将前三项参数相乘并除以血小板计数的改良形式,调整为四项参数的乘积。mHALP评分中的四项参数比起其他评分具有获取便捷且经济实用的优点。我们探讨了脓毒症休克患者的mHALP评分与经典HALP评分对28天生存率的影响。尽管HALP评分在两组患者之间存在差异,但其在ROC曲线下面积(AUC)及预测28天生存率方面并未显示出明显的价值。

本研究存在一些局限性。首先,这是一项回顾性研究,数据样本较为有限。由于本研究的人群选择仅限于单一中心随访且采用类似的治疗方法,因此可能存在偏差。未来的研究应包括更多的多中心研究,以在更大的人群中进行验证。

5. 结论

mHALP评分在预测ICU脓毒性休克患者28天生存率方面优于传统的HALP评分,mHALP评分升高与ICU脓毒性休克患者28天生存率增加相关,mHALP评分能够作为ICU脓毒性休克患者28天生存预后的有效预测因子。

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Adhikari, N.K., Fowler, R.A., Bhagwanjee, S. and Rubenfeld, G.D. (2010) Critical Care and the Global Burden of Critical Illness in Adults. The Lancet, 376, 1339-1346.
https://doi.org/10.1016/s0140-6736(10)60446-1
[3] Fleischmann-Struzek, C., Mellhammar, L., Rose, N., Cassini, A., Rudd, K.E., Schlattmann, P., et al. (2020) Incidence and Mortality of Hospital-and ICU-Treated Sepsis: Results from an Updated and Expanded Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1552-1562.
https://doi.org/10.1007/s00134-020-06151-x
[4] Faix, J.D. (2013) Biomarkers of Sepsis. Critical Reviews in Clinical Laboratory Sciences, 50, 23-36.
https://doi.org/10.3109/10408363.2013.764490
[5] Pierrakos, C., Velissaris, D., Bisdorff, M., Marshall, J.C. and Vincent, J. (2020) Biomarkers of Sepsis: Time for a Reappraisal. Critical Care, 24, Article No. 287.
https://doi.org/10.1186/s13054-020-02993-5
[6] Lee, J.T. and Mikkelsen, M.E. (2019) Risk Stratification Tools in Sepsis: From Acute Physiology and Chronic Health Evaluation to Quick Sequential Organ Failure Assessment. Critical Care Medicine, 47, 1159-1161.
https://doi.org/10.1097/ccm.0000000000003859
[7] Singer, P., Blaser, A.R., Berger, M.M., Alhazzani, W., Calder, P.C., Casaer, M.P., et al. (2019) ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clinical Nutrition, 38, 48-79.
https://doi.org/10.1016/j.clnu.2018.08.037
[8] Farag, C.M., Antar, R., Akosman, S., Ng, M. and Whalen, M.J. (2023) What Is Hemoglobin, Albumin, Lymphocyte, Platelet (HALP) Score? A Comprehensive Literature Review of Halp’s Prognostic Ability in Different Cancer Types. Oncotarget, 14, 153-172.
https://doi.org/10.18632/oncotarget.28367
[9] Vardon-Bounes, F., Ruiz, S., Gratacap, M., Garcia, C., Payrastre, B. and Minville, V. (2019) Platelets Are Critical Key Players in Sepsis. International Journal of Molecular Sciences, 20, Article 3494.
https://doi.org/10.3390/ijms20143494
[10] Boomer, J.S., To, K., Chang, K.C., Takasu, O., Osborne, D.F., Walton, A.H., et al. (2011) Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure. JAMA, 306, 2594-2605.
https://doi.org/10.1001/jama.2011.1829
[11] Guo, Y., Shi, D., Zhang, J., Mao, S., Wang, L., Zhang, W., et al. (2019) The Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score Is a Novel Significant Prognostic Factor for Patients with Metastatic Prostate Cancer Undergoing Cytoreductive Radical Prostatectomy. Journal of Cancer, 10, 81-91.
https://doi.org/10.7150/jca.27210
[12] Peng, D., Zhang, C., Tang, Q., Zhang, L., Yang, K., Yu, X., et al. (2018) Prognostic Significance of the Combination of Preoperative Hemoglobin and Albumin Levels and Lymphocyte and Platelet Counts (HALP) in Patients with Renal Cell Carcinoma after Nephrectomy. BMC Urology, 18, Article No. 20.
https://doi.org/10.1186/s12894-018-0333-8
[13] Kocaoglu, S. and Alatli, T. (2022) The Efficiency of the HALP Score and the Modified HALP Score in Predicting Mortality in Patients with Acute Heart Failure Presenting to the Emergency Department. Journal of College of Physicians and Surgeons Pakistan, 32, 706-711.
[14] Tian, M., Li, Y., Wang, X., Tian, X., Pei, L., Wang, X., et al. (2021) The Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score Is Associated with Poor Outcome of Acute Ischemic Stroke. Frontiers in Neurology, 11, Article 610318.
https://doi.org/10.3389/fneur.2020.610318
[15] Chen, X., Xue, L., Wang, W., Chen, H., Zhang, W., Liu, K., et al. (2015) Prognostic Significance of the Combination of Preoperative Hemoglobin, Albumin, Lymphocyte and Platelet in Patients with Gastric Carcinoma: A Retrospective Cohort Study. Oncotarget, 6, 41370-41382.
https://doi.org/10.18632/oncotarget.5629
[16] Sihler, K.C. and Napolitano, L.M. (2008) Anemia of Inflammation in Critically Ill Patients. Journal of Intensive Care Medicine, 23, 295-302.
https://doi.org/10.1177/0885066608320836
[17] Muady, G.F., Bitterman, H., Laor, A., Vardi, M., Urin, V. and Ghanem-Zoubi, N. (2016) Hemoglobin Levels and Blood Transfusion in Patients with Sepsis in Internal Medicine Departments. BMC Infectious Diseases, 16, Article No. 569.
https://doi.org/10.1186/s12879-016-1882-7
[18] Ferrer, R., Mateu, X., Maseda, E., Yébenes, J.C., Aldecoa, C., De Haro, C., et al. (2017) Non-Oncotic Properties of Albumin. A Multidisciplinary Vision about the Implications for Critically Ill Patients. Expert Review of Clinical Pharmacology, 11, 125-137.
https://doi.org/10.1080/17512433.2018.1412827
[19] Wiedermann, C.J. (2021) Hypoalbuminemia as Surrogate and Culprit of Infections. International Journal of Molecular Sciences, 22, Article 4496.
https://doi.org/10.3390/ijms22094496
[20] Frenkel, A., Novack, V., Bichovsky, Y., et al. (2022) Serum Albumin Levels as a Predictor of Mortality in Patients with Sepsis: A Multicenter Study. The Israel Medical Association Journal, 24, 454-459.
[21] Tsao, F.H.C., Li, Z., Amessoudji, A.W., Jawdat, D., Sadat, M., Arabi, Y., et al. (2024) The Role of Serum Albumin and Secretory Phospholipase A2 in Sepsis. International Journal of Molecular Sciences, 25, Article 9413.
https://doi.org/10.3390/ijms25179413
[22] Martin, M.D., Badovinac, V.P. and Griffith, T.S. (2020) CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State. Frontiers in Immunology, 11, Article 1364.
https://doi.org/10.3389/fimmu.2020.01364
[23] Shao, R., Li, C., Fang, Y., Zhao, L. and Hang, C. (2015) Low B and T Lymphocyte Attenuator Expression on CD4+ T Cells in the Early Stage of Sepsis Is Associated with the Severity and Mortality of Septic Patients: A Prospective Cohort Study. Critical Care, 19, Article No. 308.
https://doi.org/10.1186/s13054-015-1024-4
[24] Bergmann, C.B., Beckmann, N., Salyer, C.E., Crisologo, P.A., Nomellini, V. and Caldwell, C.C. (2020) Lymphocyte Immunosuppression and Dysfunction Contributing to Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Shock, 55, 723-741.
https://doi.org/10.1097/shk.0000000000001675
[25] Wang, G., Mivefroshan, A., Yaghoobpoor, S., Khanzadeh, S., Siri, G., Rahmani, F., et al. (2022) Prognostic Value of Platelet to Lymphocyte Ratio in Sepsis: A Systematic Review and Meta-Analysis. BioMed Research International, 2022, Article 9056363.
https://doi.org/10.1155/2022/9056363
[26] Hesselink, L., Hoepelman, R.J., Spijkerman, R., de Groot, M.C.H., van Wessem, K.J.P., Koenderman, L., et al. (2020) Persistent Inflammation, Immunosuppression and Catabolism Syndrome (PICS) after Polytrauma: A Rare Syndrome with Major Consequences. Journal of Clinical Medicine, 9, Article 191.
https://doi.org/10.3390/jcm9010191
[27] Adrie, C., Lugosi, M., Sonneville, R., Souweine, B., Ruckly, S., Cartier, J., et al. (2017) Persistent Lymphopenia Is a Risk Factor for ICU-Acquired Infections and for Death in ICU Patients with Sustained Hypotension at Admission. Annals of Intensive Care, 7, Article No. 30.
https://doi.org/10.1186/s13613-017-0242-0
[28] Levi, M. and ten Cate, H. (1999) Disseminated Intravascular Coagulation. New England Journal of Medicine, 341, 586-592.
https://doi.org/10.1056/nejm199908193410807
[29] Vincent, J.-L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., et al. (1996) The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. Intensive Care Medicine, 22, 707-710.
https://doi.org/10.1007/bf01709751
[30] Claushuis, T.A.M., van Vught, L.A., Scicluna, B.P., Wiewel, M.A., Klein Klouwenberg, P.M.C., Hoogendijk, A.J., et al. (2016) Thrombocytopenia Is Associated with a Dysregulated Host Response in Critically Ill Sepsis Patients. Blood, 127, 3062-3072.
https://doi.org/10.1182/blood-2015-11-680744