[1]
|
Gao, Y., Wang, R., Jiang, J., Hu, Y., Li, H. and Wang, Y. (2023) ACEI/ARB and β-Blocker Therapies for Preventing Cardiotoxicity of Antineoplastic Agents in Breast Cancer: A Systematic Review and Meta-Analysis. Heart Failure Reviews, 28, 1405-1415. https://doi.org/10.1007/s10741-023-10328-z
|
[2]
|
Chen, D., Xing, W., Hong, J., Wang, M., Huang, Y., Zhu, C., et al. (2012) The β2-Adrenergic Receptor Is a Potential Prognostic Biomarker for Human Hepatocellular Carcinoma after Curative Resection. Annals of Surgical Oncology, 19, 3556-3565. https://doi.org/10.1245/s10434-012-2396-1
|
[3]
|
Shang, Z.J., Liu, K. and Liang, D.F. (2009) Expression of β2‐Adrenergic Receptor in Oral Squamous Cell Carcinoma. Journal of Oral Pathology & Medicine, 38, 371-376. https://doi.org/10.1111/j.1600-0714.2008.00691.x
|
[4]
|
Gales, L., Forsea, L., Mitrea, D., Stefanica, I., Stanculescu, I., Mitrica, R., et al. (2022) Antidiabetics, Anthelmintics, Statins, and β-Blockers as Co-Adjuvant Drugs in Cancer Therapy. Medicina, 58, Article No. 1239. https://doi.org/10.3390/medicina58091239
|
[5]
|
Gottschau, M., Bens, A., Friis, S., Cronin‐Fenton, D., Aalborg, G.L., Jensen, M., et al. (2022) Use of β‐Blockers and Risk of Contralateral Breast Cancer. International Journal of Cancer, 150, 1619-1626. https://doi.org/10.1002/ijc.33923
|
[6]
|
Caparica, R., Bruzzone, M., Agostinetto, E., De Angelis, C., Fêde, Â., Ceppi, M., et al. (2021) β-Blockers in Early-Stage Breast Cancer: A Systematic Review and Meta-Analysis. ESMO Open, 6, Article ID: 100066. https://doi.org/10.1016/j.esmoop.2021.100066
|
[7]
|
Scott, O.W., Tin Tin, S., Elwood, J.M., Cavadino, A., Habel, L.A., Kuper-Hommel, M., et al. (2022) Post-Diagnostic β Blocker Use and Breast Cancer-Specific Mortality: A Population-Based Cohort Study. Breast Cancer Research and Treatment, 193, 225-235. https://doi.org/10.1007/s10549-022-06528-0
|
[8]
|
Hiller, J.G., Cole, S.W., Crone, E.M., Byrne, D.J., Shackleford, D.M., Pang, J.B., et al. (2020) Preoperative β-Blockade with Propranolol Reduces Biomarkers of Metastasis in Breast Cancer: A Phase II Randomized Trial. Clinical Cancer Research, 26, 1803-1811. https://doi.org/10.1158/1078-0432.ccr-19-2641
|
[9]
|
Murugan, S., Rousseau, B. and Sarkar, D.K. (2021) β 2 Adrenergic Receptor Antagonist Propranolol and Opioidergic Receptor Antagonist Naltrexone Produce Synergistic Effects on Breast Cancer Growth Prevention by Acting on Cancer Cells and Immune Environment in a Preclinical Model of Breast Cancer. Cancers, 13, Article No. 4858. https://doi.org/10.3390/cancers13194858
|
[10]
|
Wen, Z., Gao, S., Gong, T., Jiang, Y., Zhang, J., Zhao, Y., et al. (2021) Post-Diagnostic β Blocker Use and Prognosis of Ovarian Cancer: A Systematic Review and Meta-Analysis of 11 Cohort Studies with 20,274 Patients. Frontiers in Oncology, 11, Article 665617. https://doi.org/10.3389/fonc.2021.665617
|
[11]
|
Huang, T., Townsend, M.K., Dood, R.L., Sood, A.K. and Tworoger, S.S. (2021) Antihypertensive Medication Use and Ovarian Cancer Survival. Gynecologic Oncology, 163, 342-347. https://doi.org/10.1016/j.ygyno.2021.09.009
|
[12]
|
Zhang, Y., Song, M., Chan, A.T., Meyerhardt, J.A., Willett, W.C. and Giovannucci, E.L. (2022) Long-Term Use of Antihypertensive Medications, Hypertension and Colorectal Cancer Risk and Mortality: A Prospective Cohort Study. British Journal of Cancer, 127, 1974-1982. https://doi.org/10.1038/s41416-022-01975-4
|
[13]
|
Ahl, R., Matthiessen, P., Sjölin, G., Cao, Y., Wallin, G., Ljungqvist, O., et al. (2020) Effects of β-Blocker Therapy on Mortality after Elective Colon Cancer Surgery: A Swedish Nationwide Cohort Study. BMJ Open, 10, e036164. https://doi.org/10.1136/bmjopen-2019-036164
|
[14]
|
Hu, J., Chen, C., Lu, R., Zhang, Y., Wang, Y., Hu, Q., et al. (2021) β-Adrenergic Receptor Inhibitor and Oncolytic Herpesvirus Combination Therapy Shows Enhanced Antitumoral and Antiangiogenic Effects on Colorectal Cancer. Frontiers in Pharmacology, 12, Article 735278. https://doi.org/10.3389/fphar.2021.735278
|
[15]
|
Haldar, R., Ricon‐Becker, I., Radin, A., Gutman, M., Cole, S.W., Zmora, O., et al. (2020) Perioperative COX2 and β‐Adrenergic Blockade Improves Biomarkers of Tumor Metastasis, Immunity, and Inflammation in Colorectal Cancer: A Randomized Controlled Trial. Cancer, 126, 3991-4001. https://doi.org/10.1002/cncr.32950
|
[16]
|
Nilsson, M.B., Sun, H., Diao, L., Tong, P., Liu, D., Li, L., et al. (2017) Stress Hormones Promote EGFR Inhibitor Resistance in NSCLC: Implications for Combinations with β-Blockers. Science Translational Medicine, 9, eaao4307. https://doi.org/10.1126/scitranslmed.aao4307
|
[17]
|
Nilsson, M.B., Le, X. and Heymach, J.V. (2019) β-Adrenergic Signaling in Lung Cancer: A Potential Role for β-Blockers. Journal of Neuroimmune Pharmacology, 15, 27-36. https://doi.org/10.1007/s11481-019-09891-w
|
[18]
|
Du, P., Zeng, H., Xiao, Y., Zhao, Y., Zheng, B., Deng, Y., et al. (2020) Chronic Stress Promotes EMT-Mediated Metastasis through Activation of STAT3 Signaling Pathway by miR-337-3p in Breast Cancer. Cell Death & Disease, 11, Article No. 761. https://doi.org/10.1038/s41419-020-02981-1
|
[19]
|
Ouyang, X., Zhu, Z., Yang, C., et al. (2019) Epinephrine Increases Malignancy of Breast Cancer through p38 MAPK Signaling Path-Way in Depressive Disorders. International Journal of Clinical and Experimental Pathology, 12, 1932-1946.
|
[20]
|
Cui, B., Luo, Y., Tian, P., Peng, F., Lu, J., Yang, Y., et al. (2019) Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A and Promotes Breast Cancer Stem-Like Cells. Journal of Clinical Investigation, 129, 1030-1046. https://doi.org/10.1172/jci121685
|
[21]
|
Silva, D., Quintas, C., Gonçalves, J. and Fresco, P. (2022) Contribution of Adrenergic Mechanisms for the Stress‐Induced Breast Cancer Carcinogenesis. Journal of Cellular Physiology, 237, 2107-2127. https://doi.org/10.1002/jcp.30707
|
[22]
|
Maestroni, G.J.M. (2019) Adrenergic Modulation of Hematopoiesis. Journal of Neuroimmune Pharmacology, 15, 82-92. https://doi.org/10.1007/s11481-019-09840-7
|
[23]
|
Pon, C.K., Lane, J.R., Sloan, E.K. and Halls, M.L. (2015) The β2‐adrenoceptor Activates a Positive Camp‐Calcium Feedforward Loop to Drive Breast Cancer Cell Invasion. The FASEB Journal, 30, 1144-1154. https://doi.org/10.1096/fj.15-277798
|
[24]
|
Park, P.G., Merryman, J., Orloff, M., et al. (1995) β-Adrenergic Mitogenic Signal Transduction in Peripheral Lung Adenocarcinoma: Implications for Individuals with Preexisting Chronic Lung Disease. Cancer Research, 55, 3504-3508.
|
[25]
|
Kang, Y., Nagaraja, A.S., Armaiz-Pena, G.N., Dorniak, P.L., Hu, W., Rupaimoole, R., et al. (2016) Adrenergic Stimulation of DUSP1 Impairs Chemotherapy Response in Ovarian Cancer. Clinical Cancer Research, 22, 1713-1724. https://doi.org/10.1158/1078-0432.ccr-15-1275
|
[26]
|
Porcelli, L., Garofoli, M., Di Fonte, R., Fucci, L., Volpicella, M., Strippoli, S., et al. (2020) The β-Adrenergic Receptor Antagonist Propranolol Offsets Resistance Mechanisms to Chemotherapeutics in Diverse Sarcoma Subtypes: A Pilot Study. Scientific Reports, 10, Article No. 10465. https://doi.org/10.1038/s41598-020-67342-6
|
[27]
|
Falcinelli, M., Al-Hity, G., Baron, S., Mampay, M., Allen, M.C., Samuels, M., et al. (2023) Propranolol Reduces IFN-γ Driven PD-L1 Immunosuppression and Improves Anti-Tumour Immunity in Ovarian Cancer. Brain, Behavior, and Immunity, 110, 1-12. https://doi.org/10.1016/j.bbi.2023.02.011
|
[28]
|
Barathova, M., Grossmannova, K., Belvoncikova, P., Kubasova, V., Simko, V., Skubla, R., et al. (2020) Impairment of Hypoxia-Induced CA IX by β-Blocker Propranolol—Impact on Progression and Metastatic Potential of Colorectal Cancer Cells. International Journal of Molecular Sciences, 21, Article No. 8760. https://doi.org/10.3390/ijms21228760
|
[29]
|
Hara, M.R., Kovacs, J.J., Whalen, E.J., Rajagopal, S., Strachan, R.T., Grant, W., et al. (2011) A Stress Response Pathway Regulates DNA Damage through β2-Adrenoreceptors and β-Arrestin-1. Nature, 477, 349-353. https://doi.org/10.1038/nature10368
|
[30]
|
Dal Monte, M., Casini, G., Filippi, L., Nicchia, G.P., Svelto, M. and Bagnoli, P. (2013) Functional Involvement of β3-Adrenergic Receptors in Melanoma Growth and Vascularization. Journal of Molecular Medicine, 91, 1407-1419. https://doi.org/10.1007/s00109-013-1073-6
|
[31]
|
Calvani, M., Bruno, G., Dal Monte, M., Nassini, R., Fontani, F., Casini, A., et al. (2019) β3‐Adrenoceptor as a Potential Immuno‐Suppressor Agent in Melanoma. British Journal of Pharmacology, 176, 2509-2524. https://doi.org/10.1111/bph.14660
|
[32]
|
Dal Monte, M., Calvani, M., Cammalleri, M., Favre, C., Filippi, L. and Bagnoli, P. (2018) β‐Adrenoceptors as Drug Targets in Melanoma: Novel Preclinical Evidence for a Role of β3‐Adrenoceptors. British Journal of Pharmacology, 176, 2496-2508. https://doi.org/10.1111/bph.14552
|
[33]
|
De Giorgi, V., Geppetti, P., Lupi, C. and Benemei, S. (2019) The Role of β-Blockers in Melanoma. Journal of Neuroimmune Pharmacology, 15, 17-26. https://doi.org/10.1007/s11481-019-09876-9
|
[34]
|
Jorquera-Cordero, C., Lara, P., Cruz, L.J., Schomann, T., van Hofslot, A., de Carvalho, T.G., et al. (2022) Extracellular Vesicles from M1-Polarized Macrophages Combined with Hyaluronic Acid and a β-Blocker Potentiate Doxorubicin’s Antitumor Activity by Downregulating Tumor-Associated Macrophages in Breast Cancer. Pharmaceutics, 14, Article No. 1068. https://doi.org/10.3390/pharmaceutics14051068
|
[35]
|
Khong, H.T. and Restifo, N.P. (2002) Natural Selection of Tumor Variants in the Generation of “Tumor Escape” Phenotypes. Nature Immunology, 3, 999-1005. https://doi.org/10.1038/ni1102-999
|
[36]
|
Jang, H., Boo, H., Lee, H.J., Min, H. and Lee, H. (2016) Chronic Stress Facilitates Lung Tumorigenesis by Promoting Exocytosis of IGF2 in Lung Epithelial Cells. Cancer Research, 76, 6607-6619. https://doi.org/10.1158/0008-5472.can-16-0990
|
[37]
|
Chaudhary, K.R., Yan, S.X., Heilbroner, S.P., Sonett, J.R., Stoopler, M.B., Shu, C., et al. (2019) Effects of β-Adrenergic Antagonists on Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 8, Article No. 575. https://doi.org/10.3390/jcm8050575
|
[38]
|
Wang, H.M., Liao, Z.X., Komaki, R., Welsh, J.W., O’Reilly, M.S., Chang, J.Y., et al. (2013) Improved Survival Outcomes with the Incidental Use of β-Blockers among Patients with Non-Small-Cell Lung Cancer Treated with Definitive Radiation Therapy. Annals of Oncology, 24, 1312-1319. https://doi.org/10.1093/annonc/mds616
|
[39]
|
Ray, R., Al Khashali, H., Haddad, B., Wareham, J., Coleman, K., Alomari, D., et al. (2022) Regulation of Cisplatin Resistance in Lung Cancer Cells by Nicotine, BDNF, and a β-Adrenergic Receptor Blocker. International Journal of Molecular Sciences, 23, Article No. 12829. https://doi.org/10.3390/ijms232112829
|
[40]
|
Di Fonte, R., Strippoli, S., Garofoli, M., Cormio, G., Serratì, S., Loizzi, V., et al. (2023) Cervical Cancer Benefits from Trabectedin Combination with the β-Blocker Propranolol: In Vitro and Ex Vivo Evaluations in Patient-Derived Organoids. Frontiers in Cell and Developmental Biology, 11, Article 1178316. https://doi.org/10.3389/fcell.2023.1178316
|
[41]
|
Calvani, M., Subbiani, A., Vignoli, M. and Favre, C. (2019) Spotlight on ROS and β3-Adrenoreceptors Fighting in Cancer Cells. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 6346529. https://doi.org/10.1155/2019/6346529
|
[42]
|
Ordovas-Montanes, J., Rakoff-Nahoum, S., Huang, S., Riol-Blanco, L., Barreiro, O. and von Andrian, U.H. (2015) The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends in Immunology, 36, 578-604. https://doi.org/10.1016/j.it.2015.08.007
|
[43]
|
Zhang, S.H., Shurin, G.V., Khosravi, H., Kazi, R., Kruglov, O., Shurin, M.R., et al. (2019) Immunomodulation by Schwann Cells in Disease. Cancer Immunology, Immunotherapy, 69, 245-253. https://doi.org/10.1007/s00262-019-02424-7
|
[44]
|
Restaino, A.C. and Vermeer, P.D. (2021) Neural Regulations of the Tumor Microenvironment. FASEB BioAdvances, 4, 29-42. https://doi.org/10.1096/fba.2021-00066
|