[1]
|
Śliwińska-Kowalska, M. and Zaborowski, K. (2017) WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Permanent Hearing Loss and Tinnitus. International Journal of Environmental Research and Public Health, 14, Article No. 1139. https://doi.org/10.3390/ijerph14101139
|
[2]
|
Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., et al. (2012) Years Lived with Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990-2010: A Systematic Analysis for the Global Burden of Dis-ease Study 2010. Lancet, 380, 2163-2196.
|
[3]
|
Park, S., Kim, D., Park, Y., Back, S., Kim, H., Park, H., et al. (2014) Protective Effect of Unilateral and Bilateral Ear Plugs on Noise-Induced Hearing Loss: Functional and Morphological Evaluation in Animal Model. Noise and Health, 16, 149-156. https://doi.org/10.4103/1463-1741.134915
|
[4]
|
Wu, F., Xiong, H. and Sha, S. (2020) Noise-Induced Loss of Sensory Hair Cells Is Mediated by ROS/AMPKα Pathway. Redox Biology, 29, Article ID: 101406. https://doi.org/10.1016/j.redox.2019.101406
|
[5]
|
Xu, F., Cheng, Y. and Yan, W. (2021) Up-Regulation of Autophagy and Apoptosis of Cochlear Hair Cells in Mouse Models for Deafness. Archives of Medical Science, 17, 535-641. https://doi.org/10.5114/aoms.2018.75348
|
[6]
|
Hudspeth, A.J. (1997) How Hearing Happens. Neuron, 19, 947-950. https://doi.org/10.1016/s0896-6273(00)80385-2
|
[7]
|
Henderson, D., Bielefeld, E.C., Harris, K.C. and Hu, B.H. (2006) The Role of Oxidative Stress in Noise-Induced Hearing Loss. Ear & Hearing, 27, 1-19. https://doi.org/10.1097/01.aud.0000191942.36672.f3
|
[8]
|
He, Z., Zou, S., Li, M., Liao, F., Wu, X., Sun, H., et al. (2020) The Nuclear Transcription Factor FoxG1 Affects the Sensitivity of Mimetic Aging Hair Cells to Inflammation by Regulating Autophagy Pathways. Redox Biology, 28, Article ID: 101364. https://doi.org/10.1016/j.redox.2019.101364
|
[9]
|
Lutze, R.D., Ingersoll, M.A., Thotam, A., Joseph, A., Fernandes, J. and Teitz, T. (2023) ERK1/2 Inhibition Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response.
|
[10]
|
Lutze, R.D., Ingersoll, M.A., Thotam, A., Joseph, A., Fernandes, J. and Teitz, T. (2024) ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. International Journal of Molecular Sciences, 25, Article No. 6305. https://doi.org/10.3390/ijms25126305
|
[11]
|
Xu, K., Chen, S., Xie, L., Qiu, Y., Liu, X., Bai, X., et al. (2022) The Protective Effects of Systemic Dexamethasone on Sensory Epithelial Damage and Hearing Loss in Targeted Cx26-Null Mice. Cell Death & Disease, 13, Article No. 545. https://doi.org/10.1038/s41419-022-04987-3
|
[12]
|
Fujioka, M., Kanzaki, S., Okano, H.J., Masuda, M., Ogawa, K. and Okano, H. (2006) Proinflammatory Cytokines Expression in Noise-Induced Damaged Cochlea. Journal of Neuroscience Research, 83, 575-583. https://doi.org/10.1002/jnr.20764
|
[13]
|
Sai, N., Shi, X., Zhang, Y., Jiang, Q., Ji, F., Yuan, S., et al. (2020) Involvement of Cholesterol Metabolic Pathways in Recovery from Noise-Induced Hearing Loss. Neural Plasticity, 2020, Article ID: 6235948. https://doi.org/10.1155/2020/6235948
|
[14]
|
Wang, J., Tymczyszyn, N., Yu, Z., Yin, S., Bance, M. and Robertson, G.S. (2011) Overexpression of X-Linked Inhibitor of Apoptosis Protein Protects against Noise-Induced Hearing Loss in Mice. Gene Therapy, 18, 560-568. https://doi.org/10.1038/gt.2010.172
|
[15]
|
He, Z., Li, M., Fang, Q., Liao, F., Zou, S., Wu, X., et al. (2021) FOXG1 Promotes Aging Inner Ear Hair Cell Survival through Activation of the Autophagy Pathway. Autophagy, 17, 4341-4362. https://doi.org/10.1080/15548627.2021.1916194
|
[16]
|
Baugh, J.M., Viktorova, E.G. and Pilipenko, E.V. (2009) Proteasomes Can Degrade a Significant Proportion of Cellular Proteins Independent of Ubiquitination. Journal of Molecular Biology, 386, 814-827. https://doi.org/10.1016/j.jmb.2008.12.081
|
[17]
|
Gyrd-Hansen, M., Darding, M., Miasari, M., Santoro, M.M., Zender, L., Xue, W., et al. (2008) IAPs Contain an Evolutionarily Conserved Ubiquitin-Binding Domain That Regulates NF-κB as Well as Cell Survival and Oncogenesis. Nature Cell Biology, 10, 1309-1317. https://doi.org/10.1038/ncb1789
|
[18]
|
Blankenship, J.W., Varfolomeev, E., Goncharov, T., Fedorova, A.V., Kirkpatrick, D.S., Izrael-Tomasevic, A., et al. (2008) Ubiquitin Binding Modulates IAP Antagonist-Stimulated Proteasomal Degradation of C-IAP1 and C-IAP2. Biochemical Journal, 417, 149-165. https://doi.org/10.1042/bj20081885
|
[19]
|
Eckelman, B.P., Salvesen, G.S. and Scott, F.L. (2006) Human Inhibitor of Apoptosis Proteins: Why XIAP Is the Black Sheep of the Family. EMBO Reports, 7, 988-994. https://doi.org/10.1038/sj.embor.7400795
|
[20]
|
Aredia, F., Guamán Ortiz, L.M., Giansanti, V. and Scovassi, A.I. (2012) Autophagy and Cancer. Cells, 1, 520-534. https://doi.org/10.3390/cells1030520
|
[21]
|
Yuan, H., Wang, X., Hill, K., Chen, J., Lemasters, J., Yang, S., et al. (2015) Autophagy Attenuates Noise-Induced Hearing Loss by Reducing Oxidative Stress. Antioxidants & Redox Signaling, 22, 1308-1324. https://doi.org/10.1089/ars.2014.6004
|