|
[1]
|
Du, L., Ge, B., Ma, Q., Yang, J., Chen, F., Mi, Y., et al. (2017) Changes in Cardiac Arrest Patients’ Temperature Management after the Publication of 2015 AHA Guidelines for Resuscitation in China. Scientific Reports, 7, Article No. 16087. https://doi.org/10.1038/s41598-017-16044-7
|
|
[2]
|
Benjamin, E.J., Virani, S.S., Callaway, C.W., et al. (2018) Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation, 137, e67-e492.
|
|
[3]
|
吴远斌, 李双磊, 吴扬, 等. 心脏骤停患者心肺复苏后神经系统的评估和监测[J]. 中国体外循环杂志, 2019, 17(1): 61-64.
|
|
[4]
|
吴金波, 杨春兰, 姚振兴, 等. 心脏骤停经心肺复苏后患者血清部分炎症因子的变化与预后关系[J]. 心肺血管病杂志, 2019, 38(12): 1232-1235.
|
|
[5]
|
侯宇, 敖雪, 苏醒. 心肺复苏后脑功能预后评估指标研究进展[J]. 长春中医药大学学报, 2023, 39(6): 699-703.
|
|
[6]
|
Yu, S., Xu, J., Wu, C., Zhu, Y., Diao, M. and Hu, W. (2024) Multi-Omics Study of Hypoxic-Ischemic Brain Injury after Cardiopulmonary Resuscitation in Swine. Neurocritical Care. https://doi.org/10.1007/s12028-024-02038-7
|
|
[7]
|
Suresh, M., Arango, S., Moore, J., Salverda, B., Lick, M., Rojas-Salvador, C., et al. (2024) The Association of Regional Cerebral Oximetry and Neurologically Intact Survival in a Porcine Model of Cardiac Arrest. Resuscitation Plus, 17, Article ID: 100539. https://doi.org/10.1016/j.resplu.2023.100539
|
|
[8]
|
Ding, G., Kuang, A., Zhou, Z., Lin, Y. and Chen, Y. (2024) Development of Prognostic Models for Predicting 90-Day Neurological Function and Mortality after Cardiac Arrest. The American Journal of Emergency Medicine, 79, 172-182. https://doi.org/10.1016/j.ajem.2024.02.022
|
|
[9]
|
章梦一, 周文杰, 余洋洋, 等. 一氧化碳释放分子在眼科疾病中的作用研究进展[J]. 广西医学, 2023, 45(3): 338-341.
|
|
[10]
|
Zhao, Y., Yao, Z., Lu, L., Xu, S., Sun, J., Zhu, Y., et al. (2024) Carbon Monoxide-Releasing Molecule-3 Exerts Neuroprotection Effects after Cardiac Arrest in Mice: A Randomized Controlled Study. Resuscitation Plus, 19, Article ID: 100703. https://doi.org/10.1016/j.resplu.2024.100703
|
|
[11]
|
王慧, 侯庆明. AA147对Aβ诱导的阿尔茨海默病细胞模型的作用[J]. 青岛大学学报(医学版), 2024, 60(2): 190-194.
|
|
[12]
|
Yuan, Z., Lu, L., Lian, Y., Zhao, Y., Tang, T., Xu, S., et al. (2022) AA147 Ameliorates Post-Cardiac Arrest Cerebral Ischemia/Reperfusion Injury through the Co-Regulation of the ATF6 and Nrf2 Signaling Pathways. Frontiers in Pharmacology, 13, Article 1028002. https://doi.org/10.3389/fphar.2022.1028002
|
|
[13]
|
Chen, F., Song, B., Lin, S., Lin, Q., Lin, Y., Qian, X., et al. (2022) Bradykinin Postconditioning Protects Rat Hippocampal Neurons after Restoration of Spontaneous Circulation Following Cardiac Arrest via Activation of the AMPK/mTOR Signaling Pathway. Neural Regeneration Research, 17, 2232-2237. https://doi.org/10.4103/1673-5374.337049
|
|
[14]
|
梁欢, 黄毓慧, 谷小雨, 等. Alda-1对高糖诱导的心肌成纤维细胞纤维化中晚期糖基化终产物-糖基化终产物受体轴及基质金属蛋白酶9/基质金属蛋白酶抑制剂1的影响[J]. 中国糖尿病杂志, 2023, 31(7): 528-534.
|
|
[15]
|
Diao, M., Xu, J., Wang, J., Zhang, M., Wu, C., Hu, X., et al. (2022) Alda-1, an Activator of ALDH2, Improves Postresuscitation Cardiac and Neurological Outcomes by Inhibiting Pyroptosis in Swine. Neurochemical Research, 47, 1097-1109. https://doi.org/10.1007/s11064-021-03511-x
|
|
[16]
|
Tao, S., Duan, R., Xu, T., Hong, J., Gu, W., Lin, A., et al. (2021) Salvianolic Acid B Inhibits the Progression of Liver Fibrosis in Rats via Modulation of the Hedgehog Signaling Pathway. Experimental and Therapeutic Medicine, 23, Article No. 116. https://doi.org/10.3892/etm.2021.11039
|
|
[17]
|
Ji, Q., Li, Y., Wang, Y., Wang, Z., Fang, L., Shen, L., et al. (2020) Salvianolic Acid B Improves Postresuscitation Myocardial and Cerebral Outcomes in a Murine Model of Cardiac Arrest: Involvement of Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 1605456. https://doi.org/10.1155/2020/1605456
|
|
[18]
|
罗俊丽, 徐继洋, 杨航, 等. 膜联蛋白A1拟肽AC2-26调控ERK/NF-κB信号通路改善体外循环血清诱导大鼠肺泡II型上皮细胞损伤[J]. 遵义医科大学学报, 2024, 47(10): 941-948.
|
|
[19]
|
夏崇建, 黄俊杰, 张煜, 等. 膜联蛋白A1的N末端肽Ac2-26对高糖刺激的小鼠巨噬细胞极化的影响[J]. 中国病理生理杂志, 2022, 38(11): 1998-2004.
|
|
[20]
|
Gong, J., Tai, Q., Xu, G., Wang, X., Zhu, J., Zhao, X., et al. (2020) Ac2-26 Alleviates Brain Injury after Cardiac Arrest and Cardiopulmonary Resuscitation in Rats via the Enos Pathway. Mediators of Inflammation, 2020, Article ID: 3649613. https://doi.org/10.1155/2020/3649613
|
|
[21]
|
Moore, J.C., Bartos, J.A., Matsuura, T.R. and Yannopoulos, D. (2017) The Future Is Now: Neuroprotection during Cardiopulmonary Resuscitation. Current Opinion in Critical Care, 23, 215-222. https://doi.org/10.1097/mcc.0000000000000405
|
|
[22]
|
Ma, Y., Chen, C., Zhang, S., Wang, Q., Chen, H., Dong, Y., et al. (2017) RNase Alleviates Neurological Dysfunction in Mice Undergoing Cardiac Arrest and Cardiopulmonary Resuscitation. Oncotarget, 8, 53084-53099. https://doi.org/10.18632/oncotarget.18088
|
|
[23]
|
Bachista, K.M., Moore, J.C., Labarère, J., Crowe, R.P., Emanuelson, L.D., Lick, C.J., et al. (2024) Survival for Nonshockable Cardiac Arrests Treated with Noninvasive Circulatory Adjuncts and Head/Thorax Elevation. Critical Care Medicine, 52, 170-181. https://doi.org/10.1097/ccm.0000000000006055
|
|
[24]
|
Pourzand, P., Moore, J., Metzger, A., Salverda, B., Suresh, M., Arango, S., et al. (2024) Hemodynamics, Survival and Neurological Function with Early versus Delayed Automated Head-Up CPR in a Porcine Model of Prolonged Cardiac Arrest. Resuscitation, 194, Article ID: 110067. https://doi.org/10.1016/j.resuscitation.2023.110067
|
|
[25]
|
曹钰, 王智渊, 姚鹏, 等. 心肺复苏基础研究热点与展望[J]. 西部医学, 2023, 38(1): 6-13.
|